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Preface

Revising this textbook has been a special challenge, for a very nice reason. So many
people have read this book, and taught from it, and even loved it. The spirit of the book
could never change. This text was written to help our teaching of linear algebra keep up
with the enormous importance of this subject—which just continues to grow.

One step was certainly possible and desirable—to add new problems. Teaching for all
these years required hundreds of new exam questions (especially with quizzes going onto
the web). I think you will approve of the extended choice of problems. The questions are
still a mixture of explain and compute—the two complementary approaches to learning
this beautiful subject.

I personally believe that many more people need linear algebra than calculus. Isaac
Newton might not agree! But he isn’t teaching mathematics in the 21st century (and
maybe he wasn’t a great teacher, but we will give him the benefit of the doubt). Cer-
tainly the laws of physics are well expressed by differential equations. Newton needed
calculus—quite right. But the scope of science and engineering and management (and
life) is now so much wider, and linear algebra has moved into a central place.

May I say a little more, because many universities have not yet adjusted the balance
toward linear algebra. Working with curved lines and curved surfaces, the first step is
always to linearize. Replace the curve by its tangent line, fit the surface by a plane,
and the problem becomes linear. The power of this subject comes when you have ten
variables, or 1000 variables, instead of two.

You might think I am exaggerating to use the word “beautiful” for a basic course
in mathematics. Not at all. This subject begins with two vectors v and w, pointing in
different directions. The key step is to take their linear combinations. We multiply to
get 3v and 4w, and we add to get the particular combination 3v + 4w. That new vector
is in the same plane as v and w. When we take all combinations, we are filling in the
whole plane. If I draw v and w on this page, their combinations cv + dw fill the page
(and beyond), but they don’t go up from the page.

In the language of linear equations, I can solve cv +dw = b exactly when the vector
b lies in the same plane as v and w.

iv
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Matrices

I will keep going a little more to convert combinations of three-dimensional vectors into
linear algebra. If the vectors are v = (1,2,3) and w = (1,3,4), put them into the columns
of a matrix:

matrix =




1 1
2 3
3 4


 .

To find combinations of those columns, “multiply” the matrix by a vector (c,d):

Linear combinations cv+dw




1 1
2 3
3 4




[
c
d

]
= c




1
2
3


+d




1
3
4


 .

Those combinations fill a vector space. We call it the column space of the matrix. (For
these two columns, that space is a plane.) To decide if b = (2,5,7) is on that plane, we
have three components to get right. So we have three equations to solve:




1 1
2 3
3 4




[
c
d

]
=




2
5
7


 means

c+ d = 2
2c+3d = 5
3c+4d = 7

.

I leave the solution to you. The vector b = (2,5,7) does lie in the plane of v and w.
If the 7 changes to any other number, then b won’t lie in the plane—it will not be a
combination of v and w, and the three equations will have no solution.

Now I can describe the first part of the book, about linear equations Ax = b. The
matrix A has n columns and m rows. Linear algebra moves steadily to n vectors in m-
dimensional space. We still want combinations of the columns (in the column space).
We still get m equations to produce b (one for each row). Those equations may or may
not have a solution. They always have a least-squares solution.

The interplay of columns and rows is the heart of linear algebra. It’s not totally easy,
but it’s not too hard. Here are four of the central ideas:

1. The column space (all combinations of the columns).

2. The row space (all combinations of the rows).

3. The rank (the number of independent columns) (or rows).

4. Elimination (the good way to find the rank of a matrix).

I will stop here, so you can start the course.
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Web Pages

It may be helpful to mention the web pages connected to this book. So many messages
come back with suggestions and encouragement, and I hope you will make free use
of everything. You can directly access http://web.mit.edu/18.06, which is continually
updated for the course that is taught every semester. Linear algebra is also on MIT’s
OpenCourseWare site http://ocw.mit.edu, where 18.06 became exceptional by including
videos of the lectures (which you definitely don’t have to watch...). Here is a part of
what is available on the web:

1. Lecture schedule and current homeworks and exams with solutions.

2. The goals of the course, and conceptual questions.

3. Interactive Java demos (audio is now included for eigenvalues).

4. Linear Algebra Teaching Codes and MATLAB problems.

5. Videos of the complete course (taught in a real classroom).

The course page has become a valuable link to the class, and a resource for the students.
I am very optimistic about the potential for graphics with sound. The bandwidth for
voiceover is low, and FlashPlayer is freely available. This offers a quick review (with
active experiment), and the full lectures can be downloaded. I hope professors and
students worldwide will find these web pages helpful. My goal is to make this book as
useful as possible with all the course material I can provide.

Other Supporting Materials

Student Solutions Manual 0-495-01325-0 The Student Solutions Manual provides
solutions to the odd-numbered problems in the text.

Instructor’s Solutions Manual 0-030-10588-4 The Instructor’s Solutions Man-
ual has teaching notes for each chapter and solutions to all of the problems in the text.

Structure of the Course

The two fundamental problems are Ax = b and Ax = λx for square matrices A. The first
problem Ax = b has a solution when A has independent columns. The second problem
Ax = λx looks for independent eigenvectors. A crucial part of this course is to learn
what “independence” means.

I believe that most of us learn first from examples. You can see that

A =




1 1 2
1 2 3
1 3 4


 does not have independent columns.
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Column 1 plus column 2 equals column 3. A wonderful theorem of linear algebra says
that the three rows are not independent either. The third row must lie in the same plane
as the first two rows. Some combination of rows 1 and 2 will produce row 3. You might
find that combination quickly (I didn’t). In the end I had to use elimination to discover
that the right combination uses 2 times row 2, minus row 1.

Elimination is the simple and natural way to understand a matrix by producing a lot
of zero entries. So the course starts there. But don’t stay there too long! You have to get
from combinations of the rows, to independence of the rows, to “dimension of the row
space.” That is a key goal, to see whole spaces of vectors: the row space and the column
space and the nullspace.

A further goal is to understand how the matrix acts. When A multiplies x it produces
the new vector Ax. The whole space of vectors moves—it is “transformed” by A. Special
transformations come from particular matrices, and those are the foundation stones of
linear algebra: diagonal matrices, orthogonal matrices, triangular matrices, symmetric
matrices.

The eigenvalues of those matrices are special too. I think 2 by 2 matrices provide
terrific examples of the information that eigenvalues λ can give. Sections 5.1 and 5.2
are worth careful reading, to see how Ax = λx is useful. Here is a case in which small
matrices allow tremendous insight.

Overall, the beauty of linear algebra is seen in so many different ways:

1. Visualization. Combinations of vectors. Spaces of vectors. Rotation and reflection
and projection of vectors. Perpendicular vectors. Four fundamental subspaces.

2. Abstraction. Independence of vectors. Basis and dimension of a vector space.
Linear transformations. Singular value decomposition and the best basis.

3. Computation. Elimination to produce zero entries. Gram-Schmidt to produce
orthogonal vectors. Eigenvalues to solve differential and difference equations.

4. Applications. Least-squares solution when Ax = b has too many equations. Dif-
ference equations approximating differential equations. Markov probability matrices
(the basis for Google!). Orthogonal eigenvectors as principal axes (and more...).

To go further with those applications, may I mention the books published by Wellesley-
Cambridge Press. They are all linear algebra in disguise, applied to signal processing
and partial differential equations and scientific computing (and even GPS). If you look
at http://www.wellesleycambridge.com, you will see part of the reason that linear algebra
is so widely used.

After this preface, the book will speak for itself. You will see the spirit right away.
The emphasis is on understanding—I try to explain rather than to deduce. This is a
book about real mathematics, not endless drill. In class, I am constantly working with
examples to teach what students need.
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Chapter 1
Matrices and Gaussian Elimination

1.1 Introduction

This book begins with the central problem of linear algebra: solving linear equations.
The most important ease, and the simplest, is when the number of unknowns equals the
number of equations. We have n equations in n unknowns, starting with n = 2:

Two equations 1x + 2y = 3
Two unknowns 4x + 5y = 6.

(1)

The unknowns are x and y. I want to describe two ways, elimination and determinants,
to solve these equations. Certainly x and y are determined by the numbers 1, 2, 3, 4, 5,
6. The question is how to use those six numbers to solve the system.

1. Elimination Subtract 4 times the first equation from the second equation. This
eliminates x from the second equation. and it leaves one equation for y:

(equation 2)−4(equation 1) −3y =−6. (2)

Immediately we know y = 2. Then x comes from the first equation 1x+2y = 3:

Back-substitution 1x+2(2) = 3 gives x =−1. (3)

Proceeding carefully, we cheek that x and y also solve the second equation. This
should work and it does: 4 times (x =−1) plus 5 times (y = 2) equals 6.

2. Determinants The solution y = 2 depends completely on those six numbers in the
equations. There most be a formula for y (and also x) It is a “ratio of determinants”
and I hope you will allow me to write it down directly:

y =

∣∣∣∣∣
1 3
4 6

∣∣∣∣∣
∣∣∣∣∣
1 2
4 5

∣∣∣∣∣

=
1 ·6−3 ·4
1 ·5−2 ·4 =

−6
−3

= 2. (4)
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That could seem a little mysterious, unless you already know about 2 by 2 determi-
nants. They gave the same answer y = 2, coming from the same ratio of −6 to −3.
If we stay with determinants (which we don’t plan to do), there will be a similar
formula to compute the other unknown, x:

x =

∣∣∣∣∣
3 2
6 5

∣∣∣∣∣
∣∣∣∣∣
1 2
4 5

∣∣∣∣∣

=
3 ·5−2 ·6
1 ·5−2 ·4 =

3
−3

=−1. (5)

Let me compare those two approaches, looking ahead to real problems when n is
much larger (n = 1000 is a very moderate size in scientific computing). The truth is that
direct use of the determinant formula for 1000 equations would be a total disaster. It
would use the million numbers on the left sides correctly, but not efficiently. We will
find that formula (Cramer’s Rule) in Chapter 4, but we want a good method to solve
1000 equations in Chapter 1.

That good method is Gaussian Elimination. This is the algorithm that is constantly
used to solve large systems of equations. From the examples in a textbook (n = 3 is
close to the upper limit on the patience of the author and reader) too might not see much
difference. Equations (2) and (4) used essentially the same steps to find y = 2. Certainly
x came faster by the back-substitution in equation (3) than the ratio in (5). For larger
n there is absolutely no question. Elimination wins (and this is even the best way to
compute determinants).

The idea of elimination is deceptively simple—you will master it after a few exam-
ples. It will become the basis for half of this book, simplifying a matrix so that we can
understand it. Together with the mechanics of the algorithm, we want to explain four
deeper aspects in this chapter. They are:

1. Linear equations lead to geometry of planes. It is not easy to visualize a nine-
dimensional plane in ten-dimensional space. It is harder to see ten of those planes,
intersecting at the solution to ten equations—but somehow this is almost possible.
Our example has two lines in Figure 1.1, meeting at the point (x,y) = (−1,2).
Linear algebra moves that picture into ten dimensions, where the intuition has to
imagine the geometry (and gets it right)

2. We move to matrix notation, writing the n unknowns as a vector x and the n equa-
tions as Ax = b. We multiply A by “elimination matrices” to reach an upper trian-
gular matrix U . Those steps factor A into L times U , where L is lower triangular.
I will write down A and its factors for our example, and explain them at the right
time:

Factorization A =

[
1 2
4 5

]
=

[
1 0
4 1

][
1 2
0 −3

]
= L times U . (6)
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y

x

b

x + 2y = 3
x = −1
y = 2

4x + 5y = 6

One solution (x, y) = (−1, 2)

y

x

x + 2y = 3

4x + 8y = 6

Parallel: No solution

y

x

x + 2y = 3

4x + 8y = 12

Whole line of solutions

Figure 1.1: The example has one solution. Singular cases have none or too many.

First we have to introduce matrices and vectors and the rules for multiplication.
Every matrix has a transpose AT. This matrix has an inverse A−1.

3. In most cases elimination goes forward without difficulties. The matrix has an
inverse and the system Ax = b has one solution. In exceptional cases the method
will break down—either the equations were written in the wrong order, which is
easily fixed by exchanging them, or the equations don’t have a unique solution.

That singular case will appear if 8 replaces 5 in our example:

Singular case
Two parallel lines

1x + 2y = 3
4x + 8y = 6.

(7)

Elimination still innocently subtracts 4 times the first equation from the second. But
look at the result!

(equation 2)−4(equation 1) 0 =−6.

This singular case has no solution. Other singular cases have infinitely many solu-
tions. (Change 6 to 12 in the example, and elimination will lead to 0 = 0. Now y
can have any value,) When elimination breaks down, we want to find every possible
solution.

4. We need a rough count of the number of elimination steps required to solve a sys-
tem of size n. The computing cost often determines the accuracy in the model. A
hundred equations require a third of a million steps (multiplications and subtrac-
tions). The computer can do those quickly, but not many trillions. And already
after a million steps, roundoff error could be significant. (Some problems are sen-
sitive; others are not.) Without trying for full detail, we want to see large systems
that arise in practice, and how they are actually solved.

The final result of this chapter will be an elimination algorithm that is about as effi-
cient as possible. It is essentially the algorithm that is in constant use in a tremendous
variety of applications. And at the same time, understanding it in terms of matrices—the
coefficient matrix A, the matrices E for elimination and P for row exchanges, and the
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final factors L and U—is an essential foundation for the theory. I hope you will enjoy
this book and this course.

1.2 The Geometry of Linear Equations

The way to understand this subject is by example. We begin with two extremely humble
equations, recognizing that you could solve them without a course in linear algebra.
Nevertheless I hope you will give Gauss a chance:

2x − y = 1
x + y = 5.

We can look at that system by rows or by columns. We want to see them both.
The first approach concentrates on the separate equations (the rows). That is the

most familiar, and in two dimensions we can do it quickly. The equation 2x− y = 1 is
represented by a straight line in the x-y plane. The line goes through the points x = 1,
y = 1 and x = 1

2 , y = 0 (and also through (2,3) and all intermediate points). The second
equation x + y = 5 produces a second line (Figure 1.2a). Its slope is dy/dx =−1 and it
crosses the first line at the solution.

The point of intersection lies on both lines. It is the only solution to both equations.
That point x = 2 and y = 3 will soon be found by “elimination.”

b

b

(0, 5)

(0,−1) (1

2
, 0)

x + y = 5

2x − y = 1

x

y

(5, 0)

(x, y) = (2, 3)

(a) Lines meet at x = 2, y = 3

b b

b

b

b

(−3, 3)

(−1, 1) (2, 1) = column 1

(4, 2)

(1, 5) =
2 (column 1)

+3 (column 2)

(b) Columns combine with 2 and 3

Figure 1.2: Row picture (two lines) and column picture (combine columns).

The second approach looks at the columns of the linear system. The two separate
equations are really one vector equation:

Column form x

[
2
1

]
+ y

[
−1
1

]
=

[
1
5

]
.
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The problem is to find the combination of the column vectors on the left side that
produces the vector on the right side. Those vectors (2,1) and (−1,1) are represented
by the bold lines in Figure 1.2b. The unknowns are the numbers x and y that multiply
the column vectors. The whole idea can be seen in that figure, where 2 times column
1 is added to 3 times column 2. Geometrically this produces a famous parallelogram.
Algebraically it produces the correct vector (1,5), on the right side of our equations.
The column picture confirms that x = 2 and y = 3.

More time could be spent on that example, but I would rather move forward to n = 3.
Three equations are still manageable, and they have much more variety:

Three planes
2u + v + w = 5
4u − 6v = −2
−2u + 7v + 2w = 9.

(1)

Again we can study the rows or the columns, and we start with the rows. Each equation
describes a plane in three dimensions. The first plane is 2u+v+w = 5, and it is sketched
in Figure 1.3. It contains the points (5

2 ,0,0) and (0,5,0) and (0,0,5). It is determined
by any three of its points—provided they do not lie on a line.

w

u

v

b
(1, 1, 2) = point of intersection
with third plane = solution

4u − 6v = −2 (vertical plane)

line of intersection: first two planes

2u + v + w = 5 (sloping plane)

Figure 1.3: The row picture: three intersecting planes from three linear equations.

Changing 5 to 10, the plane 2u+v+w = 10 would be parallel to this one. It contains
(5,0,0) and (0,10,0) and (0,0,10), twice as far from the origin—which is the center
point u = 0, v = 0, w = 0. Changing the right side moves the plane parallel to itself, and
the plane 2u+ v+w = 0 goes through the origin.
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The second plane is 4u− 6v = −2. It is drawn vertically, because w can take any
value. The coefficient of w is zero, but this remains a plane in 3-space. (The equation
4u = 3, or even the extreme case u = 0, would still describe a plane.) The figure shows
the intersection of the second plane with the first. That intersection is a line. In three
dimensions a line requires two equations; in n dimensions it will require n−1.

Finally the third plane intersects this line in a point. The plane (not drawn) represents
the third equation−2u+7v+2w = 9, and it crosses the line at u = 1, v = 1, w = 2. That
triple intersection point (1,1,2) solves the linear system.

How does this row picture extend into n dimensions? The n equations will con-
tain n unknowns. The first equation still determines a “plane.” It is no longer a two-
dimensional plane in 3-space; somehow it has “dimension” n− 1. It must be flat and
extremely thin within n-dimensional space, although it would look solid to us.

If time is the fourth dimension, then the plane t = 0 cuts through four-dimensional
space and produces the three-dimensional universe we live in (or rather, the universe as
it was at t = 0). Another plane is z = 0, which is also three-dimensional; it is the ordinary
x-y plane taken over all time. Those three-dimensional planes will intersect! They share
the ordinary x-y plane at t = 0. We are down to two dimensions, and the next plane
leaves a line. Finally a fourth plane leaves a single point. It is the intersection point of 4
planes in 4 dimensions, and it solves the 4 underlying equations.

I will be in trouble if that example from relativity goes any further. The point is that
linear algebra can operate with any number of equations. The first equation produces an
(n−1)-dimensional plane in n dimensions, The second plane intersects it (we hope) in
a smaller set of “dimension n−2.” Assuming all goes well, every new plane (every new
equation) reduces the dimension by one. At the end, when all n planes are accounted
for, the intersection has dimension zero. It is a point, it lies on all the planes, and its
coordinates satisfy all n equations. It is the solution!

Column Vectors and Linear Combinations

We turn to the columns. This time the vector equation (the same equation as (1)) is

Column form u




2
4
−2


+ v




1
−6
7


+w




1
0
2


 =




5
−2
9


 = b. (2)

Those are three-dimensional column vectors. The vector b is identified with the point
whose coordinates are 5, −2, 9. Every point in three-dimensional space is matched to a
vector, and vice versa. That was the idea of Descartes, who turned geometry into algebra
by working with the coordinates of the point. We can write the vector in a column, or
we can list its components as b = (5,−2,9), or we can represent it geometrically by an
arrow from the origin. You can choose the arrow, or the point, or the three numbers. In
six dimensions it is probably easiest to choose the six numbers.
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We use parentheses and commas when the components are listed horizontally, and
square brackets (with no commas) when a column vector is printed vertically. What
really matters is addition of vectors and multiplication by a scalar (a number). In Figure
1.4a you see a vector addition, component by component:

Vector addition




5
0
0


+




0
−2
0


+




0
0
9


 =




5
−2
9


 .

In the right-hand figure there is a multiplication by 2 (and if it had been −2 the vector

b

b

b

b

[

0
−2

0

]

[

5
0
0

]

b =
[

5
−2

9

]

[

0
0
9

]

(a) Add vectors along axes

b

b b

[

2
0
4

]

= 2
[

1
0
2

]

2 (column 3)
[

2
4
−2

]

+
[

1
−6

7

]

=
[

3
−2

5

]

columns 1 + 2

[

5
−1

9

]

= linear combination equals b

(b) Add columns 1 + 2 + (3 + 3)

Figure 1.4: The column picture: linear combination of columns equals b.

would have gone in the reverse direction):

Multiplication by scalars 2




1
0
2


 =




2
0
4


 , −2




1
0
2


 =



−2
0
−4


 .

Also in the right-hand figure is one of the central ideas of linear algebra. It uses both
of the basic operations; vectors are multiplied by numbers and then added. The result is
called a linear combination, and this combination solves our equation:

Linear combination 1




2
4
−2


+1




1
−6
7


+2




1
0
2


 =




5
−2
9


 .

Equation (2) asked for multipliers u, v, w that produce the right side b. Those numbers
are u = 1, v = 1, w = 2. They give the correct combination of the columns. They also
gave the point (1,1,2) in the row picture (where the three planes intersect).
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Our true goal is to look beyond two or three dimensions into n dimensions. With n
equations in n unknowns, there are n planes in the row picture. There are n vectors in
the column picture, plus a vector b on the right side. The equations ask for a linear com-
bination of the n columns that equals b. For certain equations that will be impossible.
Paradoxically, the way to understand the good case is to study the bad one. Therefore
we look at the geometry exactly when it breaks down, in the singular case.

Row picture: Intersection of planes Column picture: Combination of columns

The Singular Case

Suppose we are again in three dimensions, and the three planes in the row picture do not
intersect. What can go wrong? One possibility is that two planes may be parallel. The
equations 2u + v + w = 5 and 4u + 2v + 2w = 11 are inconsistent—and parallel planes
give no solution (Figure 1.5a shows an end view). In two dimensions, parallel lines
are the only possibility for breakdown. But three planes in three dimensions can be in
trouble without being parallel.

two parallel planes

(a)

no intersection

(b)

line of intersection

(c)

all planes parallel

(d)

Figure 1.5: Singular cases: no solution for (a), (b), or (d), an infinity of solutions for (c).

The most common difficulty is shown in Figure 1.5b. From the end view the planes
form a triangle. Every pair of planes intersects in a line, and those lines are parallel. The
third plane is not parallel to the other planes, but it is parallel to their line of intersection.
This corresponds to a singular system with b = (2,5,6):

No solution, as in Figure 1.5b
u + v + w = 2

2u + 3w = 5
3u + v + 4w = 6.

(3)

The first two left sides add up to the third. On the right side that fails: 2+5 6= 6. Equation
1 plus equation 2 minus equation 3 is the impossible statement 0 = 1. Thus the equations
are inconsistent, as Gaussian elimination will systematically discover.
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Another singular system, close to this one, has an infinity of solutions. When the
6 in the last equation becomes 7, the three equations combine to give 0 = 0. Now the
third equation is the sum of the first two. In that case the three planes have a whole line
in common (Figure 1.5c). Changing the right sides will move the planes in Figure 1.5b
parallel to themselves, and for b = (2,5,7) the figure is suddenly different. The lowest
plane moved up to meet the others, and there is a line of solutions. Problem 1.5c is still
singular, but now it suffers from too many solutions instead of too few.

The extreme case is three parallel planes. For most right sides there is no solution
(Figure 1.5d). For special right sides (like b = (0,0,0)!) there is a whole plane of
solutions—because the three parallel planes move over to become the same.

What happens to the column picture when the system is singular? it has to go wrong;
the question is how, There are still three columns on the left side of the equations, and
we try to combine them to produce b. Stay with equation (3):

Singular case: Column picture
Three columns in the same plane
Solvable only for b in that plane

u




1
2
3


+ v




1
0
1


+w




1
3
4


 = b. (4)

For b = (2,5,7) this was possible; for b = (2,5,6) it was not. The reason is that those
three columns lie in a plane. Then every combination is also in the plane (which goes
through the origin). If the vector b is not in that plane, no solution is possible (Figure
1.6). That is by far the most likely event; a singular system generally has no solution.
But there is a chance that b does lie in the plane of the columns. In that case there are too
many solutions; the three columns can be combined in infinitely many ways to produce
b. That column picture in Figure 1.6b corresponds to the row picture in Figure 1.5c.

b

b

b not in place

3 columns
in a plane

(a) no solution

b

bb in place

3 columns
in a plane

(b) infinity of solutions

Figure 1.6: Singular cases: b outside or inside the plane with all three columns.

How do we know that the three columns lie in the same plane? One answer is to find a
combination of the columns that adds to zero. After some calculation, it is u = 3, v = 1,
w = −2. Three times column 1 equals column 2 plus twice column 3. Column 1 is in
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the plane of columns 2 and 3. Only two columns are independent.
The vector b = (2,5,7) is in that plane of the columns—it is column 1 plus column

3—so (1, 0, 1) is a solution. We can add an multiple of the combination (3,−1,−2) that
gives b = 0. So there is a whole line of solutions—as we know from the row picture.

The truth is that we knew the columns would combine to give zero, because the rows
did. That is a fact of mathematics, not of computation—and it remains true in dimension
n. If the n planes have no point in common, or infinitely many points, then the n
columns lie in the same plane.

If the row picture breaks down, so does the column picture. That brings out the
difference between Chapter 1 and Chapter 2. This chapter studies the most important
problem—the nonsingular case—where there is one solution and it has to be found.
Chapter 2 studies the general case, where there may be many solutions or none. In
both cases we cannot continue without a decent notation (matrix notation) and a decent
algorithm (elimination). After the exercises, we start with elimination.

Problem Set 1.2

1. For the equations x + y = 4, 2x− 2y = 4, draw the row picture (two intersecting
lines) and the column picture (combination of two columns equal to the column
vector (4,4) on the right side).

2. Solve to find a combination of the columns that equals b:

Triangular system
u − v − w = b1

v + w = b2

w = b3.

3. (Recommended) Describe the intersection of the three planes u + v + w + z = 6 and
u+w+ z = 4 and u+w = 2 (all in four-dimensional space). Is it a line or a point or
an empty set? What is the intersection if the fourth plane u =−1 is included? Find
a fourth equation that leaves us with no solution.

4. Sketch these three lines and decide if the equations are solvable:

3 by 2 system
x + 2y = 2
x − y = 2

y = 1.

What happens if all right-hand sides are zero? Is there any nonzero choice of right-
hand sides that allows the three lines to intersect at the same point?

5. Find two points on the line of intersection of the three planes t = 0 and z = 0 and
x+ y+ z+ t = 1 in four-dimensional space.
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6. When b = (2,5,7), find a solution (u,v,w) to equation (4) different from the solution
(1,0,1) mentioned in the text.

7. Give two more right-hand sides in addition to b = (2,5,7) for which equation (4)
can be solved. Give two more right-hand sides in addition to b = (2,5,6) for which
it cannot be solved.

8. Explain why the system

u + v + w = 2
u + 2v + 3w = 1

v + 2w = 0

is singular by finding a combination of the three equations that adds up to 0 = 1.
What value should replace the last zero on the right side to allow the equations to
have solutions—and what is one of the solutions?

9. The column picture for the previous exercise (singular system) is

u




1
1
0


+ v




1
2
1


+w




1
3
2


 = b.

Show that the three columns on the left lie in the same plane by expressing the third
column as a combination of the first two. What are all the solutions (u,v,w) if b is
the zero vector (0,0,0)?

10. (Recommended) Under what condition on y1, y2, y3 do the points (0,y1), (1,y2),
(2,y3) lie on a straight line?

11. These equations are certain to have the solution x = y = 0. For which values of a is
there a whole line of solutions?

ax + 2y = 0
2x + ay = 0

12. Starting with x+4y = 7, find the equation for the parallel line through x = 0, y = 0.
Find the equation of another line that meets the first at x = 3, y = 1.

Problems 13–15 are a review of the row and column pictures.

13. Draw the two pictures in two planes for the equations x−2y = 0, x+ y = 6.

14. For two linear equations in three unknowns x, y, z, the row picture will show (2 or 3)
(lines or planes) in (two or three)-dimensional space. The column picture is in (two
or three)-dimensional space. The solutions normally lie on a .
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15. For four linear equations in two unknowns x and y, the row picture shows four
. The column picture is in -dimensional space. The equations have no

solution unless the vector on the right-hand side is a combination of .

16. Find a point with z = 2 on the intersection line of the planes x + y + 3z = 6 and
x− y+ z = 4. Find the point with z = 0 and a third point halfway between.

17. The first of these equations plus the second equals the third:

x + y + z = 2
x + 2y + z = 3

2x + 3y + 2z = 5.

The first two planes meet along a line. The third plane contains that line, because
if x, y, z satisfy the first two equations then they also . The equations have
infinitely many solutions (the whole line L). Find three solutions.

18. Move the third plane in Problem 17 to a parallel plane 2x + 3y + 2z = 9. Now the
three equations have no solution—why not? The first two planes meet along the line
L, but the third plane doesn’t that line.

19. In Problem 17 the columns are (1,1,2) and (1,2,3) and (1,1,2). This is a “singular
case” because the third column is . Find two combinations of the columns
that give b = (2,3,5). This is only possible for b = (4,6,c) if c = .

20. Normally 4 “planes” in four-dimensional space meet at a . Normally 4 col-
umn vectors in four-dimensional space can combine to produce b. What combina-
tion of (1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1) produces b = (3,3,3,2)? What 4
equations for x, y, z, t are you solving?

21. When equation 1 is added to equation 2, which of these are changed: the planes in
the row picture, the column picture, the coefficient matrix, the solution?

22. If (a,b) is a multiple of (c,d) with abcd 6= 0, show that (a,c) is a multiple of (b,d).
This is surprisingly important: call it a challenge question. You could use numbers
first to see how a, b, c, and d are related. The question will lead to:

If A =
[

a b
c d

]
has dependent rows then it has dependent columns.

23. In these equations, the third column (multiplying w) is the same as the right side b.
The column form of the equations immediately gives what solution for (u,v,w)?

6u + 7v + 8w = 8
4u + 5v + 9w = 9
2u − 2v + 7w = 7.
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1.3 An Example of Gaussian Elimination

The way to understand elimination is by example. We begin in three dimensions:

Original system
2u + v + w = 5
4u − 6v = −2
−2u + 7v + 2w = 9.

(1)

The problem is to find the unknown values of u, v, and w, and we shall apply Gaussian
elimination. (Gauss is recognized as the greatest of all mathematicians, but certainly not
because of this invention, which probably took him ten minutes. Ironically, it is the most
frequently used of all the ideas that bear his name.) The method starts by subtracting
multiples of the first equation from the other equations. The goal is to eliminate u from
the last two equations. This requires that we

(a) subtract 2 times the first equation from the second

(b) subtract −1 times the first equation from the third.

Equivalent system
2u + v + w = 5

− 8v − 2w = −12
8v + 3w = 14.

(2)

The coefficient 2 is the first pivot. Elimination is constantly dividing the pivot into the
numbers underneath it, to find out the right multipliers.

The pivot for the second stage of elimination is−8. We now ignore the first equation.
A multiple of the second equation will be subtracted from the remaining equations (in
this case there is only the third one) so as to eliminate v. We add the second equation to
the third or, in other words, we

(c) subtract −1 times the second equation from the third.

The elimination process is now complete, at least in the “forward” direction:

Triangular system
2u + v + w = 5

− 8v − 2w = −12
1w = 2.

(3)

This system is solved backward, bottom to top. The last equation gives w = 2. Sub-
stituting into the second equation, we find v = 1. Then the first equation gives u = 1.
This process is called back-substitution.

To repeat: Forward elimination produced the pivots 2, −8, 1. It subtracted multiples
of each row from the rows beneath, It reached the “triangular” system (3), which is
solved in reverse order: Substitute each newly computed value into the equations that
are waiting.
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Remark. One good way to write down the forward elimination steps is to include the
right-hand side as an extra column. There is no need to copy u and v and w and = at
every step, so we are left with the bare minimum:




2 1 1 5
4 −6 0 −2
−2 7 2 9


−→




2 1 1 5
0 −8 −2 −12
0 8 3 14


−→




2 1 1 5
0 −8 −2 −12
0 0 1 2


 .

At the end is the triangular system, ready for back-substitution. You may prefer this
arrangement, which guarantees that operations on the left-hand side of the equations are
also done on the right-hand side—because both sides are there together.

In a larger problem, forward elimination takes most of the effort. We use multiples
of the first equation to produce zeros below the first pivot. Then the second column is
cleared out below the second pivot. The forward step is finished when the system is
triangular; equation n contains only the last unknown multiplied by the last pivot. Back-
substitution yields the complete solution in the opposite order—beginning with the last
unknown, then solving for the next to last, and eventually for the first.

By definition, pivots cannot be zero. We need to divide by them.

The Breakdown of Elimination

Under what circumstances could the process break down? Something must go wrong
in the singular case, and something might go wrong in the nonsingular case. This may
seem a little premature—after all, we have barely got the algorithm working. But the
possibility of breakdown sheds light on the method itself.

The answer is: With a full set of n pivots, there is only one solution. The system is
non singular, and it is solved by forward elimination and back-substitution. But if a zero
appears in a pivot position, elimination has to stop—either temporarily or permanently.
The system might or might not be singular.

If the first coefficient is zero, in the upper left corner, the elimination of u from the
other equations will be impossible. The same is true at every intermediate stage. Notice
that a zero can appear in a pivot position, even if the original coefficient in that place
was not zero. Roughly speaking, we do not know whether a zero will appear until we
try, by actually going through the elimination process.

In many cases this problem can be cured, and elimination can proceed. Such a system
still counts as nonsingular; it is only the algorithm that needs repair. In other cases a
breakdown is unavoidable. Those incurable systems are singular, they have no solution
or else infinitely many, and a full set of pivots cannot be found.
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Example 1. Nonsingular (cured by exchanging equations 2 and 3)

u + v + w =
2u + 2v + 5w =
4u + 6v + 8w =

→
u + v + w =

3w =
2v + 4w =

→
u + v + w =

2v + 4w =
3w =

The system is now triangular, and back-substitution will solve it.

Example 2. Singular (incurable)

u + v + w =
2u + 2v + 5w =
4u + 4v + 8w =

−→
u + v + w =

3w =
4w =

There is no exchange of equations that can avoid zero in the second pivot position. The
equations themselves may be solvable or unsolvable. If the last two equations are 3w = 6
and 4w = 7, there is no solution. If those two equations happen to be consistent—as in
3w = 6 and 4w = 8—then this singular case has an infinity of solutions. We know that
w = 2, but the first equation cannot decide both u and v.

Section 1.5 will discuss row exchanges when the system is not singular. Then the
exchanges produce a full set of pivots. Chapter 2 admits the singular case, and limps
forward with elimination. The 3w can still eliminate the 4w, and we will call 3 the
second pivot. (There won’t be a third pivot.) For the present we trust all n pivot entries
to be nonzero, without changing the order of the equations. That is the best case, with
which we continue.

The Cost of Elimination

Our other question is very practical. How many separate arithmetical operations does
elimination require, for n equations in n unknowns? If n is large, a computer is going to
take our place in carrying out the elimination. Since all the steps are known, we should
be able to predict the number of operations.

For the moment, ignore the right-hand sides of the equations, and count only the
operations on the left. These operations are of two kinds. We divide by the pivot to
find out what multiple (say `) of the pivot equation is to be subtracted. When we do
this subtraction, we continually meet a “multiply-subtract” combination; the terms in
the pivot equation are multiplied by `, and then subtracted from another equation.

Suppose we call each division, and each multiplication-subtraction, one operation. In
column 1, it takes n operations for every zero we achieve—one to find the multiple `,
and the other to find the new entries along the row. There are n−1 rows underneath the
first one, so the first stage of elimination needs n(n− 1) = n2− n operations. (Another
approach to n2− n is this: All n2 entries need to be changed, except the n in the first
row.) Later stages are faster because the equations are shorter.
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When the elimination is down to k equations, only k2− k operations are needed to
clear out the column below the pivot—by the same reasoning that applied to the first
stage, when k equaled n. Altogether, the total number of operations is the sum of k2− k
over all values of k from 1 to n:

Left side (12 + · · ·+n2)− (1+ · · ·+n) =
n(n+1)(2n+1)

6
− n(n+1)

2

=
n3−n

3
.

Those are standard formulas for the sums of the first n numbers and the first n squares.
Substituting n = 1 and n = 2 and n = 100 into the formula 1

3(n
3−n), forward elimination

can take no steps or two steps or about a third of a million steps:

If n is at all large, a good estimate for the number of operations is 1
3n3.

If the size is doubled, and few of the coefficients are zero, the cost is multiplied by 8.
Back-substitution is considerably faster. The last unknown is found in only one oper-

ation (a division by the last pivot). The second to last unknown requires two operations,
and so on. Then the total for back-substitution is 1+2+ · · ·+n.

Forward elimination also acts on the right-hand side (subtracting the same multiples
as on the left to maintain correct equations). This starts with n− 1 subtractions of the
first equation. Altogether the right-hand side is responsible for n2 operations—much
less than the n3/3 on the left. The total for forward and back is

Right side [(n−1)+(n−2)+ · · ·+1]+ [1+2+ · · ·+n] = n2.

Thirty years ago, almost every mathematician would have guessed that a general sys-
tem of order n could not be solved with much fewer than n3/3 multiplications. (There
were even theorems to demonstrate it, but they did not allow for all possible methods.)
Astonishingly, that guess has been proved wrong. There now exists a method that re-
quires only Cnlog2 7 multiplications! It depends on a simple fact: Two combinations of
two vectors in two-dimensional space would seem to take 8 multiplications, but they can
be done in 7. That lowered the exponent from log2 8, which is 3, to log2 7 ≈ 2.8. This
discovery produced tremendous activity to find the smallest possible power of n. The
exponent finally fell (at IBM) below 2.376. Fortunately for elimination, the constant C
is so large and the coding is so awkward that the new method is largely (or entirely) of
theoretical interest. The newest problem is the cost with many processors in parallel.

Problem Set 1.3

Problems 1–9 are about elimination on 2 by 2 systems.
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1. What multiple ` of equation 1 should be subtracted from equation 2?

2x + 3y = 1
10x + 9y = 11.

After this elimination step, write down the upper triangular system and circle the two
pivots. The numbers 1 and 11 have no influence on those pivots.

2. Solve the triangular system of Problem 1 by back-substitution, y before x. Verify
that x times (2,10) plus y times (3,9) equals (1,11). If the right-hand side changes
to (4,44), what is the new solution?

3. What multiple of equation 2 should be subtracted from equation 3?

2x − 4y = 6
−x + 5y = 0.

After this elimination step, solve the triangular system. If the right-hand side changes
to (−6,0), what is the new solution?

4. What multiple ` of equation 1 should be subtracted from equation 2?

ax + by = f
cx + dy = g.

The first pivot is a (assumed nonzero). Elimination produces what formula for the
second pivot? What is y? The second pivot is missing when ad = bc.

5. Choose a right-hand side which gives no solution and another right-hand side which
gives infinitely many solutions. What are two of those solutions?

3x + 2y = 10
6x + 4y = .

6. Choose a coefficient b that makes this system singular. Then choose a right-hand
side g that makes it solvable. Find two solutions in that singular case.

2x + by = 16
4x + 8y = g.

7. For which numbers a does elimination break down (a) permanently, and (b) tem-
porarily?

ax + 3y = −3
4x + 6y = 6.

Solve for x and y after fixing the second breakdown by a row exchange.
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8. For which three numbers k does elimination break down? Which is fixed by a row
exchange? In each case, is the number of solutions 0 or 1 or ∞?

kx + 3y = 6
3x + ky = −6.

9. What test on b1 and b2 decides whether these two equations allow a solution? How
many solutions will they have? Draw the column picture.

3x − 2y = b1

6x − 4y = b2.

Problems 10–19 study elimination on 3 by 3 systems (and possible failure).

10. Reduce this system to upper triangular form by two row operations:

2x + 3y + z = 8
4x + 7y + 5z = 20

− 2y + 2z = 0.

Circle the pivots. Solve by back-substitution for z, y, x.

11. Apply elimination (circle the pivots) and back-substitution to solve

2x − 3y = 3
4x − 5y + z = 7
2x − y − 3z = 5.

List the three row operations: Subtract times row from row .

12. Which number d forces a row exchange, and what is the triangular system (not sin-
gular) for that d? Which d makes this system singular (no third pivot)?

2x + 5y + z = 0
4x + dy + z = 2

y − z = 3.

13. Which number b leads later to a row exchange? Which b leads to a missing pivot?
In that singular case find a nonzero solution x, y, z.

x + by = 0
x − 2y − z = 0

y + z = 0.

14. (a) Construct a 3 by 3 system that needs two row exchanges to reach a triangular
form and a solution.

(b) Construct a 3 by 3 system that needs a row exchange to keep going, but breaks
down later.
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15. If rows 1 and 2 are the same, how far can you get with elimination (allowing row
exchange)? If columns 1 and 2 are the same, which pivot is missing?

2x− y+ z = 0

2x− y+ z = 0

4x+ y+ z = 2

2x+2y+ z = 0

4x+4y+ z = 0

6x+6y+ z = 2.

16. Construct a 3 by 3 example that has 9 different coefficients on the left-hand side, but
rows 2 and 3 become zero in elimination. How many solutions to your system with
b = (1,10,100) and how many with b = (0,0,0)?

17. Which number q makes this system singular and which right-hand side t gives it
infinitely many solutions? Find the solution that has z = 1.

x + 4y − 2z = 1
x + 7y − 6z = 6

3y + qz = t.

18. (Recommended) It is impossible for a system of linear equations to have exactly two
solutions. Explain why.

(a) If (x,y,z) and (X ,Y,Z) are two solutions, what is another one?

(b) If 25 planes meet at two points, where else do they meet?

19. Three planes can fail to have an intersection point, when no two planes are parallel.
The system is singular if row 3 of A is a of the first two rows. Find a third
equation that can’t be solved if x+ y+ z = 0 and x−2y− z = 1.

Problems 20–22 move up to 4 by 4 and n by n.

20. Find the pivots and the solution for these four equations:

2x + y = 0
x + 2y + z = 0

y + 2z + t = 0
z + 2t = 5.

21. If you extend Problem 20 following the 1, 2, 1 pattern or the−1, 2, −1 pattern, what
is the fifth pivot? What is the nth pivot?

22. Apply elimination and back-substitution to solve

2u + 3v = 0
4u + 5v + w = 3
2u − v − 3w = 5.

What are the pivots? List the three operations in which a multiple of one row is
subtracted from another.
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23. For the system
u + v + w = 2
u + 3v + 3w = 0
u + 3v + 5w = 2,

what is the triangular system after forward elimination, and what is the solution?

24. Solve the system and find the pivots when

2u − v = 0
−u + 2v − w = 0

− v + 2w − z = 0
− w + 2z = 5.

You may carry the right-hand side as a fifth column (and omit writing u, v, w, z until
the solution at the end).

25. Apply elimination to the system

u + v + w = −2
3u + 3v − w = 6
u − v + w = −1.

When a zero arises in the pivot position, exchange that equation for the one below it
and proceed. What coefficient of v in the third equation, in place of the present −1,
would make it impossible to proceed—and force elimination to break down?

26. Solve by elimination the system of two equations

x − y = 0
3x + 6y = 18.

Draw a graph representing each equation as a straight line in the x-y plane; the lines
intersect at the solution. Also, add one more line—the graph of the new second
equation which arises after elimination.

27. Find three values of a for which elimination breaks down, temporarily or perma-
nently, in

au + u = 1
4u + av = 2.

Breakdown at the first step can be fixed by exchanging rows—but not breakdown at
the last step.

28. True or false:

(a) If the third equation starts with a zero coefficient (it begins with 0u) then no
multiple of equation 1 will be subtracted from equation 3.
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(b) If the third equation has zero as its second coefficient (it contains 0v) then no
multiple of equation 2 will be subtracted from equation 3.

(c) If the third equation contains 0u and 0v, then no multiple of equation 1 or equa-
tion 2 will be subtracted from equation 3.

29. (Very optional) Normally the multiplication of two complex numbers

(a+ ib)(c+ id) = (ac−bd)+ i(bc+ad)

involves the four separate multiplications ac, bd, be, ad. Ignoring i, can you compute
ac−bd and bc+ad with only three multiplications? (You may do additions, such as
forming a+b before multiplying, without any penalty.)

30. Use elimination to solve

u + v + w = 6
u + 2v + 2w = 11

2u + 3v − 4w = 3
and

u + v + w = 7
u + 2v + 2w = 10

2u + 3v − 4w = 3.

31. For which three numbers a will elimination fail to give three pivots?

ax+2y+3z = b1

ax+ay+4z = b2

ax+ay+az = b3.

32. Find experimentally the average size (absolute value) of the first and second and third
pivots for MATLAB’s lu(rand(3,3)). The average of the first pivot from abs(A(1,1))
should be 0.5.

1.4 Matrix Notation and Matrix Multiplication

With our 3 by 3 example, we are able to write out all the equations in full. We can list
the elimination steps, which subtract a multiple of one equation from another and reach
a triangular matrix. For a large system, this way of keeping track of elimination would
be hopeless; a much more concise record is needed.

We now introduce matrix notation to describe the original system, and matrix mul-
tiplication to describe the operations that make it simpler. Notice that three different
types of quantities appear in our example:

Nine coefficients
Three unknowns
Three right-hand sides

2u + v + w = 5
4u − 6v = −2
−2u + 7v + 2w = 9

(1)



22 Chapter 1 Matrices and Gaussian Elimination

On the right-hand side is the column vector b. On the left-hand side are the unknowns u,
v, w. Also on the left-hand side are nine coefficients (one of which happens to be zero).
It is natural to represent the three unknowns by a vector:

The unknown is x =




u
v
w


 The solution is x =




1
1
2


 .

The nine coefficients fall into three rows and three columns, producing a 3 by 3 matrix:

Coefficient matrix A =




2 1 1
4 −6 0
−2 7 2


 .

A is a square matrix, because the number of equations equals the number of unknowns.
If there are n equations in n unknowns, we have a square n by n matrix. More generally,
we might have m equations and n unknowns. Then A is rectangular, with m rows and n
columns. It will be an “m by n matrix.”

Matrices are added to each other, or multiplied by numerical constants, exactly as
vectors are—one entry at a time. In fact we may regard vectors as special cases of
matrices; they are matrices with only one column. As with vectors, two matrices can be
added only if they have the same shape:

Addition A+B
Multiplication 2A




2 1
3 0
0 4


+




1 2
−3 1
1 2


 =




3 3
0 1
1 6


 2




2 1
3 0
0 4


 =




4 2
6 0
0 8


 .

Multiplication of a Matrix and a Vector

We want to rewrite the three equations with three unknowns u, v, w in the simplified
matrix form Ax = b. Written out in full, matrix times vector equals vector:

Matrix form Ax = b




2 1 1
4 −6 0
−2 7 2







u
v
w


 =




5
−2
9


 . (2)

The right-hand side b is the column vector of “inhomogeneous terms.” The left-hand
side is A times x. This multiplication will be defined exactly so as to reproduce the
original system. The first component of Ax comes from “multiplying” the first row of A
into the column vector x:

Row times column
[
2 1 1

]



u
v
w


 =

[
2u+ v+w

]
=

[
5
]
. (3)
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The second component of the product Ax is 4u−6v+0w, from the second row of A. The
matrix equation Ax = b is equivalent to the three simultaneous equations in equation (1).

Row times column is fundamental to all matrix multiplications. From two vectors it
produces a single number. This number is called the inner product of the two vectors.
In other words, the product of a 1 by n matrix (a row vector) and an n by 1 matrix (a
column vector) is a 1 by 1 matrix:

Inner product
[
2 1 1

]



1
1
2


 =

[
2 ·1+1 ·1+1 ·2

]
=

[
5
]
.

This confirms that the proposed solution x = (1,1,2) does satisfy the first equation.
There are two ways to multiply a matrix A and a vector x. One way is a row at a

time, Each row of A combines with x to give a component of Ax. There are three inner
products when A has three rows:

Ax by rows




1 1 6
3 0 1
1 1 4







2
5
0


 =




1 ·2+1 ·5+6 ·0
3 ·2+0 ·5+3 ·0
1 ·2+1 ·5+4 ·0


 =




7
6
7


 . (4)

That is how Ax is usually explained, but the second way is equally important. In fact it is
more important! It does the multiplication a column at a time. The product Ax is found
all at once, as a combination of the three columns of A:

Ax by columns 2




1
3
1


+5




1
0
1


+0




6
3
4


 =




7
6
7


 . (5)

The answer is twice column 1 plus 5 times column 2. It corresponds to the “column
picture” of linear equations. If the right-hand side b has components 7, 6, 7, then the
solution has components 2, 5, 0. Of course the row picture agrees with that (and we
eventually have to do the same multiplications).

The column rule will be used over and over, and we repeat it for emphasis:

1A Every product Ax can be found using whole columns as in equation (5).
Therefore Ax is a combination of the columns of A. The coefficients are the
components of x.

To multiply A times x in n dimensions, we need a notation for the individual entries in
A. The entry in the ith row and jth column is always denoted by ai j. The first subscript
gives the row number, and the second subscript indicates the column. (In equation (4),
a21 is 3 and a13 is 6.) If A is an m by n matrix, then the index i goes from 1 to m—there
are m rows—and the index j goes from 1 to n. Altogether the matrix has mn entries, and
amn is in the lower right corner.



24 Chapter 1 Matrices and Gaussian Elimination

One subscript is enough for a vector. The jth component of x is denoted by x j. (The
multiplication above had x1 = 2, x2 = 5, x3 = 0.) Normally x is written as a column
vector—like an n by 1 matrix. But sometimes it is printed on a line, as in x = (2,5,0).
The parentheses and commas emphasize that it is not a 1 by 3 matrix. It is a column
vector, and it is just temporarily lying down.

To describe the product Ax, we use the “sigma” symbol Σ for summation:

Sigma notation The ith component of Ax is
n

∑
j=1

ai jx j.

This sum takes us along the ith row of A. The column index j takes each value from 1
to n and we add up the results—the sum is ai1x1 +ai2x2 + · · ·+ainxn.

We see again that the length of the rows (the number of columns in A) must match
the length of x. An m by n matrix multiplies an n-dimensional vector (and produces
an m-dimensional vector). Summations are simpler than writing everything out in full,
but matrix notation is better. (Einstein used “tensor notation,” in which a repeated index
automatically means summation. He wrote ai jx j or even a j

i x j, without the Σ. Not being
Einstein, we keep the Σ.)

The Matrix Form of One Elimination Step

So far we have a convenient shorthand Ax = b for the original system of equations.
What about the operations that are carried out during elimination? In our example, the
first step subtracted 2 times the first equation from the second. On the right-hand side,
2 times the first component of b was subtracted from the second component. The same
result is achieved if we multiply b by this elementary matrix (or elimination matrix):

Elementary matrix E =




1 0 0
−2 1 0
0 0 1


 .

This is verified just by obeying the rule for multiplying a matrix and a vector:

Eb =




1 0 0
−2 1 0
0 0 1







5
−2
9


 =




5
−12

9


 .

The components 5 and 9 stay the same (because of the 1, 0, 0 and 0, 0, 1 in the rows of
E). The new second component −12 appeared after the first elimination step.

It is easy to describe the matrices like E, which carry out the separate elimination
steps. We also notice the “identity matrix,” which does nothing at all.

1B The identity matrix I, with 1s on the diagonal and 0s everywhere else,
leaves every vector unchanged. The elementary matrix Ei j subtracts ` times
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row j from row i. This Ei j includes −` in row i, column j.

I =




1 0 0
0 1 0
0 0 1


 has Ib = b E31 =




1 0 0
0 1 0
−` 0 1


 has E31b =




b1

b2

b3− `b1


 .

Ib = b is the matrix analogue of multiplying by 1. A typical elimination step
multiplies by E31. The important question is: What happens to A on the left-
hand side?

To maintain equality, we must apply the same operation to both sides of Ax = b. In
other words, we must also multiply the vector Ax by the matrix E. Our original matrix
E subtracts 2 times the first component from the second, After this step the new and
simpler system (equivalent to the old) is just E(Ax) = Eb. It is simpler because of the
zero that was created below the first pivot. It is equivalent because we can recover the
original system (by adding 2 times the first equation back to the second). So the two
systems have exactly the same solution x.

Matrix Multiplication

Now we come to the most important question: How do we multiply two matrices? There
is a partial clue from Gaussian elimination: We know the original coefficient matrix A,
we know the elimination matrix E, and we know the result EA after the elimination step.
We hope and expect that

E =




1 0 0
−2 1 0
0 0 1


 times A =




2 1 1
4 −6 0
−2 7 2


 gives EA =




2 1 1
0 −8 −2
−2 7 2


 .

Twice the first row of A has been subtracted from the second row. Matrix multiplication
is consistent with the row operations of elimination. We can write the result either as
E(Ax) = Eb, applying E to both sides of our equation, or as (EA)x = Eb. The matrix
EA is constructed exactly so that these equations agree, and we don’t need parentheses:

Matrix multiplication (EA times x) equals (E times Ax). We just write EAx.

This is the whole point of an “associative law” like 2× (3× 4) = (2× 3)× 4. The law
seems so obvious that it is hard to imagine it could be false. But the same could be said
of the “commutative law” 2×3 = 3×2—and for matrices EA is not AE.

There is another requirement on matrix multiplication. We know how to multiply Ax,
a matrix and a vector. The new definition should be consistent with that one. When
a matrix B contains only a single column x, the matrix-matrix product AB should be
identical with the matrix-vector product Ax. More than that: When B contains several
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columns b1, b2, b3, the columns of AB should be Ab1, Ab2, Ab3!

Multiplication by columns AB = A




b1

b2

b3


 =




Ab1

Ab2

Ab3


 .

Our first requirement had to do with rows, and this one is concerned with columns. A
third approach is to describe each individual entry in AB and hope for the best. In fact,
there is only one possible rule, and I am not sure who discovered it. It makes everything
work. It does not allow us to multiply every pair of matrices. If they are square, they
must have the same size. If they are rectangular, they must not have the same shape;
the number of columns in A has to equal the number of rows in B. Then A can be
multiplied into each column of B.

If A is m by n, and B is n by p, then multiplication is possible. The product AB will
be m by p. We now find the entry in row i and column j of AB.

1C The i, j entry of AB is the inner product of the ith row of A and the jth
column of B. In Figure 1.7, the 3, 2 entry of AB comes from row 3 and column
2:

(AB)32 = a31b12 +a32b22 +a33b32 +a34b42. (6)

Figure 1.7: A 3 by 4 matrix A times a 4 by 2 matrix B is a 3 by 2 matrix AB.

Note. We write AB when the matrices have nothing special to do with elimination. Our
earlier example was EA, because of the elementary matrix E. Later we have PA, or LU ,
or even LDU . The rule for matrix multiplication stays the same.

Example 1.

AB =

[
2 3
4 0

][
1 2 0
5 −1 0

]
=

[
17 1 0
4 8 0

]
.

The entry 17 is (2)(1)+ (3)(5), the inner product of the first row of A and first column
of B. The entry 8 is (4)(2)+(0)(−1), from the second row and second column.

The third column is zero in B, so it is zero in AB. B consists of three columns side by
side, and A multiplies each column separately. Every column of AB is a combination
of the columns of A. Just as in a matrix-vector multiplication, the columns of A are
multiplied by the entries in B.
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Example 2.

Row exchange matrix

[
0 1
1 0

][
2 3
7 8

]
=

[
7 8
2 3

]
.

Example 3. The 1s in the identity matrix I leave every matrix unchanged:

Identity matrix IA = A and BI = B.

Important: The multiplication AB can also be done a row at a time. In Example 1, the
first row of AB uses the numbers 2 and 3 from the first row of A. Those numbers give
2[row 1] + 3[row 2] = [17 1 0]. Exactly as in elimination, where all this started, each
row of AB is a combination of the rows of B.

We summarize these three different ways to look at matrix multiplication.

1D

(i) Each entry of AB is the product of a row and a column:

(AB)i j = (row i of A) times (column j of B)

(ii) Each column of AB is the product of a matrix and a column:

column j of AB = A times (column j of B)

(iii) Each row of AB is the product of a row and a matrix:

row i of AB = (row i of A) times B.

This leads hack to a key property of matrix multiplication. Suppose the shapes of
three matrices A, B, C (possibly rectangular) permit them to be multiplied. The rows in
A and B multiply the columns in B and C. Then the key property is this:

1E Matrix multiplication is associative: (AB)C = A(BC). Just write ABC.

AB times C equals A times BC. If C happens to be just a vector (a matrix with only one
column) this is the requirement (EA)x = E(Ax) mentioned earlier. It is the whole basis
for the laws of matrix multiplication. And if C has several columns, we have only to
think of them placed side by side, and apply the same rule several times. Parentheses
are not needed when we multiply several matrices.

There are two more properties to mention—one property that matrix multiplication
has, and another which it does not have. The property that it does possess is:

1F Matrix operations are distributive:

A(B+C) = AB+AC and (B+C)D = BD+CD.
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Of course the shapes of these matrices must match properly—B and C have the same
shape, so they can be added, and A and D are the right size for premultiplication and
postmultiplication. The proof of this law is too boring for words.

The property that fails to hold is a little more interesting:

1G Matrix multiplication is not commutative: Usually FE 6= EF .

Example 4. Suppose E subtracts twice the first equation from the second. Suppose F
is the matrix for the next step, to add row 1 to row 3:

E =




1 0 0
−2 1 0
0 0 1


 and F =




1 0 0
0 1 0
1 0 1


 .

These two matrices do commute and the product does both steps at once:

EF =




1 0 0
−2 1 0
1 0 1


 = FE.

In either order, EF or FE, this changes rows 2 and 3 using row 1.

Example 5. Suppose E is the same but G adds row 2 to row 3. Now the order makes a
difference. When we apply E and then G, the second row is altered before it affects the
third. If E comes after G, then the third equation feels no effect from the first. You will
see a zero in the (3,1) entry of EG, where there is a −2 in GE:

GE =




1 0 0
0 1 0
0 1 1







1 0 0
−2 1 0
0 0 1


 =




1 0 0
−2 1 0
−2 1 1


 but EG =




1 0 0
−2 1 0
0 1 1


 .

Thus EG 6= GE. A random example would show the same thing—most matrices don’t
commute. Here the matrices have meaning. There was a reason for EF = FE, and a
reason for EG 6= GE. It is worth taking one more step, to see what happens with all
three elimination matrices at once:

GFE =




1 0 0
−2 1 0
−1 1 1


 and EFG =




1 0 0
−2 1 0
−1 1 1


 .

The product GFE is the true order of elimination. It is the matrix that takes the original
A to the upper triangular U . We will see it again in the next section.

The other matrix EFG is nicer. In that order, the numbers −2 from E and 1 from F
and G were not disturbed. They went straight into the product. It is the wrong order for
elimination. But fortunately it is the right order for reversing the elimination steps—
which also comes in the next section.

Notice that the product of lower triangular matrices is again lower triangular.
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Problem Set 1.4

1. Compute the products



4 0 1
0 1 0
4 0 1







3
4
5


 and




1 0 0
0 1 0
0 0 1







5
−2
3


 and

[
2 0
1 3

][
1
1

]
.

For the third one, draw the column vectors (2,1) and (0,3). Multiplying by (1,1)
just adds the vectors (do it graphically).

2. Working a column at a time, compute the products



4 1
5 1
6 1




[
1
3

]
and




1 2 3
4 5 6
7 8 9







0
1
0


 and




4 3
6 6
8 9




[
1
2
1
3

]
.

3. Find two inner products and a matrix product:

[
1 −2 7

]



1
−2
7


 and

[
1 −2 7

]



3
5
1


 and




1
−2
7




[
3 5 1

]
.

The first gives the length of the vector (squared).

4. If an m by n matrix A multiplies an n-dimensional vector x, how many separate
multiplications are involved? What if A multiplies an n by p matrix B?

5. Multiply Ax to find a solution vector x to the system Ax = zero vector. Can you find
more solutions to Ax = 0?

Ax =




3 −6 0
0 2 −2
1 −1 −1







2
1
1


 .

6. Write down the 2 by 2 matrices A and B that have entries ai j = i+ j and bi j =(−1)i+ j.
Multiply them to find AB and BA.

7. Give 3 by 3 examples (not just the zero matrix) of

(a) a diagonal matrix: ai j = 0 if i 6= j.

(b) a symmetric matrix: ai j = a ji for all i and j.

(c) an upper triangular matrix: ai j = 0 if i > j.

(d) a skew-symmetric matrix: ai j =−a ji for all i and j.

8. Do these subroutines multiply Ax by rows or columns? Start with B(I) = 0:
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DO 10 I = 1, N DO 10 J = 1, N
DO 10 J = 1, N DO 10 I = 1, N

10 B(I) = B(I) + A(I,J) * X(J) 10 B(I) = B(I) + A(I,J) * X(J)

The outputs Bx = Ax are the same. The second code is slightly more efficient in
FORTRAN and much more efficient on a vector machine (the first changes single
entries B(I), the second can update whole vectors).

9. If the entries of A are ai j, use subscript notation to write

(a) the first pivot.

(b) the multiplier `i1 of row 1 to be subtracted from row i.

(c) the new entry that replaces ai j after that subtraction.

(d) the second pivot.

10. True or false? Give a specific counterexample when false.

(a) If columns 1 and 3 of B are the same, so are columns 1 and 3 of AB.

(b) If rows 1 and 3 of B are the same, so are rows 1 and 3 of AB.

(c) If rows 1 and 3 of A are the same, so are rows 1 and 3 of AB.

(d) (AB)2 = A2B2.

11. The first row of AB is a linear combination of all the rows of B. What are the coeffi-
cients in this combination, and what is the first row of AB, if

A =

[
2 1 4
0 −1 1

]
and B =




1 1
0 1
1 0


?

12. The product of two lower triangular matrices is again lower triangular (all its entries
above the main diagonal are zero). Confirm this with a 3 by 3 example, and then
explain how it follows from the laws of matrix multiplication.

13. By trial and error find examples of 2 by 2 matrices such that

(a) A2 =−I, A having only real entries.

(b) B2 = 0, although B 6= 0.

(c) CD =−DC, not allowing the case CD = 0.

(d) EF = 0, although no entries of E or F are zero.

14. Describe the rows of EA and the columns of AE if

E =

[
1 7
0 1

]
.
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15. Suppose A commutes with every 2 by 2 matrix (AB = BA), and in particular

A =

[
a b
c d

]
commutes with B1 =

[
1 0
0 0

]
and B2 =

[
0 1
0 0

]
.

Show that a = d and b = c = 0. If AB = BA for all matrices B, then A is a multiple
of the identity.

16. Let x be the column vector (1,0, . . . ,0). Show that the rule (AB)x = A(Bx) forces the
first column of AB to equal A times the first column of B.

17. Which of the following matrices are guaranteed to equal (A+B)2?

A2 +2AB+B2, A(A+B)+B(A+B), (A+B)(B+A), A2 +AB+BA+B2.

18. If A and B are n by n matrices with all entries equal to 1, find (AB)i j. Summation
notation turns the product AB, and the law (AB)C = A(BC), into

(AB)i j = ∑
k

aikbk j ∑
j

(
∑
k

aikbk j

)
c jl = ∑

k
aik

(
∑

j
bk jc jl

)
.

Compute both sides if C is also n by n, with every c jl = 2.

19. A fourth way to multiply matrices is columns of A times rows of B:

AB = (column 1)(row 1)+ · · ·+(column n)(row n) = sum of simple matrices.

Give a 2 by 2 example of this important rule for matrix multiplication.

20. The matrix that rotates the x-y plane by an angle θ is

A(θ) =

[
cosθ −sinθ
sinθ cosθ

]
.

Verify that A(θ1)A(θ2) = A(θ1 +θ2) from the identities for cos(θ1 +θ2) and sin(θ1 +
θ2). What is A(θ) times A(−θ)?

21. Find the powers A2, A3 (A2 times A), and B2, B3, C2, C3. What are Ak, Bk, and Ck?

A =

[
1
2

1
2

1
2

1
2

]
and B =

[
1 0
0 −1

]
and C = AB =

[
1
2 −1

2
1
2 −1

2

]

Problems 22–31 are about elimination matrices.

22. Write down the 3 by 3 matrices that produce these elimination steps:

(a) E21 subtracts 5 times row 1 from row 2.

(b) E32 subtracts −7 times row 2 from row 3.
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(c) P exchanges rows 1 and 2, then rows 2 and 3.

23. In Problem 22, applying E21 and then E32 to the column b = (1,0,0) gives E32E21b =
. Applying E32 before E21 gives E21E32b = . When E32 comes first, row
feels no effect from row .

24. Which three matrices E21, E31, E32 put A into triangular form U?

A =




1 1 0
4 6 1
−2 2 0


 and E32E31E21A = U.

Multiply those E’s to get one matrix M that does elimination: MA = U .

25. Suppose a33 = 7 and the third pivot is 5. If you change a33 to 11, the third pivot is
. If you change a33 to , there is zero in the pivot position.

26. If every column of A is a multiple of (1,1,1), then Ax is always a multiple of (1,1,1).
Do a 3 by 3 example. How many pivots are produced by elimination?

27. What matrix E31 subtracts 7 times row 1 from row 3? To reverse that step, R31 should
7 times row to row . Multiply E31 by R31.

28. (a) E21 subtracts row 1 from row 2 and then P23 exchanges rows 2 and 3. What
matrix M = P23E21 does both steps at once?

(b) P23 exchanges rows 2 and 3 and then E31 subtracts row I from row 3. What
matrix M = E31P23 does both steps at once? Explain why the M’s are the same
but the E’s are different.

29. (a) What 3 by 3 matrix E13 will add row 3 to row 1?

(b) What matrix adds row 1 to row 3 and at the same time adds row 3 to row 1?

(c) What matrix adds row 1 to row 3 and then adds row 3 to row 1?

30. Multiply these matrices:



0 0 1
0 1 0
1 0 0







1 2 3
4 5 6
7 8 9







0 0 1
0 1 0
1 0 0


 and




1 0 0
−1 1 0
−1 0 1







1 2 3
1 3 1
1 4 0


 .

31. This 4 by 4 matrix needs which elimination matrices E21 and E32 and E43?

A =




2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2


 .

Problems 32–44 are about creating and multiplying matrices
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32. Write these ancient problems in a 2 by 2 matrix form Ax = b and solve them:

(a) X is twice as old as Y and their ages add to 39,

(b) (x,y) = (2,5) and (3,7) lie on the line y = mx+ c. Find m and c.

33. The parabola y = a + bx + cx2 goes through the points (x,y) = (1,4) and (2,8) and
(3,14). Find and solve a matrix equation for the unknowns (a,b,c).

34. Multiply these matrices in the orders EF and FE and E2:

E =




1 0 0
a 1 0
b 0 1


 F =




1 0 0
0 1 0
0 c 1


 .

35. (a) Suppose all columns of B are the same. Then all columns of EB are the same,
because each one is E times .

(b) Suppose all rows of B are [1 2 4]. Show by example that all rows of EB are not
[1 2 4]. It is true that those rows are .

36. If E adds row 1 to row 2 and F adds row 2 to row 1, does EF equal FE?

37. The first component of Ax is ∑a1 jx j = a11x1 + · · ·+ a1nxn. Write formulas for the
third component of Ax and the (1,1) entry of A2.

38. If AB = I and BC = I, use the associative law to prove A = C.

39. A is 3 by 5, B is 5 by 3, C is 5 by 1, and D is 3 by 1. All entries are 1. Which of these
matrix operations are allowed, and what are the results?

BA AB ABD DBA A(B+C).

40. What rows or columns or matrices do you multiply to find

(a) the third column of AB?

(b) the first row of AB?

(c) the entry in row 3, column 4 of AB?

(d) the entry in row 1, column 1 of CDE?

41. (3 by 3 matrices) Choose the only B so that for every matrix A,

(a) BA = 4A.

(b) BA = 4B.

(c) BA has rows 1 and 3 of A reversed and row 2 unchanged.

(d) All rows of BA are the same as row 1 of A.

42. True or false?
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(a) If A2 is defined then A is necessarily square.

(b) If AB and BA are defined then A and B are square.

(c) If AB and BA are defined then AB and BA are square.

(d) If AB = B then A = I.

43. If A is m by n, how many separate multiplications are involved when

(a) A multiplies a vector x with n components?

(b) A multiplies an n by p matrix B? Then AB is m by p.

(c) A multiplies itself to produce A2? Here m = n.

44. To prove that (AB)C = A(BC), use the column vectors b1, . . . ,bn of B. First suppose
that C has only one column c with entries c1, . . . ,cn:

AB has columns Ab1, . . . ,Abn, and Bc has one column c1b1 + · · ·+ cnbn.

Then (AB)c = c1Ab1 + · · ·+ cnAbn, equals A(c1b1 + · · ·+ cnbn) = A(Bc).

Linearity gives equality of those two sums, and (AB)c = A(Bc). The same is true for
all other of C. Therefore (AB)C = A(BC).

Problems 45–49 use column-row multiplication and block multiplication.

45. Multiply AB using columns times rows:

AB =




1 0
2 4
2 1




[
3 3 0
1 2 1

]
=




1
2
2




[
3 3 0

]
+ = .

46. Block multiplication separates matrices into blocks (submatrices). If their shapes
make block multiplication possible, then it is allowed. Replace these x’s by numbers
and confirm that block multiplication succeeds.

[
A B

][
C
D

]
=

[
AC +BD

]
and




x x x
x x x
x x x







x x x
x x x
x x x


 .

47. Draw the cuts in A and B and AB to show how each of the four multiplication rules
is really a block multiplication to find AB:

(a) Matrix A times columns of B.

(b) Rows of A times matrix B.

(c) Rows of A times columns of B.

(d) Columns of A times rows of B.
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48. Block multiplication says that elimination on column 1 produces

EA =

[
1 0

−c/a I

][
a b

c D

]
=

[
a b

0

]
.

49. Elimination for a 2 by 2 block matrix: When A−1A = I, multiply the first block row
by CA−1 and subtract from the second row, to find the “Schur complement” S:

[
I 0

−CA−1 I

][
A B
C D

]
=

[
A B
0 S

]
.

50. With i2 = −1, the product (A + iB)(x + iy) is Ax + iBx + iAy−By. Use blocks to
separate the real part from the imaginary part that multiplies i:

[
A −B
? ?

][
x
y

]
=

[
Ax−By

?

]
real part
imaginary part

51. Suppose you solve Ax = b for three special right-hand sides b:

Ax1 =




1
0
0


 and Ax2 =




0
1
0


 and Ax3 =




0
0
1


 .

If the solutions x1, x2, x3 are the columns of a matrix X , what is AX?

52. If the three solutions in Question 51 are x1 = (1,1,1) and x2 = (0,1,1) and x3 =
(0,0,1), solve Ax = b when b = (3,5,8). Challenge problem: What is A?

53. Find all matrices

A =

[
a b
c d

]
that satisfy A

[
1 1
1 1

]
=

[
1 1
1 1

]
A.

54. If you multiply a northwest matrix A and a southeast matrix B, what type of matri-
ces are AB and BA? “Northwest” and “southeast” mean zeros below and above the
antidiagonal going from (1,n) to (n,1).

55. Write 2x +3y+ z+5t = 8 as a matrix A (how many rows?) multiplying the column
vector (x,y,z, t) to produce b. The solutions fill a plane in four-dimensional space.
The plane is three-dimensional with no 4D volume.

56. What 2 by 2 matrix P1 projects the vector (x,y) onto the x axis to produce (x,0)?
What matrix P2 projects onto the y axis to produce (0,y)? If you multiply (5,7) by
P1 and then multiply by P2, you get ( ) and ( ).

57. Write the inner product of (1,4,5) and (x,y,z) as a matrix multiplication Ax. A has
one row. The solutions to Ax = 0 lie on a perpendicular to the vector . The
columns of A are only in -dimensional space.



36 Chapter 1 Matrices and Gaussian Elimination

58. In MATLAB notation, write the commands that define the matrix A and the column
vectors x and b. What command would test whether or not Ax = b?

A =

[
1 2
3 4

]
x =

[
5
−2

]
b =

[
1
7

]

59. The MATLAB commands A = eye(3) and v = [3:5]’ produce the 3 by 3 identity
matrix and the column vector (3,4,5). What are the outputs from A ∗ v and v’ ∗ v?
(Computer not needed!) If you ask for v ∗ A, what happens?

60. If you multiply the 4 by 4 all-ones matrix A = ones(4,4) and the column v =
ones(4,1), what is A ∗ v? (Computer not needed.) If you multiply B = eye(4)
+ ones(4,4) times w = zeros(4,1) + 2 ∗ ones(4,1), what is B ∗ w?

61. Invent a 3 by 3 magic matrix M with entries 1,2, . . . ,9. All rows and columns and
diagonals add to 15. The first row could be 8, 3, 4. What is M times (1,1,1)? What
is the row vector

[
1 1 1

]
times M?

1.5 Triangular Factors and Row Exchanges

We want to look again at elimination, to see what it means in terms of matrices. The
starting point was the model system Ax = b:

Ax =




2 1 1
4 −6 0
−2 7 2







u
v
w


 =




5
−2
9


 = b. (1)

Then there were three elimination steps, with multipliers 2, −1, −1:

Step 1. Subtract 2 times the first equation from the second;

Step 2. Subtract −1 times the first equation from the third;

Step 3. Subtract −1 times the second equation from the third.

The result was an equivalent system Ux = c, with a new coefficient matrix U :

Upper triangular Ux =




2 1 1
0 −8 −2
0 0 1







u
v
w


 =




5
−12

2


 = c. (2)

This matrix U is upper triangular—all entries below the diagonal are zero.
The new right side c was derived from the original vector b by the same steps that

took A into U . Forward elimination amounted to three row operations:
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Start with A and b;

Apply steps 1, 2, 3 in that order;

End with U and c.

Ux = c is solved by back-substitution. Here we concentrate on connecting A to U .
The matrices E for step 1, F for step 2, and G for step 3 were introduced in the

previous section. They are called elementary matrices, and it is easy to see how they
work. To subtract a multiple ` of equation j from equation i, put the number −` into
the (i, j) position. Otherwise keep the identity matrix, with 1s on the diagonal and 0s
elsewhere. Then matrix multiplication executes the row operation.

The result of all three steps is GFEA = U . Note that E is the first to multiply A,
then F , then G. We could multiply GFE together to find the single matrix that takes A
to U (and also takes b to c). It is lower triangular (zeros are omitted):

From A to U GFE =




1
1
1 1







1
1

1 1







1
−2 1

1


 =




1
−2 1
−1 1 1


 . (3)

This is good, but the most important question is exactly the opposite: How would we
get from U back to A? How can we undo the steps of Gaussian elimination?

To undo step 1 is not hard. Instead of subtracting, we add twice the first row to the
second. (Not twice the second row to the first!) The result of doing both the subtraction
and the addition is to bring back the identity matrix:

Inverse of
subtraction
is addition




1 0 0
2 1 0
0 0 1







1 0 0
−2 1 0
0 0 1


 =




1 0 0
0 1 0
0 0 1


 . (4)

One operation cancels the other. In matrix terms, one matrix is the inverse of the other.
If the elementary matrix E has the number −` in the (i, j) position, then its inverse E−1

has +` in that position. Thus E−1E = I, which is equation (4).
We can invert each step of elimination, by using E−1 and F−1 and G−1. I think it’s

not bad to see these inverses now, before the next section. The final problem is to undo
the whole process at once, and see what matrix takes U back to A.

Since step 3 was last in going from A to U , its matrix G must be the first to be
inverted in the reverse direction. Inverses come in the opposite order! The second
reverse step is F−1 and the last is E−1:

From U back to A E−1F−1G−1U = A is LU = A. (5)

You can substitute GFEA for U , to see how the inverses knock out the original steps.
Now we recognize the matrix L that takes U back to A. It is called L, because it is

lower triangular. And it has a special property that can be seen only by multiplying the
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three inverse matrices in the right order:

E−1F−1G−1 =




1
2 1

1







1
1

−1 1







1
1
−1 1


 =




1
2 1
−1 −1 1


 = L. (6)

The special thing is that the entries below the diagonal are the multipliers ` = 2, −1,
and −1. When matrices are multiplied, there is usually no direct way to read off the
answer. Here the matrices come in just the right order so that their product can be
written down immediately. If the computer stores each multiplier `i j—the number that
multiplies the pivot row j when it is subtracted from row i, and produces a zero in the i,
j position—then these multipliers give a complete record of elimination.

The numbers `i j fit right into the matrix L that takes U back to A.

1H Triangular factorization A = LU with no exchanges of rows. L is lower
triangular, with 1s on the diagonal. The multipliers `i j (taken from elimination)
are below the diagonal. U is the upper triangular matrix which appears after
forward elimination, The diagonal entries of U are the pivots.

Example 1.

A =

[
1 2
3 8

]
goes to U =

[
1 2
0 2

]
with L =

[
1 0
3 1

]
. Then LU = A.

Example 2. (which needs a row exchange)

A =

[
0 2
3 4

]
cannot be factored into A = LU.

Example 3. (with all pivots and multipliers equal to 1)

A =




1 1 1
1 2 2
1 2 3


 =




1 0 0
1 1 0
1 1 1







1 1 1
0 1 1
0 0 1


 = LU.

From A to U there are subtractions of rows. From U to A there are additions of rows.

Example 4. (when U is the identity and L is the same as A)

Lower triangular case A =




1 0 0
`21 1 0
`31 `32 1


 .

The elimination steps on this A are easy: (i) E subtracts `21 times row 1 from row 2, (ii)
F subtracts `31 times row 1 from row 3, and (iii) G subtracts `32 times row 2 from row 3.
The result is the identity matrix U = I. The inverses of E, F , and G will bring back A:
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E−1 applied to F−1 applied to G−1 applied to I produces A.




1
`21 1

1


 times




1
1

`31 1


 times




1
1

`32 1


 equals




1 0 0
`21 1 0
`31 `32 1


 .

The order is right for the `’s to fall into position. This always happens! Note that
parentheses in E−1F−1G−1 were not necessary because of the associative law.

A = LU: The n by n case

The factorization A = LU is so important that we must say more. It used to be missing
in linear algebra courses when they concentrated on the abstract side. Or maybe it was
thought to be too hard—but you have got it. If the last Example 4 allows any U instead
of the particular U = I, we can see how the rule works in general. The matrix L, applied
to U , brings back A:

A = LU




1 0 0
`21 1 0
`31 `32 1







row 1 of U
row 2 of U
row 3 of U


 = original A. (7)

The proof is to apply the steps of elimination. On the right-hand side they take A to U .
On the left-hand side they reduce L to I, as in Example 4. (The first step subtracts `21

times (1,0,0) from the second row, which removes `21.) Both sides of (7) end up equal
to the same matrix U , and the steps to get there are all reversible. Therefore (7) is correct
and A = LU .

A = LU is so crucial, and so beautiful, that Problem 8 at the end of this section
suggests a second approach. We are writing down 3 by 3 matrices, but you can see how
the arguments apply to larger matrices. Here we give one more example, and then put
A = LU to use.

Example 5. (A = LU , with zeros in the empty spaces)

A =




1 −1
−1 2 −1

−1 2 −1
−1 2


 =




1
−1 1

−1 1
−1 1







1 −1
1 −1

1 −1
1


 .

That shows how a matrix A with three diagonals has factors L and U with two diagonals.
This example comes from an important problem in differential equations (Section 1.7).
The second difference in A is a backward difference L times a forward difference U .
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One Linear System = Two Triangular Systems

There is a serious practical point about A = LU . It is more than just a record of elimi-
nation steps; L and U are the right matrices to solve Ax = b. In fact A could be thrown
away! We go from b to c by forward elimination (this uses L) and we go from c to x by
back-substitution (that uses U). We can and should do it without A:

Splitting of Ax = b First Lc = b and then Ux = c. (8)

Multiply the second equation by L to give LUx = Lc, which is Ax = b. Each triangular
system is quickly solved. That is exactly what a good elimination code will do:

1. Factor (from A find its factors L and U).

2. Solve (from L and U and b find the solution x).

The separation into Factor and Solve means that a series of b’s can be processed. The
Solve subroutine obeys equation (8): two triangular systems in n2/2 steps each. The
solution for any new right-hand side b can be found in only n2 operations. That is
far below the n3/3 steps needed to factor A on the left-hand side.

Example 6. This is the previous matrix A with a right-hand side b = (1,1,1,1).

Ax = b

x1 − x2 = 1
−x1 + 2x2 − x3 = 1

− x2 + 2x3 − x4 = 1
− x3 + 2x4 = 1

splits into Lc = b and Ux = c.

Lc = b

c1 = 1
−c1 + c2 = 1

− c2 + c3 = 1
− c3 + c4 = 1

gives c =




1
2
3
4


 .

Ux = c

x1 − x2 = 1
x2 − x3 = 2

x3 − x4 = 3
x4 = 4

gives x =




10
9
7
4


 .

For these special “tridiagonal matrices,” the operation count drops from n2 to 2n. You
see how Lc = b is solved forward (c1 comes before c2). This is precisely what happens
during forward elimination. Then Ux = c is solved backward (x4 before x3).

Remark 1. The LU form is “unsymmetric” on the diagonal: L has 1s where U has the
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pivots. This is easy to correct. Divide out of U a diagonal pivot matrix D:

Factor out D U =




d1

d2
. . .

dn







1 u12/d1 u13/d1
...

1 u23/d2
...

. . . ...
1




. (9)

In the last example all pivots were di = 1. In that case D = I. But that was very excep-
tional, and normally LU is different from LDU (also written LDV ).

The triangular factorization can be written A = LDU , where L and U have 1s on
the diagonal and D is the diagonal matrix of pivots.

Whenever you see LDU or LDV , it is understood that U or V has is on the diagonal—
each row was divided by the pivot in D. Then L and U are treated evenly. An example
of LU splitting into LDU is

A =

[
1 2
3 4

]
=

[
1
3 1

][
1 2
−2

]
=

[
1
3 1

][
1
−2

][
1 2

1

]
= LDU.

That has the 1s on the diagonals of L and U , and the pivots 1 and −2 in D.

Remark 2. We may have given the impression in describing each elimination step, that
the calculations must be done in that order. This is wrong. There is some freedom, and
there is a “Crout algorithm” that arranges the calculations in a slightly different way.
There is no freedom in the final L, D, and U . That is our main point:

1I If A = L1D1U1 and also A = L2D2U2, where the L’s are lower triangular
with unit diagonal, the U’s are upper triangular with unit diagonal, and the
D’s are diagonal matrices with no zeros on the diagonal, then L1 = L2, D1 =
D2, U1 = U2. The LDU factorization and the LU factorization are uniquely
determined by A.

The proof is a good exercise with inverse matrices in the next section.

Row Exchanges and Permutation Matrices

We now have to face a problem that has so far been avoided: The number we expect to
use as a pivot might be zero. This could occur in the middle of a calculation. It will
happen at the very beginning if a11 = 0. A simple example is

Zero in the pivot position

[
0 2
3 4

][
u
v

]
=

[
b1

b2

]
.

The difficulty is clear; no multiple of the first equation will remove the coefficient 3.
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The remedy is equally clear. Exchange the two equations, moving the entry 3 up
into the pivot. In this example the matrix would become upper triangular:

Exchange rows
3u+4v = b2

2v = b1

To express this in matrix terms, we need the permutation matrix P that produces the
row exchange. It comes from exchanging the rows of I:

Permutation P =

[
0 1
1 0

]
and PA =

[
0 1
1 0

][
0 2
3 4

]
=

[
3 4
0 2

]
.

P has the same effect on b, exchanging b1 and b2. The new system is PAx = Pb. The
unknowns u and v are not reversed in a row exchange.

A permutation matrix P has the same rows as the identity (in some order). There is
a single “1” in every row and column. The most common permutation matrix is P = I (it
exchanges nothing). The product of two permutation matrices is another permutation—
the rows of I get reordered twice.

After P = I, the simplest permutations exchange two rows. Other permutations ex-
change more rows. There are n! = (n)(n−1) · · ·(1) permutations of size n. Row 1 has
n choices, then row 2 has n−1 choices, and finally the last row has only one choice. We
can display all 3 by 3 permutations (there are 3! = (3)(2)(1) = 6 matrices):

I =




1
1

1


 P21 =




1
1

1


 P32P21 =




1
1

1




P31 =




1
1

1


 P32 =




1
1

1


 P21P32 =




1
1

1


 .

There will be 24 permutation matrices of order n = 4. There are only two permutation
matrices of order 2, namely [

1 0
0 1

]
and

[
0 1
1 0

]
.

When we know about inverses and transposes (the next section defines A−1 and AT),
we discover an important fact: P−1 is always the same as PT.

A zero in the pivot location raises two possibilities: The trouble may be easy to fix,
or it may be serious. This is decided by looking below the zero. If there is a nonzero
entry lower down in the same column, then a row exchange is carried out. The nonzero
entry becomes the needed pivot, and elimination can get going again:

A =




0 a b
0 0 c
d e f




d = 0 =⇒ no first pivot
a = 0 =⇒ no second pivot
c = 0 =⇒ no third pivot.
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If d = 0, the problem is incurable and this matrix is singular. There is no hope for a
unique solution to Ax = b. If d is not zero, an exchange P13 of rows 1 and 3 will move
d into the pivot. However the next pivot position also contains a zero. The number a is
now below it (the e above it is useless). If a is not zero then another row exchange P23 is
called for:

P13 =




0 0 1
0 1 0
1 0 0


 and P23 =




1 0 0
0 0 1
0 1 0


 and P23P13A =




d e f
0 a b
0 0 c




One more point: The permutation P23P13 will do both row exchanges at once:

P13 acts first P23P13 =




1 0 0
0 0 1
0 1 0







0 0 1
0 1 0
1 0 0


 =




0 0 1
1 0 0
0 1 0


 = P.

If we had known, we could have multiplied A by P in the first place. With the rows in
the right order PA, any nonsingular matrix is ready for elimination.

Elimination in a Nutshell: PA = LU

The main point is this: If elimination can be completed with the help of row exchanges,
then we can imagine that those exchanges are done first (by P). The matrix PA will not
need row exchanges. In other words, PA allows the standard factorization into L times
U . The theory of Gaussian elimination can be summarized in a few lines:

1J In the nonsingular case, there is a permutation matrix P that reorders
the rows of A to avoid zeros in the pivot positions. Then Ax = b has a unique
solution:

With the rows reordered in advance, PA can be factored into LU .

In the singular case, no P can produce a full set of pivots: elimination fails.

In practice, we also consider a row exchange when the original pivot is near zero—
even if it is not exactly zero. Choosing a larger pivot reduces the roundoff error.

You have to be careful with L. Suppose elimination subtracts row 1 from row 2,
creating `21 = 1. Then suppose it exchanges rows 2 and 3. If that exchange is done in
advance, the multiplier will change to `31 = 1 in PA = LU .

Example 7.

A =




1 1 1
1 1 3
2 5 8


→




1 1 1
0 0 2
0 3 6


→




1 1 1
0 3 6
0 0 2


 = U. (10)
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That row exchange recovers LU—but now `31 = 1 and `21 = 2:

P =




1 0 0
0 0 1
0 1 0


 and L =




1 0 0
2 1 0
1 0 1


 and PA = LU. (11)

In MATLAB, A([r k] :) exchanges row k with row r below it (where the kth pivot has
been found). We update the matrices L and P the same way. At the start, P = I and sign
= +1:

A([r k], :) = A([k r], :);
L([r k], 1:k-1) = L([k r], 1:k-1);
P([r k], :) = P([k r], :);
sign = -sign

The “sign” of P tells whether the number of row exchanges is even (sign = +1) or odd
(sign =−1). A row exchange reverses sign. The final value of sign is the determinant
of P and it does not depend on the order of the row exchanges.

To summarize: A good elimination code saves L and U and P. Those matrices carry
the information that originally came in A—and they carry it in a more usable form. Ax =
b reduces to two triangular systems. This is the practical equivalent of the calculation
we do next—to find the inverse matrix A−1 and the solution x = A−1b.

Problem Set 1.5

1. When is an upper triangular matrix nonsingular (a full set of pivots)?

2. What multiple `32 of row 2 of A will elimination subtract from row 3 of A? Use the
factored form

A =




1 0 0
2 1 0
1 4 1







5 7 8
0 2 3
0 0 6


 .

What will be the pivots? Will a row exchange be required?

3. Multiply the matrix L = E−1F−1G−1 in equation (6) by GFE in equation (3):



1 0 0
2 1 0
−1 −1 1


 times




1 0 0
−2 1 0
−1 1 1


 .

Multiply also in the opposite order. Why are the answers what they are?
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4. Apply elimination to produce the factors L and U for

A =

[
2 1
8 7

]
and A =




3 1 1
1 3 1
1 1 3


 and A =




1 1 1
1 4 4
1 4 8


 .

5. Factor A into LU , and write down the upper triangular system Ux = c which appears
after elimination, for

Ax =




2 3 3
0 5 7
6 9 8







u
v
w


 =




2
2
5


 .

6. Find E2 and E8 and E−1 if

E =

[
1 0
6 1

]
.

7. Find the products FGH and HGF if (with upper triangular zeros omitted)

F =




1
2 1
0 0 1
0 0 0 1


 G =




1
0 1
0 2 1
0 0 0 1


 H =




1
0 1
0 0 1
0 0 2 1


 .

8. (Second proof of A = LU) The third row of U comes from the third row of A by
subtracting multiples of rows 1 and 2 (of U!):

row 3 of U = row 3 of A− `31(row 1 of U)− `32(row 2 of U).

(a) Why are rows of U subtracted off and not rows of A? Answer: Because by the
time a pivot row is used, .

(b) The equation above is the same as

row 3 of A = `31(row 1 of U)+ `32(row 2 of U)+1(row 3 of U).

Which rule for matrix multiplication makes this row 3 of L times U?

The other rows of LU agree similarly with the rows of A.

9. (a) Under what conditions is the following product nonsingular?

A =




1 0 0
−1 1 0
0 −1 1







d1

d2

d3







1 −1 0
0 1 −1
0 0 1


 .

(b) Solve the system Ax = b starting with Lc = b:


1 0 0
−1 1 0
0 −1 1







c1

c2

c3


 =




0
0
1


 = b.
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10. (a) Why does it take approximately n2/2 multiplication-subtraction steps to solve
each of Lc = b and Ux = c?

(b) How many steps does elimination use in solving 10 systems with the same 60 by
60 coefficient matrix A?

11. Solve as two triangular systems, without multiplying LU to find A:

LUx =




1 0 0
1 1 0
1 0 1







2 4 4
0 1 2
0 0 1







u
v
w


 =




2
0
2


 .

12. How could you factor A into a product UL, upper triangular times lower triangular?
Would they be the same factors as in A = LU?

13. Solve by elimination, exchanging rows when necessary:

u + 4v + 2w = −2
−2u − 8v + 3w = 32

v + w = 1
and

v + w = 0
u + v = 0
u + v + w = 1.

Which permutation matrices are required?

14. Write down all six of the 3 by 3 permutation matrices, including P = I. Identify their
inverses, which are also permutation matrices. The inverses satisfy PP−1 = I and are
on the same list.

15. Find the PA = LDU factorizations (and check them) for

A =




0 1 1
1 0 1
2 3 4


 and A =




1 2 1
2 4 2
1 1 1


 .

16. Find a 4 by 4 permutation matrix that requires three row exchanges to reach the end
of elimination (which is U = I).

17. The less familiar form A = LPU exchanges rows only at the end:

A =




1 1 1
1 1 3
2 5 8


→ L−1A =




1 1 1
0 0 2
0 3 6


 = PU =




1 0 0
0 0 1
0 1 0







1 1 1
0 3 6
0 0 2


 .

What is L is this case? Comparing with PA = LU in Box 1J, the multipliers now stay
in place (`21 is 1 and `31 is 2 when A = LPU).

18. Decide whether the following systems are singular or nonsingular, and whether they
have no solution, one solution, or infinitely many solutions:

v − w = 2
u − v = 2
u − w = 2

and
v − w = 0

u − v = 0
u − w = 0

and
v + w = 1

u + v = 1
u + w = 1.
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19. Which numbers a, b, c lead to row exchanges? Which make the matrix singular?

A =




1 2 0
a 8 3
0 b 5


 and A =

[
c 2
6 4

]
.

Problems 20–31 compute the factorization A = LU (and also A = LDU).

20. Forward elimination changes
[

1 1
1 2

]
x = b to a triangular

[
1 1
0 1

]
x = c:

x + y = 5
x + 2y = 7

→ x + y = 5
y = 2

[
1 1 5
1 2 7

]
→

[
1 1 5
0 1 2

]
.

That step subtracted `21 = times row 1 from row 2. The reverse step adds `21

times row 1 to row 2. The matrix for that reverse step is L = . Multiply this L
times the triangular system

[
1 1
0 1

]
x =

[
5
2

]
to get = . In letters, L multiplies

Ux = c to give .

21. (Move to 3 by 3) Forward elimination changes Ax = b to a triangular Ux = c:
x+ y+ z = 5

x+2y+3z = 7

x+3y+6z = 11

x+ y+ z = 5

y+2z = 2

2y+5z = 6

x+ y+ z = 5

y+2z = 2

z = 2.

The equation z = 2 in Ux = c comes from the original x+3y+6z = 11 in Ax = b by
subtracting `31 = times equation 1 and `32 = times the final equation 2.
Reverse that to recover [1 3 6 11] in [A b] from the final [1 1 1 5] and [0 1 2 2]
and [0 0 1 2] in [U c]:

Row 3 of
[
A b

]
= (`31 Row 1 + `32 Row 2+1 Row 3) of

[
U c

]
.

In matrix notation this is multiplication by L. So A = LU and b = Lc.

22. What are the 3 by 3 triangular systems Lc = b and Ux = c from Problem 21? Check
that c = (5,2,2) solves the first one. Which x solves the second one?

23. What two elimination matrices E21 and E32 put A into upper triangular form E32E21A =
U? Multiply by E−1

31 and E−1
21 to factor A into LU = E−1

21 E−1
32 U :

A =




1 1 1
2 4 5
0 4 0


 .

24. What three elimination matrices E21, E31, E32 put A into upper triangular form
E32E31E21A = U? Multiply by E−1

32 , E−1
31 and E−1

21 to factor A into LU where L =
E−1

21 E−1
31 E−1

32 . Find L and U :

A =




1 0 1
2 2 2
3 4 5


 .
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25. When zero appears in a pivot position, A = LU is not possible! (We need nonzero
pivots d, f , i in U .) Show directly why these are both impossible:

[
0 1
2 3

]
=

[
1 0
` 1

][
d e
0 f

] 


1 1 0
1 1 2
1 2 1


 =




1
` 1
m n 1







d e g
f h

i


 .

26. Which number c leads to zero in the second pivot position? A row exchange is
needed and A = LU is not possible. Which c produces zero in the third pivot position?
Then a row exchange can’t help and elimination fails:

A =




1 c 0
2 4 1
3 5 1


 .

27. What are L and D for this matrix A? What is U in A = LU and what is the new U in
A = LDU?

A =




2 4 8
0 3 9
0 0 7


 .

28. A and B are symmetric across the diagonal (because 4 = 4). Find their triple factor-
izations LDU and say how U is related to L for these symmetric matrices:

A =

[
2 4
4 11

]
and B =




1 4 0
4 12 4
0 4 0


 .

29. (Recommended) Compute L and U for the symmetric matrix

A =




a a a a
a b b b
a b c c
a b c d


 .

Find four conditions on a, b, c, d to get A = LU with four pivots.

30. Find L and U for the nonsymmetric matrix

A =




a r r r
a b s s
a b c t
a b c d


 .

Find the four conditions on a, b, c, d, r, s, t to get A = LU with four pivots.
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31. Tridiagonal matrices have zero entries except on the main diagonal and the two
adjacent diagonals. Factor these into A = LU and A = LDV :

A =




1 1 0
1 2 1
0 1 2


 and A =




a a 0
a a+b b
0 b b+ c


 .

32. Solve the triangular system Lc = b to find c. Then solve Ux = c to find x:

L =

[
1 0
4 1

]
and U =

[
2 4
0 1

]
and b =

[
2

11

]
.

For safety find A = LU and solve Ax = b as usual. Circle c when you see it.

33. Solve Lc = b to find c. Then solve Ux = c to find x. What was A?

L =




1 0 0
1 1 0
1 1 1


 and U =




1 1 1
0 1 1
0 0 1


 and b =




4
5
6


 .

34. If A and B have nonzeros in the positions marked by x, which zeros are still zero in
their factors L and U?

A =




x x x x
x x x 0
0 x x x
0 0 x x


 and B =




x x x 0
x x 0 x
x 0 x x
0 x x x


 .

35. (Important) If A has pivots 2, 7, 6 with no row exchanges, what are the pivots for the
upper left 2 by 2 submatrix B (without row 3 and column 3)? Explain why.

36. Starting from a 3 by 3 matrix A with pivots 2, 7, 6, add a fourth row and column to
produce M. What are the first three pivots for M, and why? What fourth row and
column are sure to produce 9 as the fourth pivot?

37. Use chol(pascal(5)) to find the triangular factors of MATLAB’s pascal(5). Row
exchanges in [L, U] = lu(pascal(5)) spoil Pascal’s pattern!

38. (Review) For which numbers c is A = LU impossible—with three pivots?

A =




1 2 0
3 c 1
0 1 1


 .

39. Estimate the time difference for each new right-hand side b when n = 800. Create A
= rand(800) and b = rand(800,1) and B = rand(800,9). Compare the times from
tic; A\b; toc and tic; A\B; toc (which solves for 9 right sides).

Problems 40–48 are about permutation matrices.
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40. There are 12 “even” permutations of (1,2,3,4), with an even number of exchanges.
Two of them are (1,2,3,4) with no exchanges and (4,3,2,1) with two exchanges.
List the other ten. Instead of writing each 4 by 4 matrix, use the numbers 4, 3, 2, 1
to give the position of the 1 in each row.

41. How many exchanges will permute (5,4,3,2,1) back to (1,2,3,4,5)? How many
exchanges to change (6,5,4,3,2,1) to (1,2,3,4,5,6)? One is even and the other is
odd. For (n, . . . ,1) to (1, . . . ,n), show that n = 100 and 101 are even, n = 102 and
103 are odd.

42. If P1 and P2 are permutation matrices, so is P1P2. This still has the rows of I in some
order. Give examples with P1P2 6= P2P1 and P3P4 = P4P3.

43. (Try this question.) Which permutation makes PA upper triangular? Which permu-
tations make P1AP2 lower triangular? Multiplying A on the right by P2 exchanges
the of A.

A =




0 0 6
1 2 3
0 4 5




44. Find a 3 by 3 permutation matrix with P3 = I (but not P = I). Find a 4 by 4 permu-
tation P̂ with P̂4 6= I.

45. If you take powers of a permutation, why is some Pk eventually equal to I? Find a 5
by 5 permutation P so that the smallest power to equal I is P6. (This is a challenge
question. Combine a 2 by 2 block with a 3 by 3 block.)

46. The matrix P that multiplies (x,y,z) to give (z,x,y) is also a rotation matrix. Find P
and P3. The rotation axis a = (1,1,1) doesn’t move, it equals Pa. What is the angle
of rotation from v = (2,3,−5) to Pv = (−5,2,3)?

47. If P is any permutation matrix, find a nonzero vector x so that (I−P)x = 0. (This
will mean that I−P has no inverse, and has determinant zero.)

48. If P has 1s on the antidiagonal from (1,n) to (n,1), describe PAP.

1.6 Inverses and Transposes

The inverse of an n by n matrix is another n by n matrix. The inverse of A is written A−1

(and pronounced “A inverse”). The fundamental property is simple: If you multiply by A
and then multiply by A−1, you are back where you started:

Inverse matrix If b = Ax then A−1b = x.
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Thus A−1Ax = x. The matrix A−1 times A is the identity matrix. Not all matrices have
inverses. An inverse is impossible when Ax is zero and x is nonzero. Then A−1 would
have to get back from Ax = 0 to x. No matrix can multiply that zero vector Ax and
produce a nonzero vector x.

Our goals are to define the inverse matrix and compute it and use it, when A−1

exists—and then to understand which matrices don’t have inverses.

1K The inverse of A is a matrix B such that BA = I and AB = I. There is at
most one such B, and it is denoted by A−1:

A−1A = I and AA−1 = I. (1)

Note 1. The inverse exists if and only if elimination produces n pivots (row exchanges
allowed). Elimination solves Ax = b without explicitly finding A−1.

Note 2. The matrix A cannot have two different inverses, Suppose BA = I and also
AC = I. Then B = C, according to this “proof by parentheses”:

B(AC) = (BA)C gives BI = IC which is B = C. (2)

This shows that a left-inverse B (multiplying from the left) and a right-inverse C (multi-
plying A from the right to give AC = I) must be the same matrix.

Note 3. If A is invertible, the one and only solution to Ax = b is x = A−1b:

Multiply Ax = b by A−1. Then x = A−1Ax = A−1b.

Note 4. (Important) Suppose there is a nonzero vector x such that Ax = 0. Then A
cannot have an inverse. To repeat: No matrix can bring 0 back to x.

If A is invertible, then Ax = 0 can only have the zero solution x = 0.

Note 5. A 2 by 2 matrix is invertible if and only if ad−bc is not zero:

2 by 2 inverse

[
a b
c d

]−1

=
1

ad−bc

[
d −b
−c a

]
. (3)

This number ad− bc is the determinant of A. A matrix is invertible if its determinant
is not zero (Chapter 4). In MATLAB, the invertibility test is to find n nonzero pivots.
Elimination produces those pivots before the determinant appears.

Note 6. A diagonal matrix has an inverse provided no diagonal entries are zero:

If A =




d1
. . .

dn


 then A−1 =




1/d1
. . .

1/dn


 and AA−1 = I.

When two matrices are involved, not much can be done about the inverse of A + B.
The sum might or might not be invertible. Instead, it is the inverse of their product
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AB which is the key formula in matrix computations. Ordinary numbers are the same:
(a+b)−1 is hard to simplify, while 1/ab splits into 1/a times 1/b. But for matrices the
order of multiplication must be correct—if ABx = y then Bx = A−1y and x = B−1A−1y.
The inverses come in reverse order.

1L A product AB of invertible matrices is inverted by B−1A−1:

Inverse of AB (AB)−1 = B−1A−1. (4)

Proof. To show that B−1A−1 is the inverse of AB, we multiply them and use the associa-
tive law to remove parentheses. Notice how B sits next to B−1:

(AB)(B−1A−1) = ABB−1A−1 = AIA−1 = AA−1 = I

(B−1A−1)(AB) = B−1A−1AB = B−1IB = B−1B = I.

A similar rule holds with three or more matrices:

Inverse of ABC (ABC)−1 = C−1B−1A−1.

We saw this change of order when the elimination matrices E, F , G were inverted to
come back from U to A. In the forward direction, GFEA was U . In the backward
direction, L = E−1F−1G−1 was the product of the inverses. Since G came last, G−1

comes first. Please check that A−1 would be U−1GFE.

The Calculation of A−1: The Gauss-Jordan Method

Consider the equation AA−1 = I. If it is taken a column at a time, that equation de-
termines each column of A−1. The first column of A−1 is multiplied by A, to yield the
first column of the identity: Ax1 = e1. Similarly Ax2 = e2 and Ax3 = e3 the e’s are the
columns of I. In a 3 by 3 example, A times A−1 is I:

Axi = ei




2 1 1
4 −6 0
−2 7 2




[
x1 x2 x3

]
=

[
e1 e2 e3

]
=




1 0 0
0 1 0
0 0 1


 . (5)

Thus we have three systems of equations (or n systems). They all have the same coeffi-
cient matrix A. The right-hand sides e1, e2, e3 are different, but elimination is possible
on all systems simultaneously. This is the Gauss-Jordan method. Instead of stopping
at U and switching to back-substitution, it continues by subtracting multiples of a row
from the rows above. This produces zeros above the diagonal as well as below. When it
reaches the identity matrix we have found A−1.

The example keeps all three columns e1, e2, e3, and operates on rows of length six:
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Example 1. Using the Gauss-Jordan Method to Find A−1

[
A e1 e2 e3

]
=




2 1 1 1 0 0
4 −6 0 0 1 0
−2 7 2 0 0 1




pivot = 2→




2 1 1 1 0 0
0 −8 −2 −2 1 0
0 8 3 1 0 1




pivot =−8→




2 1 1 1 0 0
0 −8 −2 −2 1 0
0 0 1 −1 1 1


 =

[
U L−1

]
.

This completes the first half—forward elimination. The upper triangular U appears in
the first three columns. The other three columns are the same as L−1. (This is the effect
of applying the elementary operations GFE to the identity matrix.) Now the second half
will go from U to I (multiplying by U−1). That takes L−1 to U−1L−1 which is A−1.
Creating zeros above the pivots, we reach A−1:

Second half
[
U L−1

]
→




2 1 0 2 −1 −1
0 −8 0 −4 3 2
0 0 1 −1 1 1




zeros above pivots→




2 0 0 12
8 −5

8 −6
8

0 −8 0 −4 3 2
0 0 1 −1 1 1




divide by pivots→




1 0 0 12
16 − 5

16 − 6
16

0 1 0 4
8 −3

8 −2
8

0 0 1 −1 1 1


 =

[
I A−1

]
.

At the last step, we divided the rows by their pivots 2 and −8 and 1. The coefficient
matrix in the left-hand half became the identity. Since A went to I, the same operations
on the right-hand half must have carried I into A−1. Therefore we have computed the
inverse.

A note for the future: You can see the determinant−16 appearing in the denominators
of A−1. The determinant is the product of the pivots (2)(−8)(1). It enters at the end
when the rows are divided by the pivots.

Remark 1. In spite of this brilliant success in computing A−1, I don’t recommend it, I
admit that A−1 solves Ax = b in one step. Two triangular steps are better:

x = A−1b separates into Lc = b and Ux = c.

We could write c = L−1b and then x = U−1c = U−1L−1b. But note that we did not
explicitly form, and in actual computation should not form, these matrices L−1 and U−1.
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It would be a waste of time, since we only need back-substitution for x (and forward
substitution produced c).

A similar remark applies to A−1; the multiplication A−1b would still take n2 steps. It
is the solution that we want, and not all the entries in the inverse.
Remark 2. Purely out of curiosity, we might count the number of operations required
to find A−1. The normal count for each new right-hand side is n2, half in the forward
direction and half in back-substitution. With n right-hand sides e1, . . . ,en this makes n3.
After including the n3/3 operations on A itself, the total seems to be 4n3/3.

This result is a little too high because of the zeros in the e j. Forward elimination
changes only the zeros below the 1. This part has only n− j components, so the count
for e j is effectively changed to (n− j)2/2. Summing over all j, the total for forward
elimination is n3/6. This is to be combined with the usual n3/3 operations that are
applied to A, and the n(n2/2) back-substitution steps that finally produce the columns x j

of A−1. The final count of multiplications for computing A−1 is n3:

Operation count
n3

6
+

n3

3
+n

(
n2

2

)
= n3.

This count is remarkably low. Since matrix multiplication already takes n3 steps, it
requires as many operations to compute A2 as it does to compute A−1! That fact seems
almost unbelievable (and computing A3 requires twice as many, as far as we can see).
Nevertheless, if A−1 is not needed, it should not be computed.
Remark 3. In the Gauss-Jordan calculation we went all the way forward to U , before
starting backward to produce zeros above the pivots. That is like Gaussian elimination,
but other orders are possible. We could have used the second pivot when we were there
earlier, to create a zero above it as well as below it. This is not smart. At that time
the second row is virtually full, whereas near the end it has zeros from the upward row
operations that have already taken place.

Invertible = Nonsingular (n pivots)

Ultimately we want to know which matrices are invertible and which are not. This
question is so important that it has many answers. See the last page of the book!

Each of the first five chapters will give a different (but equivalent) test for invertibility.
Sometimes the tests extend to rectangular matrices and one-sided inverses: Chapter 2
looks for independent rows and independent columns, Chapter 3 inverts AAT or ATA.
The other chapters look for nonzero determinants or nonzero eigenvalues or nonzero
pivots. This last test is the one we meet through Gaussian elimination. We want to show
(in a few theoretical paragraphs) that the pivot test succeeds.

Suppose A has a full set of n pivots. AA−1 = I gives n separate systems Axi = ei

for the columns of A−1. They can be solved by elimination or by Gauss-Jordan. Row
exchanges may be needed, but the columns of A−1 are determined.
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Strictly speaking, we have to show that the matrix A−1 with those columns is also
a left-inverse. Solving AA−1 = I has at the same time solved A−1A = I, but why? A
1-sided inverse of a square matrix is automatically a 2-sided inverse. To see why,
notice that every Gauss-Jordan step is a multiplication on the left by an elementary
matrix. We are allowing three types of elementary matrices:

1. Ei j to subtract a multiple ` of row j from row i

2. Pi j to exchange rows i and j

3. D (or D−1) to divide all rows by their pivots.

The Gauss-Jordan process is really a giant sequence of matrix multiplications:

(D−1 · · ·E · · ·P · · ·E)A = I. (6)

That matrix in parentheses, to the left of A, is evidently a left-inverse! It exists, it equals
the right-inverse by Note 2, so every nonsingular matrix is invertible.

The converse is also true: If A is invertible, it has n pivots. In an extreme case that
is clear: A cannot have a whole column of zeros. The inverse could never multiply a
column of zeros to produce a column of I. In a less extreme case, suppose elimination
starts on an invertible matrix A but breaks down at column 3:

Breakdown
No pivot in column 3

A′ =




d1 x x x
0 d2 x x
0 0 0 x
0 0 0 x


 .

This matrix cannot have an inverse, no matter what the x’s are. One proof is to use
column operations (for the first time?) to make the whole third column zero. By sub-
tracting multiples of column 2 and then of column 1, we reach a matrix that is certainly
not invertible. Therefore the original A was not invertible. Elimination gives a complete
test: An n by n matrix is invertible if and only if it has n pivots.

The Transpose Matrix

We need one more matrix, and fortunately it is much simpler than the inverse. The
transpose of A is denoted by AT. Its columns are taken directly from the rows of A—the
ith row of A becomes the ith column of AT:

Transpose If A =

[
2 1 4
0 0 3

]
then AT =




2 0
1 0
4 3


 .

At the same time the columns of A become the rows of AT, If A is an m by n matrix, then
AT is n by m. The final effect is to flip the matrix across its main diagonal, and the entry
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in row i, column j of AT comes from row j, column i of A:

Entries of AT (AT)i j = A ji. (7)

The transpose of a lower triangular matrix is upper triangular. The transpose of AT brings
us back to A.

If we add two matrices and then transpose, the result is the same as first transposing
and then adding: (A+B)T is the same as AT +BT. But what is the transpose of a product
AB or an inverse A−1? Those are the essential formulas of this section:

1M

(i) The transpose of AB is (AB)T = BTAT,

(ii) The transpose of A−1 is (A−1)T = (AT)−1.

Notice how the formula for (AB)T resembles the one for (AB)−1. In both cases we
reverse the order, giving BTAT and B−1A−1. The proof for the inverse was easy, but this
one requires an unnatural patience with matrix multiplication. The first row of (AB)T is
the first column of AB. So the columns of A are weighted by the first column of B. This
amounts to the rows of AT weighted by the first row of BT. That is exactly the first row
of BTAT. The other rows of (AB)T and BTAT also agree.

Start from AB =

[
1 0
1 1

][
3 3 3
2 2 2

]
=

[
3 3 3
5 5 5

]

Transpose to BTAT =




3 2
3 2
3 2




[
1 1
0 1

]
=




3 5
3 5
3 5


 .

To establish the formula for (A−1)T, start from AA−1 = I and A−1A = I and take trans-
poses. On one side, IT = I. On the other side, we know from part (i) the transpose of a
product. You see how (A−1)T is the inverse of AT, proving (ii):

Inverse of AT = Transpose of A−1 (A−1)TAT = I. (8)

Symmetric Matrices

With these rules established, we can introduce a special class of matrices, probably
the most important class of all. A symmetric matrix is a matrix that equals its own
transpose: AT = A. The matrix is necessarily square. Each entry on one side of the
diagonal equals its “mirror image” on the other side: ai j = a ji. Two simple examples are
A and D (and also A−1):

Symmetric matrices A =

[
1 2
2 8

]
and D =

[
1 0
0 4

]
and A−1 =

1
4

[
8 −2
−2 1

]
.
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A symmetric matrix need not be invertible; it could even be a matrix of zeros. But if
A−1 exists it is also symmetric. From formula (ii) above, the transpose of A−1 always
equals (AT)−1; for a symmetric matrix this is just A−1. A−1 equals its own transpose; it
is symmetric whenever A is. Now we show that multiplying any matrix R by RT gives a
symmetric matrix.

Symmetric Products RTR, RRT, and LDLT

Choose any matrix R, probably rectangular. Multiply RT times R. Then the product RTR
is automatically a square symmetric matrix:

The transpose of RTR is RT(RT)T, which is RTR. (9)

That is a quick proof of symmetry for RTR. Its i, j entry is the inner product of row i
of RT (column i of R) with column j of R. The ( j, i) entry is the same inner product,
column j with column i. So RTR is symmetric.

RRT is also symmetric, but it is different from RTR. In my experience, most scientific
problems that start with a rectangular matrix R end up with RTR or RRT or both.

Example 2. R = [1 2] and RT = [1
2 ] produce RTR =

[
1 2
2 4

]
and RRT = [5].

The product RTR is n by n. In the opposite order, RRT is m by m. Even if m = n, it is not
very likely that RTR = RRT. Equality can happen, but it’s not normal.

Symmetric matrices appear in every subject whose laws are fair. “Each action has an
equal and opposite reaction.” The entry ai j that gives the action of i onto j is matched
by a ji. We will see this symmetry in the next section, for differential equations. Here,
LU misses the symmetry but LDLT captures it perfectly.

1N Suppose A = AT can be factored into A = LDU without row exchanges.
Then U is the transpose of L. The symmetric factorization becomes A = LDLT.

The transpose of A = LDU gives AT = UTDTLT. Since A = AT, we now have two
factorizations of A into lower triangular times diagonal times upper triangular. (LT is
upper triangular with ones on the diagonal, exactly like U .) Since the factorization is
unique (see Problem 17), LT must be identical to U .

LT = U and A = LDLT

[
1 2
2 8

]
=

[
1 0
2 1

][
1 0
0 4

][
1 2
0 1

]
= LDLT.

When elimination is applied to a symmetric matrix, AT = A is an advantage. The smaller
matrices stay symmetric as elimination proceeds, and we can work with half the matrix!
The lower right-hand corner remains symmetric:


a b c
b d e
c e f


→




a b c
0 d− b2

a e− bc
a

0 e− bc
a f − c2

a


 .
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The work of elimination is reduced from n3/3 to n3/6. There is no need to store entries
from both sides of the diagonal, or to store both L and U .

Problem Set 1.6

1. Find the inverses (no special system required) of

A1 =

[
0 2
3 0

]
, A2 =

[
2 0
4 2

]
, A3 =

[
cosθ −sinθ
sinθ cosθ

]
.

2. (a) Find the inverses of the permutation matrices

P =




0 0 1
0 1 0
1 0 0


 and P =




0 0 1
1 0 0
0 1 0


 .

(b) Explain for permutations why P−1 is always the same as PT. Show that the 1s
are in the right places to give PPT = I.

3. From AB = C find a formula for A−1. Also find A−1 from PA = LU .

4. (a) If A is invertible and AB = AC, prove quickly that B = C.

(b) If A = [1 0
0 0 ], find an example with AB = AC but B 6= C.

5. If the inverse of A2 is B, show that the inverse of A is AB. (Thus A is invertible
whenever A2 is invertible.)

6. Use the Gauss-Jordan method to invert

A1 =




1 0 0
1 1 1
0 0 1


 , A2 =




2 −1 0
−1 2 −1
0 −1 2


 , A3 =




0 0 1
0 1 1
1 1 1


 .

7. Find three 2 by 2 matrices, other than A = I and A =−I, that are their own inverses:
A2 = I.

8. Show that A = [1 1
3 3 ] has no inverse by solving Ax = 0, and by failing to solve

[
1 1
3 3

][
a b
c d

]
=

[
1 0
0 1

]
.

9. Suppose elimination fails because there is no pivot in column 3:

Missing pivot A =




2 1 4 6
0 3 8 5
0 0 0 7
0 0 0 9


 .
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Show that A cannot be invertible. The third row of A−1, multiplying A, should give
the third row [0 0 1 0] of A−1A = I. Why is this impossible?

10. Find the inverses (in any legal way) of

A1 =




0 0 0 1
0 0 2 0
0 3 0 0
4 0 0 0


 , A2 =




1 0 0 0
−1

2 1 0 0
0 −2

3 1 0
0 0 −3

4 1


 , A3 =




a b 0 0
c d 0 0
0 0 a b
0 0 c d


 .

11. Give examples of A and B such that

(a) A+B is not invertible although A and B are invertible.

(b) A+B is invertible although A and B are not invertible.

(c) all of A, B, and A+B are invertible.

(d) In the last case use A−1(A+B)B−1 = B−1 +A−1 to show that C = B−1 +A−1 is
also invertible—and find a formula for C−1.

12. If A is invertible, which properties of A remain true for A−1?
(a) A is triangular. (b) A is symmetric. (c) A is tridiagonal. (d) All entries are whole
numbers. (e) All entries are fractions (including numbers like 3

1).

13. If A = [3
1 ] and B = [2

2 ], compute ATB, BTA, ABT, and BAT.

14. If B is square, show that A = B+BT is always symmetric and K = B−BT is always
skew-symmetric—which means that KT = −K. Find these matrices A and K when
B = [1 3

1 1 ], and write B as the sum of a symmetric matrix and a skew-symmetric
matrix.

15. (a) How many entries can be chosen independently in a symmetric matrix of order
n?

(b) How many entries can be chosen independently in a skew-symmetric matrix
(KT =−K) of order n? The diagonal of K is zero!

16. (a) If A = LDU , with 1s on the diagonals of L and U , what is the corresponding
factorization of AT? Note that A and AT (square matrices with no row exchanges)
share the same pivots.

(b) What triangular systems will give the solution to ATy = b?

17. If A = L1D1U1 and A = L2D2U2, prove that L1 = L2, D1 = D2, and U1 = U2. If A is
invertible, the factorization is unique.

(a) Derive the equation L−1
1 L2D2 = D1U1U−1

2 , and explain why one side is lower
triangular and the other side is upper triangular.

(b) Compare the main diagonals and then compare the off-diagonals.
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18. Under what conditions on their entries are A and B invertible?

A =




a b c
d e 0
f 0 0


 B =




a b 0
c d 0
0 0 e


 .

19. Compute the symmetric LDLT factorization of

A =




1 3 5
3 12 18
5 18 30


 and A =

[
a b
b d

]
.

20. Find the inverse of

A =




1 0 0 0
1
4 1 0 0
1
3

1
3 1 0

1
2

1
2

1
2 1


 .

21. (Remarkable) If A and B are square matrices, show that I−BA is invertible if I−AB
is invertible. Start from B(I−AB) = (1−BA)B.

22. Find the inverses (directly or from the 2 by 2 formula) of A, B, C:

A =

[
0 3
4 6

]
and B =

[
a b
b 0

]
and C =

[
3 4
5 7

]
.

23. Solve for the columns of A−1 =

[
x t
y z

]
:

[
10 20
20 50

][
x
y

]
=

[
1
0

]
and

[
10 20
20 50

][
t
z

]
=

[
0
1

]
.

24. Show that [1 2
3 6 ] has no inverse by trying to solve for the column (x,y):

[
1 2
3 6

][
x t
y z

]
=

[
1 0
0 1

]
must include

[
1 2
3 6

][
x
y

]
=

[
1
0

]
.

25. (Important) If A has row 1 + row 2 = row 3, show that A is not invertible:

(a) Explain why Ax = (1,0,0) cannot have a solution.

(b) Which right-hand sides (b1,b2,b3) might allow a solution to Ax = b?

(c) What happens to row 3 in elimination?

26. If A has column 1 + column 2 = column 3, show that A is not invertible:
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(a) Find a nonzero solution x to Ax = 0. The matrix is 3 by 3.

(b) Elimination keeps column 1 + column 2 = column 3. Explain why there is no
third pivot.

27. Suppose A is invertible and you exchange its first two rows to reach B. Is the new
matrix B invertible? How would you find B−1 from A−1?

28. If the product M = ABC of three square matrices is invertible, then A, B, C are
invertible. Find a formula for B−1 that involves M−1 and A and C.

29. Prove that a matrix with a column of zeros cannot have an inverse.

30. Multiply [a b
c d ] times [ d −b−c a ]. What is the inverse of each matrix if ad 6= bc?

31. (a) What matrix E has the same effect as these three steps? Subtract row 1 from row
2, subtract row 1 from row 3, then subtract row 2 from row 3.

(b) What single matrix L has the same effect as these three reverse steps? Add row
2 to row 3, add row 1 to row 3, then add row 1 to row 2.

32. Find the numbers a and b that give the inverse of 5 ∗ eye(4) − ones(4,4):



4 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4




−1

=




a b b b
b a b b
b b a b
b b b a


 .

What are a and b in the inverse of 6 ∗ eye(5) − ones(5,5)?

33. Show that A = 4 ∗ eye(4) − ones(4,4) is not invertible: Multiply A ∗ ones(4,1).

34. There are sixteen 2 by 2 matrices whose entries are 1s and 0s. How many of them
are invertible?

Problems 35–39 are about the Gauss-Jordan method for calculating A−1.

35. Change I into A−1 as you reduce A to I (by row operations):

[
A I

]
=

[
1 3 1 0
2 7 0 1

]
and

[
A I

]
=

[
1 4 1 0
3 9 0 1

]
.

36. Follow the 3 by 3 text example but with plus signs in A. Eliminate above and below
the pivots to reduce [A I] to [I A−1]:

[
A I

]
=




2 1 0 1 0 0
1 2 1 0 1 0
0 1 2 0 0 1


 .
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37. Use Gauss-Jordan elimination on [A I] to solve AA−1 = I:



1 a b
0 1 c
0 0 1




[
x1 x2 x3

]
=




1 0 0
0 1 0
0 0 1


 .

38. Invert these matrices A by the Gauss-Jordan method starting with [A I]:

A =




1 0 0
2 1 3
0 0 1


 and A =




1 1 1
1 2 2
1 2 3


 .

39. Exchange rows and continue with Gauss-Jordan to find A−1:

[
A I

]
=

[
0 2 1 0
2 2 0 1

]
.

40. True or false (with a counterexample if false and a reason if true):

(a) A 4 by 4 matrix with a row of zeros is not invertible.

(b) A matrix with Is down the main diagonal is invertible.

(c) If A is invertible then A−1 is invertible.

(d) If AT is invertible then A is invertible.

41. For which three numbers c is this matrix not invertible, and why not?

A =




2 c c
c c c
8 7 c


 .

42. Prove that A is invertible if a 6= 0 and a 6= b (find the pivots and A−1):

A =




a b b
a a b
a a a


 .

43. This matrix has a remarkable inverse. Find A−1 by elimination on [A I]. Extend to a
5 by 5 “alternating matrix” and guess its inverse:

A =




1 −1 1 −1
0 1 −1 1
0 0 1 −1
0 0 0 1


 .



1.6 Inverses and Transposes 63

44. If B has the columns of A in reverse order, solve (A−B)x = 0 to show that A−B is
not invertible. An example will lead you to x.

45. Find and check the inverses (assuming they exist) of these block matrices:
[

I 0
C I

] [
A 0
C D

] [
0 I
I D

]
.

46. Use inv(S) to invert MATLAB’s 4 by 4 symmetric matrix S = pascal(4). Create
Pascal’s lower triangular A = abs(pascal(4,1)) and test inv(S) = inv(A’) ∗ inv(A).

47. If A = ones(4,4) and b = rand(4,1), how does MATLAB tell you that Ax = b has
no solution? If b = ones(4,1), which solution to Ax = b is found by A\b?

48. M−1 shows the change in A−1 (useful to know) when a matrix is subtracted from A.
Check part 3 by carefully multiplying MM−1 to get I:

1. M = I−uvT and M−1 = I +uvT/(1− vTu).
2. M = A−uvT and M−1 = A−1 +A−1uvTA−1/(1− vTA−1u).
3. M = I−UV and M−1 = In +U(Im−VU)−1V .
4. M = A−UW−1V and M−1 = A−1 +A−1U(W −VA−1U)−1VA−1.

The four identities come from the 1, 1 block when inverting these matrices:
[

I u
vT 1

] [
A u
vT 1

] [
In U
V Im

] [
A U
V W

]
.

Problems 49–55 are about the rules for transpose matrices.

49. Find AT and A−1 and (A−1)T and (AT)−1 for

A =

[
1 0
9 3

]
and also A =

[
1 c
c 0

]
.

50. Verify that (AB)T equals BTAT but those are different from ATBT:

A =

[
1 0
2 1

]
B =

[
1 3
0 1

]
AB =

[
1 3
2 7

]
.

In case AB = BA (not generally true!), how do you prove that BTAT = ATBT?

51. (a) The matrix
(
(AB)−1

)T comes from (A−1)T and (B−1)T. In what order?

(b) If U is upper triangular then (U−1)T is triangular.

52. Show that A2 = 0 is possible but ATA = 0 is not possible (unless A = zero matrix).
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53. (a) The row vector xT times A times the column y produces what number?

xTAy =
[
0 1

][
1 2 3
4 5 6

]


0
1
0


 = .

(b) This is the row xTA = times the column y = (0,1,0).

(c) This is the row xT = [0 1] times the column Ay = .

54. When you transpose a block matrix M = [A B
C D ] the result is MT = . Test it.

Under what conditions on A, B, C, D is the block matrix symmetric?

55. Explain why the inner product of x and y equals the inner product of Px and Py.
Then (Px)T(Py) = xTy says that PTP = I for any permutation. With x = (1,2,3) and
y = (1,4,2), choose P to show that (Px)Ty is not always equal to xT(PTy).

Problems 56–60 are about symmetric matrices and their factorizations.

56. If A = AT and B = BT, which of these matrices are certainly symmetric?
(a) A2−B2 (b) (A+B)(A−B) (c) ABA (d) ABAB.

57. If A = AT needs a row exchange, then it also needs a column exchange to stay sym-
metric. In matrix language, PA loses the symmetry of A but recovers the sym-
metry.

58. (a) How many entries of A can be chosen independently, if A = AT is 5 by 5?

(b) How do L and D (5 by 5) give the same number of choices in LDLT?

59. Suppose R is rectangular (m by n) and A is symmetric (m by m).

(a) Transpose RTAR to show its symmetry. What shape is this matrix?

(b) Show why RTR has no negative numbers on its diagonal.

60. Factor these symmetric matrices into A = LDLT. The matrix D is diagonal:

A =

[
1 3
3 2

]
and A =

[
1 b
b c

]
and A =




2 −1 0
−1 2 −1
0 −1 2


 .

The next three problems are about applications of (Ax)Ty = xT(ATy).

61. Wires go between Boston, Chicago, and Seattle. Those cities are at voltages xB, xC,
xS. With unit resistances between cities, the three currents are in y:

y = Ax is




yBC

yCS

yBS


 =




1 −1 0
0 1 −1
1 0 −1







xB

xC

xS


 .
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(a) Find the total currents ATy out of the three cities.
(b) Verify that (Ax)Ty agrees with xT(ATy)—six terms in both.

62. Producing x1 trucks and x2 planes requires x1 + 50x2 tons of steel, 40x1 + 1000x2

pounds of rubber, and 2x1 +50x2 months of labor. If the unit costs y1, y2, y3 are $700
per ton, $3 per pound, and $3000 per month, what are the values of one truck and
one plane? Those are the components of ATy.

63. Ax gives the amounts of steel, rubber, and labor to produce x in Problem 62. Find A.
Then (Ax)Ty is the of inputs while xT(ATy) is the value of .

64. Here is a new factorization of A into triangular times symmetric:

Start from A = LDU . Then A equals L(UT)−1 times UTDU .

Why is L(UT)−1 triangular? Its diagonal is all 1s. Why is UTDU symmetric?

65. A group of matrices includes AB and A−1 if it includes A and B. “Products and
inverses stay in the group.” Which of these sets are groups? Lower triangularmatri-
ces L with is on the diagonal, symmetric matrices S, positive matrices M, diagonal
invertible matrices D, permutation matrices P. Invent two more matrix groups.

66. If every row of a 4 by 4 matrix contains the numbers 0, 1, 2, 3 in some order, can the
matrix be symmetric? Can it be invertible?

67. Prove that no reordering of rows and reordering of columns can transpose a typical
matrix.

68. A square northwest matrix B is zero in the southeast corner, below the antidiagonal
that connects (1,n) to (n,1). Will BT and B2 be northwest matrices? Will B−1 be
northwest or southeast? What is the shape of BC = northwest times southeast?
You are allowed to combine permutations with the usual L and U (southwest and
northeast).

69. Compare tic; inv(A); toc for A = rand(500) and A = rand(1000). The n3 count
says that computing time (measured by tic; toc) should multiply by 8 when n is
doubled. Do you expect these random A to be invertible?

70. I = eye(1000); A = rand(1000); B = triu(A); produces a random triangular matrix
B. Compare the times for inv(B) and B\I. Backslash is engineered to use the zeros
in B, while inv uses the zeros in I when reducing [B I] by Gauss-Jordan. (Compare
also with inv(A) and A\I for the full matrix A.)

71. Show that L−1 has entries j/i for i≤ j (the −1, 2, −1 matrix has this L):

L =




1 0 0 0
−1

2 1 0 0
0 −2

3 1 0
0 0 −3

4 1


 and L−1 =




1 0 0 0
1
2 1 0 0
1
3

2
3 1 0

1
4

2
4

3
4 1


 .
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Test this pattern for L = eye(5) − diag(1:5)\diag(1:4,−1) and inv(L).

1.7 Special Matrices and Applications

This section has two goals. The first is to explain one way in which large linear systems
Ax = b can arise in practice. The truth is that a large and completely realistic problem in
engineering or economics would lead us far afield. But there is one natural and important
application that does not require a lot of preparation.

The other goal is to illustrate, by this same application, the special properties that co-
efficient matrices frequently have. Large matrices almost always have a clear pattern—
frequently a pattern of symmetry, and very many zero entries. Since a sparse matrix
contains far fewer than n2 pieces of information, the computations ought to be fast. We
look at band matrices, to see how concentration near the diagonal speeds up elimination.
In fact we look at one special tridiagonal matrix.

The matrix itself can be seen in equation (6). It comes from changing a differential
equation to a matrix equation. The continuous problem asks for u(x) at every x, and a
computer cannot solve it exactly. It has to be approximated by a discrete problem—the
more unknowns we keep, the better will be the accuracy and the greater the expense.
As a simple but still very typical continuous problem, our choice falls on the differential
equation

−d2u
dx2 = f (x), 0≤ x≤ 1. (1)

This is a linear equation for the unknown function u(x). Any combination C + Dx
could be added to any solution, since the second derivative of C+Dx contributes nothing.
The uncertainty left by these two arbitrary constants C and D is removed by a “boundary
condition” at each end of the interval:

u(0) = 0, u(1) = 0. (2)

The result is a two-point boundary-value problem, describing not a transient but a steady-
state phenomenon—the temperature distribution in a rod, for example, with ends fixed
at 0℃ and with a heat source f (x).

Remember that our goal is to produce a discrete problem—in other words, a problem
in linear algebra. For that reason we can only accept a finite amount of information about
f (x), say its values at n equally spaced points x = h,x = 2h, . . . ,x = nh. We compute
approximate values u1, . . . ,un for the true solution u at these same points. At the ends
x = 0 and x = 1 = (n+1)h, the boundary values are u0 = 0 and un+1 = 0.

The first question is: How do we replace the derivative d2u/dx2? The first derivative
can be approximated by stopping ∆u/∆x at a finite stepsize, and not permitting h (or ∆x)



1.7 Special Matrices and Applications 67

to approach zero. The difference ∆u can be forward, backward, or centered:

∆u

∆x
=

u(x+h)−u(x)
h

or
u(x)−u(x−h)

h
or

u(x+h)−u(x−h)
2h

. (3)

The last is symmetric about x and it is the most accurate. For the second derivative there
is just one combination that uses only the values at x and x±h:

Second difference
d2u
dx2 ≈

∆2u

∆x2 =
u(x+h)−2u(x)+u(x−h)

h2 . (4)

This also has the merit of being symmetric about x. To repeat, the right-hand side ap-
proaches the true value of d2u/dx2 as h→ 0, but we have to stop at a positive h.

At each meshpoint x = jh, the equation −d2u/dx2 = f (x) is replaced by its discrete
analogue (5). We multiplied through by h2 to reach n equations Au = b:

Difference equation −u j+1 +2u j−u j−1 = h2 f ( jh) for j = 1, . . . ,n. (5)

The first and last equations ( j = 1 and j = n) include u0 = 0 and un+1 = 0, which are
known from the boundary conditions. These values would be shifted to the right-hand
side of the equation if they were not zero. The structure of these n equations (5) can be
better visualized in matrix form. We choose h = 1

6 , to get a 5 by 5 matrix A:

Matrix equation




2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2







u1

u2

u3

u4

u5




= h2




f (h)
f (2h)
f (3h)
f (4h)
f (5h)




. (6)

From now on, we will work with equation (6). It has a very regular coefficient matrix,
whose order n can be very large. The matrix A possesses many special properties, and
three of those properties are fundamental:

1. The matrix A is tridiagonal. All nonzero entries lie on the main diagonal and the
two adjacent diagonals. Outside this band all entries are ai j = 0. These zeros will
bring a tremendous simplification to Gaussian elimination.

2. The matrix is symmetric. Each entry ai j equals its mirror image a ji, so that AT = A.
The upper triangular U will be the transpose of the lower triangular L, and A =
LDLT. This symmetry of A reflects the symmetry of d2u/dx2. An odd derivative
like du/dx or d3u/dx3 would destroy the symmetry.

3. The matrix is positive definite. This extra property says that the pivots are positive.
Row exchanges are unnecessary in theory and in practice. This is in contrast to the
matrix B at the end of this section, which is not positive definite. Without a row
exchange it is totally vulnerable to roundoff.

Positive definiteness brings this whole course together (in Chapter 6)!
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We return to the fact that A is tridiagonal. What effect does this have on elimination?
The first stage of the elimination process produces zeros below the first pivot:

Elimination
on A: Step 1




2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2



→




2 −1
0 3

2 −1
−1 2 −1

−1 2 −1
−1 2




.

Compared with a general 5 by 5 matrix, that step displays two major simplifications:

1. There was only one nonzero entry below the pivot.

2. The pivot row was very short.

The multiplier `21 = −1
2 came from one division. The new pivot 3

2 came from a single
multiplication-subtraction. Furthermore, the tridiagonal pattern is preserved: Every
stage of elimination admits the simplifications (a) and (b).

The final result is the LDU = LDLT factorization of A. Notice the pivots!

A =




1
−1

2 1
−2

3 1
−3

4 1
−4

5 1







2
1

3
2

4
3

5
4

6
5







1 −1
2

1 −2
3

1 −3
4

1 −4
5

1




.

The L and U factors of a tridiagonal matrix are bidiagonal. The three factors together
have the same band structure of three essential diagonals (3n−2 parameters) as A. Note
too that L and U are transposes of one another, as expected from the symmetry. The
pivots 2/1, 3/2, 4/3, 5/4, 6/5 are all positive. Their product is the determinant of A:
detA = 6. The pivots are obviously converging to 1, as n gets large. Such matrices make
a computer very happy.

These sparse factors L and U completely change the usual operation count. Elimina-
tion on each column needs only two operations, as above, and there are n columns. In
place of n3/3 operations we need only 2n. Tridiagonal systems Ax = b can be solved
almost instantly. The cost of solving a tridiagonal system is proportional to n.

A band matrix has ai j = 0 except in the band |i− j| < w (Figure 1.8). The “half
bandwidth” is w = 1 for a diagonal matrix, w = 2 for a tridiagonal matrix, and w = n
for a full matrix. For each column, elimination requires w(w− 1) operations: a row
of length w acts on w− 1 rows below. Elimination on the n columns of a band matrix
requires about w2n operations.

As w approaches n, the matrix becomes full, and the count is roughly n3. For an exact
count, the lower right-hand corner has no room for bandwidth w. The precise number of
divisions and multiplication-subtractions that produce L, D, and U (without assuming a
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ww
A = = w

w

= LU

Figure 1.8: A band matrix A and its factors L and U .

symmetric A) is P = 1
3w(w−1)(3n−2w+1). For a full matrix with w = n, we recover

P = 1
3n(n−1)(n+1). This is a whole number, since n−1, n, and n+1 are consecutive

integers, and one of them is divisible by 3.
That is our last operation count, and we emphasize the main point. A finite-difference

matrix like A has a full inverse. In solving Ax = b, we are actually much worse off
knowing A−1 than knowing L and U . Multiplying A−1 by b takes n2 steps, whereas 4n
are sufficient for the forward elimination and back-substitution that produce x =U−1c =
U−1L−1b = A−1b.

We hope this example reinforced the reader’s understanding of elimination (which
we now assume to be perfectly understood!). It is a genuine example of the large linear
systems that are actually met in practice. The next chapter turns to the existence and the
uniqueness of x, for m equations in n unknowns.

Roundoff Error

In theory the nonsingular case is completed. There is a full set of pivots (with row ex-
changes). In practice, more row exchanges may be equally necessary—or the computed
solution can easily become worthless. We will devote two pages (entirely optional in
class) to making elimination more stable—why it is needed and how it is done.

For a system of moderate size, say 100 by 100, elimination involves a third of a mil-
lion operations (1

3n3). With each operation we must expect a roundoff error. Normally,
we keep a fixed number of significant digits (say three, for an extremely weak computer).
Then adding two numbers of different sizes gives an error:

Roundoff Error .456+ .00123→ .457 loses the digits 2 and 3.

How do all these individual errors contribute to the final error in Ax = b?
This is not an easy problem. It was attacked by John von Neumann, who was the

leading mathematician at the time when computers suddenly made a million operations
possible. In fact the combination of Gauss and von Neumann gives the simple elimina-
tion algorithm a remarkably distinguished history, although even von Neumann overes-
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timated the final roundoff error. It was Wilkinson who found the right way to answer the
question, and his books are now classics.

Two simple examples will illustrate three important points about roundoff error. The
examples are

Ill-conditioned A =

[
1. 1.

1. 1.0001

]
Well-conditioned B =

[
.0001 1.

1. 1.

]
.

A is nearly singular whereas B is far from singular. If we slightly change the last entry
of A to a22 = 1, it is singular. Consider two very close right-hand sides b:

u + v = 2
u + 1.0001v = 2

and
u + v = 2
u + 1.0001v = 2.0001

The solution to the first is u = 2, v = 0. The solution to the second is u = v = 1. A
change in the fifth digit of b was amplified to a change in the first digit of the solution. No
numerical method can avoid this sensitivity to small perturbations. The ill-conditioning
can be shifted from one place to another, but it cannot be removed. The true solution is
very sensitive, and the computed solution cannot be less so.

The second point is as follows.

1O Even a well-conditioned matrix like B can be ruined by a poor algorithm.

We regret to say that for the matrix B, direct Gaussian elimination is a poor algorithm.
Suppose .0001 is accepted as the first pivot. Then 10,000 times the first row is subtracted
from the second. The lower right entry becomes −9999, but roundoff to three places
would give −10,000. Every trace of the entry 1 would disappear:

Elimination on B
with small pivot

.0001u+ v = 1
u+ v = 2

−→ .0001u+ v = 1
−9999v = −9998.

Roundoff will produce −10,000v =−10,000, or v = 1. This is correct to three decimal
places. Back-substitution with the right v = .9999 would leave u = 1:

Correct result .0001u+ .9999 = 1, or u = 1.

Instead, accepting v = 1, which is wrong only in the fourth place, we obtain u = 0:

Wrong result .0001u+1 = 1, or u = 0.

The computed u is completely mistaken. B is well-conditioned but elimination is vio-
lently unstable. L, D, and U are completely out of scale with B:

B =

[
1 0

10,000 1

][
.0001 0

0 −9999

][
1 10,000
0 1

]
.

The small pivot .0001 brought instability, and the remedy is clear—exchange rows.
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1P A small pivot forces a practical change in elimination. Normally we
compare each pivot with all possible pivots in the same column. Exchanging
rows to obtain the largest possible pivot is called partial pivoting.

For B, the pivot .0001 would be compared with the possible pivot I below it. A row
exchange would take place immediately. In matrix terms, this is multiplication by a
permutation matrix P = [0 1

1 0 ]. The new matrix C = PB has good factors:

C =

[
1 1

.0001 1

]
=

[
1 0

.0001 1

][
1 0
0 .9999

][
1 1
0 1

]

The pivots for C are 1 and .9999, much better than .0001 and −9999 for B.
The strategy of complete pivoting looks also in all later columns for the largest pos-

sible pivot. Not only a row but also a column exchange may be needed. (This is
postmultiplication by a permutation matrix.) The difficulty with being so conservative
is the expense, and partial pivoting is quite adequate.

We have finally arrived at the fundamental algorithm of numerical linear algebra:
elimination with partial pivoting. Some further refinements, such as watching to see
whether a whole row or column needs to be resealed, are still possible. But essentially
the reader now knows what a computer does with a system of linear equations. Com-
pared with the “theoretical” description—find A−1, and multiply A−1b—our description
has consumed a lot of the reader’s time (and patience). I wish there were an easier way
to explain how x is actually found, but I do not think there is.

Problem Set 1.7

1. Write out the LDU = LDLT factors of A in equation (6) when n = 4. Find the deter-
minant as the product of the pivots in D.

2. Modify a11 in equation (6) from a11 = 2 to a11 = 1, and find the LDU factors of this
new tridiagonal matrix.

3. Find the 5 by 5 matrix A0 (h = 1
6) that approximates

−d2u
dx2 = f (x),

du
dx

(0) =
du
dx

(1) = 0,

replacing these boundary conditions by u0 = u1 and u6 = u5. Check that your A0

times the constant vector (C,C,C,C,C), yields zero; A0 is singular. Analogously, if
u(x) is a solution of the continuous problem, then so is u(x)+C.

4. Write down the 3 by 3 finite-difference matrix equation (h = 1
4) for

−d2u
dx2 +u = x, u(0) = u(1) = 0.
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5. With h = 1
4 and f (x) = 4π2 sin2πx, the difference equation (5) is




2 −1 0
−1 2 −1
0 −1 2







u1

u2

u3


 =

π2

4




1
0
−1


 .

Solve for u1, u2, u3 and find their error in comparison with the true solution u =
sin2πx at x = 1

4 , x = 1
2 , and x = 3

4 .

6. What 5 by 5 system replaces (6) if the boundary conditions are changed to u(0) = 1,
u(1) = 0?

Problems 7–11 are about roundoff error and row exchanges.

7. Compute H−1 in two ways for the 3 by 3 Hilbert matrix

H =




1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5


 ,

first by exact computation and second by rounding off each number to three figures.
This matrix H is ill-conditioned and row exchanges don’t help.

8. For the same matrix H, compare the right-hand sides of Hx = b when the solutions
are x = (1,1,1) and x = (0,6,−3.6).

9. Solve Hx = b = (1,0, . . . ,0) for the 10 by 10 Hilbert matrix with hi j = 1/(i+ j−1),
using any computer code for linear equations. Then change an entry of b by .0001
and compare the solutions.

10. Compare the pivots in direct elimination to those with partial pivoting for

A =

[
.001 0

1 1000

]
.

(This is actually an example that needs rescaling before elimination.)

11. Explain why partial pivoting produces multipliers `i j in L that satisfy |`i j| ≤ 1. Can
you construct a 3 by 3 example with all |ai j| ≤ 1 whose last pivot is 4? This is the
worst possible, since each entry is at most doubled when |`i j| ≤ 1.

Review Exercises

1.1 (a) Write down the 3 by 3 matrices with entries

ai j = i− j and bi j =
i
j
.
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(b) Compute the products AB and BA and A2.

1.2 For the matrices

A =

[
1 0
2 1

]
and B =

[
1 2
0 1

]
,

compute AB and BA and A−1 and B−1 and (AB)−1.

1.3 Find examp1es of 2 by 2 matrices with a12 = 1
2 for which (a) A2 = I. (b)

A−1 = AT. (c) A2 = A.

1.4 Solve by elimination and back-substitution:

u + w = 4
u + v = 3
u + v + w = 6

and
v + w = 0

u + w = 0
u + v = 6.

1.5 Factor the preceding matrices into A = LU or PA = LU .

1.6 (a) There are sixteen 2 by 2 matrices whose entries are 1s and 0s. How many are
invertible?

(b) (Much harder!) If you put 1s and 0s at random into the entries of a 10 by 10
matrix, is it more likely to be invertible or singular?

1.7 There are sixteen 2 by 2 matrices whose entries are 1s and −1s. How many are
invertible?

1.8 How are the rows of EA related to the rows of A in the following cases?

E =




1 0 0
0 2 0
4 0 1


 or E =

[
1 1 1
0 0 0

]
or E =




0 0 1
0 1 0
1 0 0


 .

1.9 Write down a 2 by 2 system with infinitely many solutions.

1.10 Find inverses if they exist, by inspection or by Gauss-Jordan:

A =




1 0 1
1 1 0
0 1 1


 and A =




2 1 0
1 2 1
0 1 2


 and A =




1 1 −2
1 −2 1
−2 1 1




1.11 If E is 2 by 2 and it adds the first equation to the second, what are E2 and E8 and
8E?

1.12 True or false, with reason if true or counterexample if false:

(1) If A is invertible and its rows are in reverse order in B, then B is invertible.
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(2) If A and B are symmetric then AB is symmetric.

(3) If A and B are invertible then BA is invertible.

(4) Every nonsingular matrix can be factored into the product A = LU of a lower
triangular L and an upper triangular U .

1.13 Solve Ax = b by solving the triangular systems Lc = b and Ux = c:

A = LU =




1 0 0
4 1 0
1 0 1







2 2 4
0 1 3
0 0 1


 , b =




0
0
1


 .

What part of A−1 have you found, with this particular b?

1.14 If possible, find 3 by 3 matrices B such that

(1) BA = 2A for every A.

(2) BA = 2B for every A.

(3) BA has the first and last rows of A reversed.

(4) BA has the first and last columns of A reversed.

1.15 Find the value for c in the following n by n inverse:

if A =




n −1 · −1
−1 n · −1
· · · −1
−1 −1 −1 n


 then A−1 =

1
n+1




c 1 · 1
1 c · 1
· · · 1
1 1 1 c


 .

1.16 For which values of k does

kx + y = 1
x + ky = 1

have no solution, one solution, or infinitely many solutions?

1.17 Find the symmetric factorization A = LDLT of

A =




1 2 0
2 6 4
0 4 11


 and A =

[
a b
b c

]
.

1.18 Suppose A is the 4 by 4 identity matrix except for a vector v in column 2:

A =




1 v1 0 0
0 v2 0 0
0 v3 1 0
0 v4 0 1


 .
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(a) Factor A into LU , assuming v2 6= 0.

(b) Find A−1, which has the same form as A.

1.19 Solve by elimination, or show that there is no solution:

u + v + w = 0
u + 2v + 3w = 0

3u + 5v + 7w = 1
and

u + v + w = 0
u + u + 3w = 0

3u + 5v + 7w = 1.

1.20 The n by n permutation matrices are an important example of a “group.” If you
multiply them you stay inside the group; they have inverses in the group; the identity
is in the group; and the law P1(P2P3) = (P1P2)P3 is true—because it is true for all
matrices.

(a) How many members belong to the groups of 4 by 4 and n by n permutation
matrices?

(b) Find a power k so that all 3 by 3 permutation matrices satisfy Pk = I.

1.21 Describe the rows of DA and the columns of AD if D = [2 0
0 5 ].

1.22 (a) If A is invertible what is the inverse of AT?

(b) If A is also symmetric what is the transpose of A−1?

(c) Illustrate both formulas when A = [2 1
1 1 ].

1.23 By experiment with n = 2 and n = 3, find
[

2 3
0 0

]n

,

[
2 3
0 1

]n

,

[
2 3
0 1

]−1

.

1.24 Starting with a first plane u+2v−w = 6, find the equation for

(a) the parallel plane through the origin.

(b) a second plane that also contains the points (6,0,0) and (2,2,0).

(c) a third plane that meets the first and second in the point (4,1,0).

1.25 What multiple of row 2 is subtracted from row 3 in forward elimination of A?

A =




1 0 0
2 1 0
0 5 1







1 2 0
0 1 5
0 0 1


 .

How do you know (without multiplying those factors) that A is invertible, symmet-
ric, and tridiagonal? What are its pivots?

1.26 (a) What vector x will make Ax = column 1 of A + 2(column 3), for a 3 by 3 matrix
A?
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(b) Construct a matrix that has column 1 + 2(column 3) = 0. Check that A is
singular (fewer than 3 pivots) and explain why that must be the case.

1.27 True or false, with reason if true and counterexample if false:

(1) If L1U1 = L2U2 (upper triangular U’s with nonzero diagonal, lower triangular
L’s with unit diagonal), then L1 = L2 and U1 = U2. The LU factorization is
unique.

(2) If A2 +A = I then A−1 = A+ I.

(3) If all diagonal entries of A are zero, then A is singular.

1.28 By experiment or the Gauss-Jordan method compute



1 0 0
` 1 0
m 0 1




n

,




1 0 0
` 1 0
m 0 1




−1

,




1 0 0
` 1 0
0 m 1




−1

.

1.29 Write down the 2 by 2 matrices that

(a) reverse the direction of every vector.

(b) project every vector onto the x2 axis.

(c) turn every vector counterclockwise through 90°.

(d) reflect every vector through the 45° line x1 = x2.



Chapter 2
Vector Spaces

2.1 Vector Spaces and Subspaces

Elimination can simplify, one entry at a time, the linear system Ax = b. Fortunately it
also simplifies the theory. The basic questions of existence and uniqueness—Is there
one solution, or no solution, or an infinity of solutions?—are much easier to answer
after elimination, We need to devote one more section to those questions, to find every
solution for an m by n system. Then that circle of ideas will be complete.

But elimination produces only one kind of understanding of Ax = b. Our chief object
is to achieve a different and deeper understanding. This chapter may be more difficult
than the first one. It goes to the heart of linear algebra.

For the concept of a vector space, we start immediately with the most important
spaces. They are denoted by R1,R2,R3, . . .; the space Rn consists of all column vectors
with n components. (We write R because the components are real numbers.) R2 is
represented by the usual x-y plane; the two components of the vector become the x and
y coordinates of the corresponding point. The three components of a vector in R3 give a
point in three-dimensional space. The one-dimensional space R1 is a line.

The valuable thing for linear algebra is that the extension to n dimensions is so
straightforward. For a vector in R7 we just need the seven components, even if the
geometry is hard to visualize. Within all vector spaces, two operations are possible:

We can add any two vectors, and we can multiply all vectors by scalars.
In other words, we can take linear combinations.

Addition obeys the commutative law x + y = y + x; there is a “zero vector” satisfying
0+ x = x; and there is a vector “−x” satisfying −x + x = 0. Eight properties (including
those three) are fundamental; the full list is given in Problem 5 at the end of this section.
A real vector space is a set of vectors together with rules for vector addition and mul-
tiplication by real numbers. Addition and multiplication must produce vectors in the
space, and they must satisfy the eight conditions.
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Normally our vectors belong to one of the spaces Rn; they are ordinary column vec-
tors. If x = (1,0,0,3), then 2x (and also x + x) has components 2, 0, 0, 6. The formal
definition allows other things to be “vectors”-provided that addition and scalar multipli-
cation are all right. We give three examples:

1. The infinite-dimensional space R∞. Its vectors have infinitely many components, as
in x = (1,2,1,2, . . .). The laws for x+ y and cx stay unchanged.

2. The space of 3 by 2 matrices. In this case the “vectors” are matrices! We can add
two matrices, and A+B = B+A, and there is a zero matrix, and so on. This space
is almost the same as R6. (The six components are arranged in a rectangle instead
of a column.) Any choice of m and n would give, as a similar example, the vector
space of all m by n matrices.

3. The space of functions f (x). Here we admit all functions f that are defined on
a fixed interval, say 0 ≤ x ≤ 1. The space includes f (x) = x2, g(x) = sinx, their
sum ( f + g)(x) = x2 + sinx, and all multiples like 3x2 and −sinx. The vectors are
functions, and the dimension is somehow a larger infinity than for R∞.

Other examples are given in the exercises, but the vector spaces we need most are
somewhere else—they are inside the standard spaces Rn. We want to describe them
and explain why they are important. Geometrically, think of the usual three-dimensional
R3 and choose any plane through the origin. That plane is a vector space in its own
right. If we multiply a vector in the plane by 3, or −3, or any other scalar, we get a
vector in the same plane. If we add two vectors in the plane, their sum stays in the
plane. This plane through (0,0,0) illustrates one of the most fundamental ideas in linear
algebra; it is a subspace of the original space R3.

Definition. A subspace of a vector space is a nonempty subset that satisfies the require-
ments for a vector space: Linear combinations stay in the subspace.

(i) If we add any vectors x and y in the subspace, x+ y is in the subspace.

(ii) If we multiply any vector x in the subspace by any scalar c, cx is in the subspace.

Notice our emphasis on the word space. A subspace is a subset that is “closed” under
addition and scalar multiplication. Those operations follow the rules of the host space,
keeping us inside the subspace. The eight required properties are satisfied in the larger
space and will automatically be satisfied in every subspace. Notice in particular that the
zero vector will belong to every subspace. That comes from rule (ii): Choose the scalar
to be c = 0.

The smallest subspace Z contains only one vector, the zero vector. It is a “zero-
dimensional space,” containing only the point at the origin. Rules (i) and (ii) are satisfied,
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since the sum 0 + 0 is in this one-point space, and so are all multiples c0. This is the
smallest possible vector space: the empty set is not allowed. At the other extreme. the
largest subspace is the whole of the original space. If the original space is R3, then the
possible subspaces are easy to describe: R3 itself, any plane through the origin, any line
through the origin, or the origin (the zero vector) alone.

The distinction between a subset and a subspace is made clear by examples. In each
case, can you add vectors and multiply by scalars, without leaving the space?

Example 1. Consider all vectors in R2 whose components are positive or zero. This
subset is the first quadrant of the x-y plane; the coordinates satisfy x ≥ 0 and y ≥ 0. It
is not a subspace, even though it contains zero and addition does leave us within the
subset. Rule (ii) is violated, since if the scalar is −1 and the vector is [1 1], the multiple
cx = [−1 −1] is in the third quadrant instead of the first.

If we include the third quadrant along with the first, scalar multiplication is all right.
Every multiple cx will stay in this subset. However, rule (i) is now violated, since adding
[1 2]+ [−2 − 1] gives [−1 1], which is not in either quadrant. The smallest subspace
containing the first quadrant is the whole space R2.

Example 2. Start from the vector space of 3 by 3 matrices. One possible subspace is
the set of lower triangular matrices. Another is the set of symmetric matrices. A + B
and cA are lower triangular if A and B are lower triangular, and they are symmetric if A
and B are symmetric. Of course, the zero matrix is in both subspaces.

The Column Space of A

We now come to the key examples, the column space and the nullspace of a matrix
A. The column space contains all linear combinations of the columns of A. It is a
subspace of Rm. We illustrate by a system of m = 3 equations in n = 2 unknowns:

Combination of columns equals b




1 0
5 4
2 4




[
u
v

]
=




b1

b2

b3


 . (1)

With m > n we have more equations than unknowns—and usually there will be no solu-
tion. The system will be solvable only for a very “thin” subset of all possible b’s. One
way of describing this thin subset is so simple that it is easy to overlook.

2A The system Ax = b is solvable if and only if the vector b can be expressed
as a combination of the columns of A. Then b is in the column space.

This description involves nothing more than a restatement of Ax = b, by columns:

Combination of columns u




1
5
2


+ v




0
4
4


 =




b1

b2

b3


 . (2)
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0

4

4







column 1 =







1

5

2













0

0

0







b

column space

perpendicular
to plane

Figure 2.1: The column space C(A), a plane in three-dimensional space.

These are the same three equations in two unknowns. Now the problem is: Find numbers
u and v that multiply the first and second columns to produce b. The system is solvable
exactly when such coefficients exist, and the vector (u,v) is the solution x.

We are saying that the attainable right-hand sides b are all combinations of the columns
of A. One possible right-hand side is the first column itself; the weights are u = 1 and
v = 0. Another possibility is the second column: u = 0 and v = 1. A third is the right-
hand side b = 0. With u = 0 and v = 0, the vector b = 0 will always be attainable.

We can describe all combinations of the two columns geometrically: Ax = b can be
solved if and only if b lies in the plane that is spanned by the two column vectors (Figure
2.1). This is the thin set of attainable b. If b lies off the plane, then it is not a combination
of the two columns. In that case Ax = b has no solution.

What is important is that this plane is not just a subset of R3 it is a subspace. It is
the column space of A, consisting of all combinations of the columns. It is denoted by
C(A). Requirements (i) and (ii) for a subspace of Rm are easy to check:

(i) Suppose b and b′ lie in the column space, so that Ax = b for some x and Ax′ = b′

for some x′. Then A(x + x′) = b + b′, so that b + b′ is also a combination of the
columns. The column space of all attainable vectors b is closed under addition.

(ii) If b is in the column space C(A), so is any multiple cb. If some combination
of columns produces b (say Ax = b), then multiplying that combination by c will
produce cb. In other words, A(cx) = cb.

For another matrix A, the dimensions in Figure 2.1 may be very different. The small-
est possible column space (one vector only) comes from the zero matrix A = 0. The
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only combination of the columns is b = 0. At the other extreme, suppose A is the 5 by
5 identity matrix. Then C(I) is the whole of R5; the five columns of I can combine to
produce any five-dimensional vector b. This is not at all special to the identity matrix.
Any 5 by 5 matrix that is nonsingular will have the whole of R5 as its column space.
For such a matrix we can solve Ax = b by Gaussian elimination; there are five pivots.
Therefore every b is in C(A) for a nonsingular matrix.

You can see how Chapter 1 is contained in this chapter. There we studied n by n
matrices whose column space is Rn. Now we allow singular matrices, and rectangu-
lar matrices of any shape. Then C(A) can be somewhere between the zero space and
the whole space Rm. Together with its perpendicular space, it gives one of our two
approaches to understanding Ax = b.

The Nullspace of A

The second approach to Ax = b is “dual” to the first. We are concerned not only with
attainable right-hand sides b, but also with the solutions x that attain them. The right-
hand side b = 0 always allows the solution x = 0, but there may be infinitely many other
solutions. (There always are, if there are more unknowns than equations, n > m.) The
solutions to Ax = 0 form a vector space—the nullspace of A.

The nullspace of a matrix consists of all vectors x such that Ax = 0. It is
denoted by N(A). It is a subspace of Rn, just as the column space was a
subspace of Rm.

Requirement (i) holds: If Ax = 0 and Ax′ = 0, then A(x+ x′) = 0. Requirement (ii) also
holds: If Ax = 0 then A(cx) = 0. Both requirements fail if the right-hand side is not zero!
Only the solutions to a homogeneous equation (b = 0) form a subspace. The nullspace
is easy to find for the example given above; it is as small as possible:




1 0
5 4
2 4




[
u
v

]
=




0
0
0


 .

The first equation gives u = 0, and the second equation then forces v = 0. The nullspace
contains only the vector (0,0). This matrix has “independent columns”—a key idea that
comes soon.

The situation is changed when a third column is a combination of the first two:

Larger nullspace B =




1 0 1
5 4 9
2 4 6


 .

B has the same column space as A. The new column lies in the plane of Figure 2.1; it is
the sum of the two column vectors we started with. But the nullspace of B contains the
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vector (1,1,−1) and automatically contains any multiple (c,c,−c):

Nullspace is a line




1 0 1
5 4 9
2 4 6




[
c c −c

]
=




0
0
0


 .

The nullspace of B is the line of all points x = c, y = c, z =−c. (The line goes through
the origin, as any subspace must.) We want to be able, for any system Ax = b, to find
C(A) and N(A): all attainable right-hand sides b and all solutions to Ax = 0.

The vectors b are in the column space and the vectors x are in the nullspace. We shall
compute the dimensions of those subspaces and a convenient set of vectors to generate
them. We hope to end up by understanding all four of the subspaces that are intimately
related to each other and to A—the column space of A, the nullspace of A, and their two
perpendicular spaces.

Problem Set 2.1

1. Construct a subset of the x-y plane R2 that is

(a) closed under vector addition and subtraction, but not scalar multiplication.

(b) closed under scalar multiplication but not under vector addition.

Hint: Starting with u and v, add and subtract for (a). Try cu and cv for (b).

2. Which of the following subsets of R3 are actually subspaces?

(a) The plane of vectors (b1,b2,b3) with first component b1 = 0.

(b) The plane of vectors b with b1 = 1.

(c) The vectors b with b2b3 = 0 (this is the union of two subspaces, the plane b2 = 0
and the plane b3 = 0).

(d) All combinations of two given vectors (1,1,0) and (2,0,1).

(e) The plane of vectors (b1,b2,b3) that satisfy b3−b2 +3b1 = 0.

3. Describe the column space and the nullspace of the matrices

A =

[
1 −1
0 0

]
and B =

[
0 0 3
1 2 3

]
and C =

[
0 0 0
0 0 0

]
.

4. What is the smallest subspace of 3 by 3 matrices that contains all symmetric matrices
and all lower triangular matrices? What is the largest subspace that is contained in
both of those subspaces?

5. Addition and scalar multiplication are required to satisfy these eight rules:
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1. x+ y = y+ x.

2. x+(y+ z) = (x+ y)+ z.

3. There is a unique “zero vector” such that x+0 = x for all x.

4. For each x there is a unique vector −x such that x+(−x) = 0.

5. 1x = x.

6. (c1c2)x = c1(c2x).

7. c(x+ y) = cx+ cy.

8. (c1 + c2)x = c1x+ c2x.

(a) Suppose addition in R2 adds an extra 1 to each component, so that (3,1)+(5,0)
equals (9,2) instead of (8,1). With scalar multiplication unchanged, which rules
are broken?

(b) Show that the set of all positive real numbers, with x+y and cx redefined to equal
the usual xy and xc, is a vector space. What is the “zero vector”?

(c) Suppose (x1,x2) + (y1,y2) is defined to be (x1 + y2,x2 + y1). With the usual
cx = (cx1,cx2), which of the eight conditions are not satisfied?

6. Let P be the plane in 3-space with equation x + 2y + z = 6. What is the equation of
the plane P0 through the origin parallel to P? Are P and P0 subspaces of R3?

7. Which of the following are subspaces of R∞?

(a) All sequences like (1,0,1,0, . . .) that include infinitely many zeros.

(b) All sequences (x1,x2, . . .) with x j = 0 from some point onward.

(c) All decreasing sequences: x j+1 ≤ x j for each j.

(d) All convergent sequences: the x j have a limit as j → ∞.

(e) All arithmetic progressions: x j+1− x j is the same for all j.

(f) All geometric progressions (x1,kx1,k2x1, . . .) allowing all k and x1.

8. Which of the following descriptions are correct? The solutions x of

Ax =

[
1 1 1
1 0 2

]


x1

x2

x3


 =

[
0
0

]

form

(a) a plane.

(b) a line.

(c) a point.

(d) a subspace.
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(e) the nullspace of A.

(f) the column space of A.

9. Show that the set of nonsingular 2 by 2 matrices is not a vector space. Show also that
the set of singular 2 by 2 matrices is not a vector space.

10. The matrix A =
[2 −2

2 −2

]
is a “vector” in the space M of all 2 by 2 matrices. Write the

zero vector in this space, the vector 1
2A, and the vector −A. What matrices are in the

smallest subspace containing A?

11. (a) Describe a subspace of M that contains A =
[

1 0
0 0

]
but not B =

[
0 0
0 −1

]
.

(b) If a subspace of M contains A and B, must it contain I?

(c) Describe a subspace of M that contains no nonzero diagonal matrices.

12. The functions f (x) = x2 and g(x) = 5x are “vectors” in the vector space F of all real
functions. The combination 3 f (x)−4g(x) is the function h(x) = . Which rule
is broken if multiplying f (x) by c gives the function f (cx)?

13. If the sum of the “vectors” f (x) and g(x) in F is defined to be f (g(x)), then the “zero
vector” is g(x) = x. Keep the usual scalar multiplication c f (x), and find two rules
that are broken.

14. Describe the smallest subspace of the 2 by 2 matrix space M that contains

(a)

[
1 0
0 0

]
and

[
0 1
0 0

]
. (b)

[
1 0
0 0

]
and

[
1 0
0 1

]
.

(c)

[
1 1
0 0

]
. (d)

[
1 1
0 0

]
,

[
1 0
0 1

]
,

[
0 1
0 1

]
.

15. Let P be the plane in R3 with equation x + y− 2z = 4. The origin (0,0,0) is not in
P! Find two vectors in P and check that their sum is not in P.

16. P0 is the plane through (0,0,0) parallel to the plane P in Problem 15. What is the
equation for P0? Find two vectors in P0 and check that their sum is in P0.

17. The four types of subspaces of R3 are planes, lines, R3 itself, or Z containing only
(0,0,0).

(a) Describe the three types of subspaces of R2.

(b) Describe the five types of subspaces of R4.

18. (a) The intersection of two planes through (0,0,0) is probably a but it could
be a . It can’t be the zero vector Z!

(b) The intersection of a plane through (0,0,0) with a line through (0,0,0) is prob-
ably a but it could be a .
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(c) If S and T are subspaces of R5, their intersection S∩T (vectors in both sub-
spaces) is a subspace of R5. Check the requirements on x+ y and cx.

19. Suppose P is a plane through (0,0,0) and L is a line through (0,0,0). The smallest
vector space containing both P and L is either or .

20. True or false for M = all 3 by 3 matrices (check addition using an example)?

(a) The skew-symmetric matrices in M (with AT =−A) form a subspace.

(b) The unsymmetric matrices in M (with AT 6= A) form a subspace.

(c) The matrices that have (1,1,1) in their nullspace form a subspace.

Problems 21–30 are about column spaces C(A) and the equation Ax = b.

21. Describe the column spaces (lines or planes) of these particular matrices:

A =




1 2
0 0
0 0


 and B =




1 0
0 2
0 0


 and C =




1 0
2 0
0 0


 .

22. For which right-hand sides (find a condition on b1, b2, b3) are these systems solvable?

(a)




1 4 2
2 8 4
−1 −4 −2







x1

x2

x3


 =




b1

b2

b3


 . (b)




1 4
2 9
−1 −4




[
x1

x2

]
=




b1

b2

b3


 .

23. Adding row 1 of A to row 2 produces B. Adding column 1 to column 2 produces C.
A combination of the columns of is also a combination of the columns of A.
Which two matrices have the same column ?

A =

[
1 2
2 4

]
and B =

[
1 2
3 6

]
and C =

[
1 3
2 6

]
.

24. For which vectors (b1,b2,b3) do these systems have a solution?



1 1 1
0 1 1
0 0 1







x1

x2

x3


 =




b1

b2

b3


 and




1 1 1
0 1 1
0 0 0







x1

x2

x3


 =




b1

b2

b3


 .

25. (Recommended) If we add an extra column b to a matrix A, then the column space
gets larger unless . Give an example in which the column space gets larger and
an example in which it doesn’t. Why is Ax = b solvable exactly when the column
space doesn’t get larger by including b?

26. The columns of AB are combinations of the columns of A. This means: The column
space of AB is contained in (possibly equal to) the column space of A. Give an
example where the column spaces of A and AB are not equal.
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27. If A is any 8 by 8 invertible matrix, then its column space is . Why?

28. True or false (with a counterexample if false)?

(a) The vectors b that are not in the column space C(A) form a subspace.

(b) If C(A) contains only the zero vector, then A is the zero matrix.

(c) The column space of 2A equals the column space of A.

(d) The column space of A− I equals the column space of A.

29. Construct a 3 by 3 matrix whose column space contains (1,1,0) and (1,0,1) but not
(1,1,1). Construct a 3 by 3 matrix whose column space is only a line.

30. If the 9 by 12 system Ax = b is solvable for every b, then C(A) = .

31. Why isn’t R2 a subspace of R3?

2.2 Solving Ax = 0 and Ax = b

Chapter 1 concentrated on square invertible matrices. There was one solution to Ax = b
and it was x =−A−1b. That solution was found by elimination (not by computing A−1).
A rectangular matrix brings new possibilities—U may not have a full set of pivots. This
section goes onward from U to a reduced form R—the simplest matrix that elimina-
tion can give. R reveals all solutions immediately.

For an invertible matrix, the nullspace contains only x = 0 (multiply Ax = 0 by A−1).
The column space is the whole space (Ax = b has a solution for every b). The new ques-
tions appear when the nullspace contains more than the zero vector and/or the column
space contains less than all vectors:

1. Any vector xn in the nullspace can be added to a particular solution xp. The solutions
to all linear equations have this form, x = xp + xn:

Complete solution Axp = b and Axn = 0 produce A(xp + xn) = b.

2. When the column space doesn’t contain every b in Rm, we need the conditions on
b that make Ax = b solvable.

A 3 by 4 example will be a good size. We will write down all solutions to Ax = 0. We
will find the conditions for b to lie in the column space (so that Ax = b is solvable). The
1 by 1 system 0x = b, one equation and one unknown, shows two possibilities:

0x = b has no solution unless b = 0. The column space of the 1 by 1 zero
matrix contains only b = 0.

0x = 0 has infinitely many solutions. The nullspace contains all x. A particular
solution is xp = 0, and the complete solution is x = xp + xn = 0+(any x).
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Simple, I admit. If you move up to 2 by 2, it’s more interesting. The matrix
[

1 1
2 2

]
is not

invertible: y+ z = b1 and 2y+2z = b2 usually have no solution.

There is no solution unless b2 = 2b1. The column space of A contains only
those b’s, the multiples of (1,2).

When b2 = 2b1 there are infinitely many solutions. A particular solution to
y + z = 2 and 2y + 2z = 4 is xp = (1,1). The nullspace of A in Figure 2.2
contains (−1,1) and all its multiples xn = (−c,c):

Complete
solution

y + z = 2
2y + 2z = 4

is solved by xp+xn =

[
1
1

]
+c

[
−1
1

]
=

[
1− c
1+ c

]
.

y

z

b

b b

b

[

−1

1

]

[

1
1

]

= shortest particular solution xp

[

2
0

]

= MATLAB’s particular solution A\b

all xn
line of all solutions x = xp + xn

nullspace Axn = 0

Figure 2.2: The parallel lines of solutions to Axn = 0 and
[

1 1
2 2

]
[ y

z ] =
[

2
4

]
.

Echelon Form U and Row Reduced Form R

We start by simplifying this 3 by 4 matrix, first to U and then further to R:

Basic example A =




1 3 3 2
2 6 9 7
−1 −3 3 4


 .

The pivot a11 = 1 is nonzero. The usual elementary operations will produce zeros in the
first column below this pivot. The bad news appears in column 2:

No pivot in column 2 A→




1 3 3 2
0 0 3 3
0 0 6 6


 .

The candidate for the second pivot has become zero: unacceptable. We look below that
zero for a nonzero entry—intending to carry out a row exchange. In this case the entry
below it is also zero. If A were square, this would signal that the matrix was singular.
With a rectangular matrix, we must expect trouble anyway, and there is no reason to stop.
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All we can do is to go on to the next column, where the pivot entry is 3. Subtracting twice
the second row from the third, we arrive at U :

Echelon matrix U U =




1 3 3 2
0 0 3 3
0 0 0 0


 .

Strictly speaking, we proceed to the fourth column. A zero is in the third pivot position,
and nothing can be done. U is upper triangular, but its pivots are not on the main diago-
nal. The nonzero entries of U have a “staircase pattern,” or echelon form. For the 5 by
8 case in Figure 2.3, the starred entries may or may not be zero.

U =




• ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 • ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 • ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 •
0 0 0 0 0 0 0 0




R =




1 0 ∗ 0 ∗ ∗ ∗ 0

0 1 ∗ 0 ∗ ∗ ∗ 0

0 0 0 1 ∗ ∗ ∗ 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0




Figure 2.3: The entries of a 5 by 8 echelon matrix U and its reduced form R.

We can always reach this echelon form U , with zeros below the pivots:

1. The pivots are the first nonzero entries in their rows.

2. Below each pivot is a column of zeros, obtained by elimination.

3. Each pivot lies to the right of the pivot in the row above. This produces the staircase
pattern, and zero rows come last.

Since we started with A and ended with U , the reader is certain to ask: Do we have
A = LU as before? There is no reason why not, since the elimination steps have not
changed. Each step still subtracts a multiple of one row from a row beneath it. The
inverse of each step adds back the multiple that was subtracted. These inverses come in
the right order to put the multipliers directly into L:

Lower triangular L =




1 0 0
2 1 0
−1 2 1


 and A = LU.

Note that L is square. It has the same number of rows as A and U .
The only operation not required by our example, but needed in general, is row ex-

change by a permutation matrix P. Since we keep going to the next column when no
pivots are available, there is no need to assume that A is nonsingular. Here is PA = LU
for all matrices:
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2B For any m by n matrix A there is a permutation P, a lower triangular L
with unit diagonal, and an m by n echelon matrix U , such that PA = LU .

Now comes R. We can go further than U , to make the matrix even simpler. Divide
the second row by its pivot 3, so that all pivots are 1. Then use the pivot row to produce
zero above the pivot. This time we subtract a row from a higher row. The final result
(the best form we can get) is the reduced row echelon form R:




1 3 3 2
0 0 3 3
0 0 0 0


−→




1 3 3 2
0 0 1 1
0 0 0 0


−→




1 3 0 -1
0 0 1 1
0 0 0 0


 = R.

This matrix R is the final result of elimination on A. MATLAB would use the command
R = rref(A). Of course rref(R) would give R again!

What is the row reduced form of a square invertible matrix? In that case R is the
identity matrix. There is a full set of pivots, all equal to 1, with zeros above and below.
So rref(A) = I, when A is invertible.

For a 5 by 8 matrix with four pivots, Figure 2.3 shows the reduced form R. It still
contains an identity matrix, in the four pivot rows and four pivot columns. From R
we will quickly find the nullspace of A. Rx = 0 has the same solutions as Ux = 0 and
Ax = 0.

Pivot Variables and Free Variables

Our goal is to read off all the solutions to Rx = 0. The pivots are crucial:

Nullspace of R
(pivot columns

in boldface)
Rx =




1 3 0 −1
0 0 1 1
0 0 0 0







u

v
w

y


 =




0
0
0


 .

The unknowns u, v, w, y go into two groups. One group contains the pivot variables,
those that correspond to columns with pivots. The first and third columns contain the
pivots, so u and w are the pivot variables. The other group is made up of the free
variables, corresponding to columns without pivots. These are the second and fourth
columns, so v and y are free variables.

To find the most general solution to Rx = 0 (or, equivalently, to Ax = 0) we may assign
arbitrary values to the free variables. Suppose we call these values simply v and y. The
pivot variables are completely determined in terms of v and y:

Rx = 0
u+3v− y = 0 yields u =−3v+ y

w + y = 0 yields w = −y
(1)
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There is a “double infinity” of solutions, with v and y free and independent. The com-
plete solution is a combination of two special solutions:

Nullspace contains
all combinations
of special solutions

x =




−3v+ y
v
−y
y


 = v




−3
1
0
0


+ y




1
0
−1
1


 . (2)

Please look again at this complete solution to Rx = 0 and Ax = 0. The special solution
(−3,1,0,0) has free variables v = 1, y = 0. The other special solution (1,0,−1,1) has
v = 0 and y = 1. All solutions are linear combinations of these two. The best way to find
all solutions to Ax = 0 is from the special solutions:

1. After reaching Rx = 0, identify the pivot variables and free variables.

2. Give one free variable the value 1, set the other free variables to 0, and solve Rx = 0
for the pivot variables. This x is a special solution.

3. Every free variable produces its own “special solution” by step 2. The combinations
of special solutions form the nullspace—all solutions to Ax = 0.

Within the four-dimensional space of all possible vectors x, the solutions to Ax = 0
form a two-dimensional subspace—the nullspace of A, In the example, N(A) is gener-
ated by the special vectors (−3,1,0,0) and (1,0,−1,1). The combinations of these two
vectors produce the whole nullspace.

Here is a little trick. The special solutions are especially easy from R. The numbers 3
and 0 and −1 and 1 lie in the “nonpivot columns” of R. Reverse their signs to find the
pivot variables (not free) in the special solutions. I will put the two special solutions
from equation (2) into a nullspace matrix N, so you see this neat pattern:

Nullspace matrix
(columns are

special solutions)
N =




−3 1
1 0
0 −1
0 1




not free
free
not free
free

The free variables have values 1 and 0. When the free columns moved to the right-
hand side of equation (2), their coefficients 3 and 0 and −1 and 1 switched sign. That
determined the pivot variables in the special solutions (the columns of N).

This is the place to recognize one extremely important theorem. Suppose a matrix has
more columns than rows, n > m. Since m rows can hold at most m pivots, there must be
at least n−m free variables. There will be even more free variables if some rows of R
reduce to zero; but no matter what, at least one variable must be free. This free variable
can be assigned any value, leading to the following conclusion:

2C If Ax = 0 has more unknowns than equations (n > m), it has at least one
special solution: There are more solutions than the trivial x = 0.
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There must be infinitely many solutions, since any multiple cx will also satisfy A(cx)=
0. The nullspace contains the line through x. And if there are additional free variables,
the nullspace becomes more than just a line in n-dimensional space. The nullspace has
the same “dimension” as the number of free variables and special solutions.

This central idea—the dimension of a subspace—is made precise in the next section.
We count the free variables for the nullspace. We count the pivot variables for the column
space!

Solving Ax = b, Ux = c, and Rx = d

The case b 6= 0 is quite different from b = 0. The row operations on A must act also
on the right-hand side (on b). We begin with letters (b1,b2,b3) to find the solvability
condition—for b to lie in the column space. Then we choose b = (1,5,5) and find all
solutions x.

For the original example Ax = b = (b1,b2,b3), apply to both sides the operations that
led from A to U . The result is an upper triangular system Ux = c:

Ux = c




1 3 3 2
0 0 3 3
0 0 0 0







u
v
w
y


 =




b1

b2−2b1

b3−2b2 +5b1


 . (3)

The vector c on the right-hand side, which appeared after the forward elimination steps,
is just L−1b as in the previous chapter. Start now with Ux = c.

It is not clear that these equations have a solution. The third equation is very much
in doubt, because its left-hand side is zero. The equations are inconsistent unless b3−
2b2 + 5b1 = 0. Even though there are more unknowns than equations, there may be no
solution. We know another way of answering the same question: Ax = b can be solved if
and only if b lies in the column space of A. This subspace comes from the four columns
of A (not of U!):

Columns of A
“span” the

column space




1
2
−1


 ,




3
6
−3


 ,




3
9
3


 ,




2
7
4


 .

Even though there are four vectors, their combinations only fill out a plane in three-
dimensional space. Column 2 is three times column 1. The fourth column equals the
third minus the first. These dependent columns, the second and fourth, are exactly the
ones without pivots.

The column space C(A) can be described in two different ways. On the one hand,
it is the plane generated by columns 1 and 3. The other columns lie in that plane,
and contribute nothing new. Equivalently, it is the plane of all vectors b that satisfy
b3−2b2 + 5b1 = 0; this is the constraint if the system is to be solvable. Every column
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satisfies this constraint, so it is forced on b! Geometrically, we shall see that the vector
(5,−2,1) is perpendicular to each column.

If b belongs to the column space, the solutions of Ax = b are easy to find. The last
equation in Ux = c is 0 = 0. To the free variables v and y, we may assign any values,
as before. The pivot variables u and w are still determined by back-substitution. For a
specific example with b3−2b2 +5b1 = 0, choose b = (1,5,5):

Ax = b




1 3 3 2
2 6 9 7
−1 −3 3 4







u
v
w
y


 =




1
5
5


 .

Forward elimination produces U on the left and c on the right:

Ux = c




1 3 3 2
0 0 3 3
0 0 0 0







u
v
w
y


 =




1
3
0


 .

The last equation is 0 = 0, as expected. Back-substitution gives

3w+3y = 3 or w = 1− y
u+3v+3w+2y = 1 or u =−2−3v+ y.

Again there is a double infinity of solutions: v and y are free, u and w are not:

Complete solution
x = xp + xn

x =




u
v
w
y


 =




−2
0
1
0


+ v




−3
1
0
0


+ y




1
0
−1
1


 . (4)

This has all solutions to Ax = 0, plus the new xp = (−2,0,1,0). That xp is a particular
solution to Ax = b. The last two terms with v and y yield more solutions (because they
satisfy Ax = 0). Every solution to Ax = b is the sum of one particular solution and a
solution to Ax = 0:

xcomplete = xparticular + xnullspace

The particular solution in equation (4) comes from solving the equation with all free
variables set to zero. That is the only new part, since the nullspace is already computed.
When you multiply the highlighted equation by A, you get Axcomplete = b+0.

Geometrically, the solutions again fill a two-dimensional surface—but it is not a sub-
space. It does not contain x = 0. It is parallel to the nullspace we had before, shifted
by the particular solution xp as in Figure 2.2. Equation (4) is a good way to write the
answer:

1. Reduce Ax = b to Ux = c.
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2. With free variables = 0, find a particular solution to Axp = b and Uxp = c.

3. Find the special solutions to Ax = 0 (or Ux = 0 or Rx = 0). Each free variable, in
turn, is 1. Then x = xp + (any combination xn of special solutions).

When the equation was Ax = 0, the particular solution was the zero vector! It fits the pat-
tern, but xparticular = 0 was not written in equation (2). Now xp is added to the nullspace
solutions, as in equation (4).

Question: How does the reduced form R make this solution even clearer? You will
see it in our example. Subtract equation 2 from equation 1, and then divide equation 2
by its pivot. On the left-hand side, this produces R, as before. On the right-hand side,
these operations change c = (1,3,0) to a new vector d = (−2,1,0):

Reduced equation
Rx = d




1 3 0 −1
0 0 1 1
0 0 0 0







u
v
w
y


 =



−2
1
0


 . (5)

Our particular solution xp, (one choice out of many) has free variables v = y = 0.
Columns 2 and 4 can be ignored. Then we immediately have u =−2 and w = 1, exactly
as in equation (4). The entries of d go directly into xp. This is because the identity
matrix is sitting in the pivot columns of R!

Let me summarize this section, before working a new example. Elimination reveals
the pivot variables and free variables. If there are r pivots, there are r pivot variables
and n− r free variables. That important number r will be given a name—it is the rank
of the matrix.

2D Suppose elimination reduces Ax = b to Ux = c and Rx = d, with r pivot
rows and r pivot columns. The rank of those matrices is r. The last m− r
rows of U and R are zero, so there is a solution only if the last m− r entries of
c and d are also zero.

The complete solution is x = xp + xn. One particular solution xp has all free
variables zero. Its pivot variables are the first r entries of d, so Rxp = d.

The nullspace solutions xn are combinations of n− r special solutions, with
one free variable equal to 1. The pivot variables in that special solution can be
found in the corresponding column of R (with sign reversed).

You see how the rank r is crucial. It counts the pivot rows in the “row space” and the
pivot columns in the column space. There are n− r special solutions in the nullspace.
There are m− r solvability conditions on b or c or d.
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Another Worked Example

The full picture uses elimination and pivot columns to find the column space, nullspace,
and rank. The 3 by 4 matrix A has rank 2:

Ax = b is
1x1 + 2x2 + 3x3 + 5x4 = b1

2x1 + 4x2 + 8x3 + 12x4 = b2

3x1 + 6x2 + 7x3 + 13x4 = b3

(6)

1. Reduce [A b] to [U c], to reach a triangular system Ux = c.

2. Find the condition on b1, b2, b3 to have a solution.

3. Describe the column space of A: Which plane in R3?

4. Describe the nullspace of A: Which special solutions in R4?

5. Find a particular solution to Ax = (0,6,−6) and the complete xp + xn.

6. Reduce [U c] to [R d]: Special solutions from R and xp from d.

Solution. (Notice how the right-hand side is included as an extra column!)

1. The multipliers in elimination are 2 and 3 and −1, taking [A b] to [U c].




1 2 3 5 b1

2 4 8 12 b2

3 6 7 13 b3


→




1 2 3 5 b1

0 0 2 2 b2 −2b1

0 0 −2 −2 b3 −3b1


→




1 2 3 5 b1

0 0 2 2 b2 −2b1

0 0 0 0 b3 +b2 −5b1


 .

2. The last equation shows the solvability condition b3 +b2−5b1 = 0. Then 0 = 0.

3. The column space of A is the plane containing all combinations of the pivot columns
(1,2,3) and (3,8,7).

Second description: The column space contains all vectors with b3 +b2−5b1 = 0.
That makes Ax = b solvable, so b is in the column space. All columns of A pass this
test b3 +b2−5b1 = 0. This is the equation for the plane (in the first description of
the column space).

4. The special solutions in N have free variables x2 = 1, x4 = 0 and x2 = 0, x4 = 1:

Nullspace matrix
Special solutions to Ax = 0
Back-substitution in Ux = 0
Just switch signs in Rx = 0

N =




−2 −2
1 0
0 −1
0 1


 .
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5. Choose b = (0,6,−6), which has b3 + b2− 5b1 = 0. Elimination takes Ax = b to
Ux = c = (0,6,0). Back-substitute with free variables = 0:

Particular solution to Axp = (0,6,−6) xp =




−9
0
3
0




free

free

The complete solution to Ax = (0,6,−6) is (this xp) + (all xn).

6. In the reduced R, the third column changes from (3,2,0) to (0,1,0). The right-hand
side c = (0,6,0) becomes d = (−9,3,0). Then −9 and 3 go into xp:

[
U c

]
=




1 2 3 5 0
0 0 2 2 6
0 0 0 0 0


−→

[
R d

]
=




1 2 0 2 −9
0 0 1 1 3
0 0 0 0 0


 .

That final matrix [R d] is rref([A b]) = rref([U c]). The numbers 2 and 0 and 2
and 1 in the free columns of R have opposite sign in the special solutions (the nullspace
matrix N). Everything is revealed by Rx = d.

Problem Set 2.2

1. Construct a system with more unknowns than equations, but no solution. Change the
right-hand side to zero and find all solutions xn.

2. Reduce A and B to echelon form, to find their ranks. Which variables are free?

A =




1 2 0 1
0 1 1 0
1 2 0 1


 B =




1 2 3
4 5 6
7 8 9


 .

Find the special solutions to Ax = 0 and Bx = 0. Find all solutions.

3. Find the echelon form U , the free variables, and the special solutions:

A =

[
0 1 0 3
0 2 0 6

]
, b =

[
b1

b2

]
.

Ax = b is consistent (has a solution) when b satisfies b2 = . Find the complete
solution in the same form as equation (4).
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4. Carry out the same steps as in the previous problem to find the complete solution of
Mx = b:

M =




0 0
1 2
0 0
3 6


 , b =




b1

b2

b3

b4


 .

5. Write the complete solutions x = xp + xn to these systems, as in equation (4):

[
1 2 2
2 4 5

]


u
v
w


 =

[
1
4

] [
1 2 2
2 4 4

]


u
v
w


 =

[
1
4

]
.

6. Describe the set of attainable right-hand sides b (in the column space) for



1 0
0 1
2 3




[
u
v

]
=




b1

b2

b3


 ,

by finding the constraints on b that turn the third equation into 0 = 0 (after elimina-
tion). What is the rank, and a particular solution?

7. Find the value of c that makes it possible to solve Ax = b, and solve it:

u + v + 2w = 2
2u + 3v − w = 5
3u + 4v + w = c.

8. Under what conditions on b1 and b2 (if any) does Ax = b have a solution?

A =

[
1 2 0 3
2 4 0 7

]
, b =

[
b1

b2

]
.

Find two vectors in the nullspace of A, and the complete solution to Ax = b.

9. (a) Find the special solutions to Ux = 0. Reduce U to R and repeat:

Ux =




1 2 3 4
0 0 1 2
0 0 0 0







x1

x2

x3

x4


 =




0
0
0


 .

(b) If the right-hand side is changed from (0,0,0) to (a,b,0), what are all solutions?

10. Find a 2 by 3 system Ax = b whose complete solution is

x =




1
2
0


+w




1
3
1


 .
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Find a 3 by 3 system with these solutions exactly when b1 +b2 = b3.

11. Write a 2 by 2 system Ax = b with many solutions xn but no solution xp. (Therefore
the system has no solution.) Which b’s allow an xp?

12. Which of these rules give a correct definition of the rank of A?

(a) The number of nonzero rows in R.

(b) The number of columns minus the total number of rows.

(c) The number of columns minus the number of free columns.

(d) The number of 1s in R.

13. Find the reduced row echelon forms R and the rank of these matrices:

(a) The 3 by 4 matrix of all 1s.

(b) The 4 by 4 matrix with ai j = (−1)i j.

(c) The 3 by 4 matrix with ai j = (−1) j.

14. Find R for each of these (block) matrices, and the special solutions:

A =




0 0 0
0 0 3
2 4 6


 B =

[
A A

]
C =

[
A A
A 0

]
.

15. If the r pivot variables come first, the reduced R must look like

R =

[
I F
0 0

]
I is r by r
F is r by n− r

What is the nullspace matrix N containing the special solutions?

16. Suppose all r pivot variables come last. Describe the four blocks in the m by n
reduced echelon form (the block B should be r by r):

R =

[
A B
C D

]
.

What is the nullspace matrix N of special solutions? What is its shape?

17. (Silly problem) Describe all 2 by 3 matrices A1 and A2 with row echelon forms R1

and R2, such that R1 +R2 is the row echelon form of A1 +A2. Is it true that R1 = A1

and R2 = A2 in this case?

18. If A has r pivot columns, then AT has r pivot columns. Give a 3 by 3 example for
which the column numbers are different for A and AT.
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19. What are the special solutions to Rx = 0 and RTy = 0 for these R?

R =




1 0 2 3
0 1 4 5
0 0 0 0


 R =




0 1 2
0 0 0
0 0 0


 .

20. If A has rank r, then it has an r by r submatrix S that is invertible. Find that submatrix
S from the pivot rows and pivot columns of each A:

A =

[
1 2 3
1 2 4

]
A =

[
1 2 3
2 4 6

]
A =




0 1 0
0 0 0
0 0 1


 .

21. Explain why the pivot rows and pivot columns of A (not R) always give an r by r
invertible submatrix of A.

22. Find the ranks of AB and AM (rank 1 matrix times rank 1 matrix):

A =

[
1 2
2 4

]
and B =

[
2 1 4
3 1.5 6

]
and M =

[
1 b
c bc

]
.

23. Multiplying the rank 1 matrices A = uvT and B = wzT gives uzT times the number
. AB has rank 1 unless = 0.

24. Every column of AB is a combination of the columns of A. Then the dimensions of
the column spaces give rank(AB)≤ rank(A).

Problem: Prove also that rank(AB)≤ rank(B).

25. (Important) Suppose A and B are n by n matrices, and AB = I. Prove from rank(AB)≤
rank(A) that the rank of A is n. So A is invertible and B must be its two-sided inverse.
Therefore BA = I (which is not so obvious!).

26. If A is 2 by 3 and C is 3 by 2, show from its rank that CA 6= I. Give an example in
which AC = I. For m < n, a right inverse is not a left inverse.

27. Suppose A and B have the same reduced-row echelon form R. Explain how to change
A to B by elementary row operations. So B equals an matrix times A.

28. Every m by n matrix of rank r reduces to (m by r) times (r by n):

A = (pivot columns of A)(first r rows of R) = (COL)(ROW).

Write the 3 by 4 matrix A at the start of this section as the product of the 3 by 2
matrix from the pivot columns and the 2 by 4 matrix from R:

A =




1 3 3 2
2 6 9 7
−1 −3 3 4
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29. Suppose A is an m by n matrix of rank r. Its reduced echelon form is R. Describe
exactly the reduced row echelon form of RT (not AT).

30. (Recommended) Execute the six steps following equation (6) to find the column
space and nullspace of A and the solution to Ax = b:

A =




2 4 6 4
2 5 7 6
2 3 5 2


 b =




b1

b2

b3


 =




4
3
5


 .

31. For every c, find R and the special solutions to Ax = 0:

A =




1 1 2 2
2 2 4 4
1 c 2 2


 and A =

[
1− c 2

0 2− c

]
.

32. What is the nullspace matrix N (of special solutions) for A, B, C?

A =
[
I I

]
and B =

[
I I
0 0

]
and C =

[
I I I

]
.

Problems 33–36 are about the solution of Ax = b. Follow the steps in the text to
xp and xn. Reduce the augmented matrix [A b].

33. Find the complete solutions of

x+3y+3z = 1

2x+6y+9z = 5

−x−3y+3z = 5
and




1 3 1 2
2 6 4 8
0 0 2 4







x
y
z
t


 =




1
3
1


 .

34. Under what condition on b1, b2, b3 is the following system solvable? Include b as a
fourth column in [A b]. Find all solutions when that condition holds:

x+2y−2z = b1

2x+5y−4z = b2

4x+9y−8z = b3.

35. What conditions on b1, b2, b3, b4 make each system solvable? Solve for x:



1 2
2 4
2 5
3 9




[
x1

x2

]
=




b1

b2

b3

b4







1 2 3
2 4 6
2 5 7
3 9 12







x1

x2

x3


 =




b1

b2

b3

b4


 .
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36. Which vectors (b1,b2,b3) are in the column space of A? Which combinations of the
rows of A give zero?

(a) A =




1 2 1
2 6 3
0 2 5


 (b) A =




1 1 1
1 2 4
2 4 8


 .

37. Why can’t a 1 by 3 system have xp = (2,4,0) and xn = any multiple of (1,1,1)?

38. (a) If Ax = b has two solutions x1 and x2, find two solutions to Ax = 0.

(b) Then find another solution to Ax = b.

39. Explain why all these statements are false:

(a) The complete solution is any linear combination of xp and xn.

(b) A system Ax = b has at most one particular solution.

(c) The solution xp with all free variables zero is the shortest solution (minimum
length ‖x‖). (Find a 2 by 2 counterexample.)

(d) If A is invertible there is no solution xn in the nullspace.

40. Suppose column 5 of U has no pivot. Then x5 is a variable. The zero vector
(is) (is not) the only solution to Ax = 0. If Ax = b has a solution, then it has
solutions.

41. If you know xp (free variables = 0) and all special solutions for Ax = b, find xp and
all special solutions for these systems:

Ax = 2b
[
A A

][
x
X

]
= b

[
A
A

][
x
]

=

[
b
b

]
.

42. If Ax = b has infinitely many solutions, why is it impossible for Ax = B (new right-
hand side) to have only one solution? Could Ax = B have no solution?

43. Choose the number q so that (if possible) the ranks are (a) 1, (b) 2, (c) 3:

A =




6 4 2
−3 −2 −1
9 6 q


 and B =

[
3 1 3
q 2 q

]
.

44. Give examples of matrices A for which the number of solutions to Ax = b is

(a) 0 or 1, depending on b.

(b) ∞, regardless of b.

(c) 0 or ∞, depending on b.

(d) 1, regardless of b.
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45. Write all known relations between r and m and n if Ax = b has

(a) no solution for some b.

(b) infinitely many solutions for every b.

(c) exactly one solution for some b, no solution for other b.

(d) exactly one solution for every b.

46. Apply Gauss-Jordan elimination (right-hand side becomes extra column) to Ux = 0
and Ux = c. Reach Rx = 0 and Rx = d:

[
U 0

]
=

[
1 2 3 0
0 0 4 0

]
and

[
U c

]
=

[
1 2 3 5
0 0 4 8

]
.

Solve Rx = 0 to find xn (its free variable is x2 = 1). Solve Rx = d to find xp (its free
variable is x2 = 0).

47. Apply elimination with the extra column to reach Rx = 0 and Rx = d:

[
U 0

]
=




3 0 6 0
0 0 2 0
0 0 0 0


 and

[
U c

]
=




3 0 6 9
0 0 2 4
0 0 0 5


 .

Solve Rx = 0 (free variable = 1). What are the solutions to Rx = d?

48. Reduce to Ux = c (Gaussian elimination) and then Rx = d:

Ax =




1 0 2 3
1 3 2 0
2 0 4 9







x1

x2

x3

x4


 =




2
5

10


 = b.

Find a particular solution xp and all nullspace solutions xn.

49. Find A and B with the given property or explain why you can’t.

(a) The only solution to Ax =
[

1
2
3

]
is x =

[
0
1

]
.

(b) The only solution to Bx =
[

0
1

]
is x =

[
1
2
3

]
.

50. The complete solution to Ax =
[

1
3

]
is x =

[
1
0

]
+ c

[
0
1

]
. Find A.

51. The nullspace of a 3 by 4 matrix A is the line through (2,3,1,0).

(a) What is the rank of A and the complete solution to Ax = 0?

(b) What is the exact row reduced echelon form R of A?
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52. Reduce these matrices A and B to their ordinary echelon forms U :

(a) A =




1 2 2 4 6
1 2 3 6 9
0 0 1 2 3


 (b) B =




2 4 2
0 4 4
0 8 8


 .

Find a special solution for each free variable and describe every solution to Ax = 0
and Bx = 0. Reduce the echelon forms U to R, and draw a box around the identity
matrix in the pivot rows and pivot columns.

53. True or False? (Give reason if true, or counterexample to show it is false.)

(a) A square matrix has no free variables.

(b) An invertible matrix has no free variables.

(c) An m by n matrix has no more than n pivot variables.

(d) An m by n matrix has no more than m pivot variables.

54. Is there a 3 by 3 matrix with no zero entries for which U = R = I?

55. Put as many 1s as possible in a 4 by 7 echelon matrix U and in a reduced form R
whose pivot columns are 2, 4, 5.

56. Suppose column 4 of a 3 by 5 matrix is all 0s. Then x4 is certainly a variable.
The special solution for this variable is the vector x = .

57. Suppose the first and last columns of a 3 by 5 matrix are the same (nonzero). Then
is a free variable. Find the special solution for this variable.

58. The equation x− 3y− z = 0 determines a plane in R3. What is the matrix A in this
equation? Which are the free variables? The special solutions are (3,1,0) and .
The parallel plane x−3y− z = 12 contains the particular point (12,0,0). All points
on this plane have the following form (fill in the first components):




x
y
z


 =


0

0


+ y


1

0


+ z


0

1


 .

59. Suppose column 1 + column 3 + column 5 = 0 in a 4 by 5 matrix with four pivots.
Which column is sure to have no pivot (and which variable is free)? What is the
special solution? What is the nullspace?

Problems 60–66 ask for matrices (if possible) with specific properties.

60. Construct a matrix whose nullspace consists of all combinations of (2,2,1,0) and
(3,1,0,1).

61. Construct a matrix whose nullspace consists of all multiples of (4,3,2,1).
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62. Construct a matrix whose column space contains (1,1,5) and (0,3.1) and whose
nullspace contains (1,1,2).

63. Construct a matrix whose column space contains (1,1,0) and (0,1,1) and whose
nullspace contains (1,0,1) and (0,0,1).

64. Construct a matrix whose column space contains (1,1,1) and whose nullspace is the
line of multiples of (1,1,1,1).

65. Construct a 2 by 2 matrix whose nullspace equals its column space.

66. Why does no 3 by 3 matrix have a nullspace that equals its column space?

67. The reduced form R of a 3 by 3 matrix with randomly chosen entries is almost sure
to be . What R is virtually certain if the random A is 4 by 3?

68. Show by example that these three statements are generally false:

(a) A and AT have the same nullspace.

(b) A and AT have the same free variables.

(c) If R is the reduced form rref(A) then RT is rref(AT).

69. If the special solutions to Rx = 0 are in the columns of these N, go backward to find
the nonzero rows of the reduced matrices R:

N =




2 3
1 0
0 1


 and N =




0
0
1


 and N =





 (empty 3 by 1).

70. Explain why A and −A always have the same reduced echelon form R.

2.3 Linear Independence, Basis, and Dimension

By themselves, the numbers m and n give an incomplete picture of the true size of a
linear system. The matrix in our example had three rows and four columns, but the third
row was only a combination of the first two. After elimination it became a zero row, It
had no effect on the homogeneous problem Ax = 0. The four columns also failed to be
independent, and the column space degenerated into a two-dimensional plane.

The important number that is beginning to emerge (the true size) is the rank r. The
rank was introduced as the number of pivots in the elimination process. Equivalently,
the final matrix U has r nonzero rows. This definition could be given to a computer. But
it would be wrong to leave it there because the rank has a simple and intuitive meaning:
The rank counts the number of genuinely independent rows in the matrix A. We want
definitions that are mathematical rather than computational.

The goal of this section is to explain and use four ideas:



104 Chapter 2 Vector Spaces

1. Linear independence or dependence.

2. Spanning a subspace.

3. Basis for a subspace (a set of vectors).

4. Dimension of a subspace (a number).

The first step is to define linear independence. Given a set of vectors v1, . . . ,vk, we
look at their combinations c1v1 + c2v2 + · · ·+ ckvk. The trivial combination, with all
weights ci = 0, obviously produces the zero vector: 0v1 + · · ·+0vk = 0. The question is
whether this is the only way to produce zero. If so, the vectors are independent.

If any other combination of the vectors gives zero, they are dependent.

2E Suppose c1v1 + · · ·+ckvk = 0 only happens when c1 = · · ·= ck = 0. Then
the vectors v1, . . . ,vk are linearly independent. If any c’s are nonzero, the v’s
are linearly dependent. One vector is a combination of the others.

Linear dependence is easy to visualize in three-dimensional space, when all vectors
go out from the origin. Two vectors are dependent if they lie on the same line. Three
vectors are dependent if they lie in the same plane. A random choice of three vectors,
without any special accident, should produce linear independence (not in a plane). Four
vectors are always linearly dependent in R3.

Example 1. If v1 = zero vector, then the set is linearly dependent. We may choose
c1 = 3 and all other ci = 0; this is a nontrivial combination that produces zero.

Example 2. The columns of the matrix

A =




1 3 3 2
2 6 9 5
−1 −3 3 0




are linearly dependent, since the second column is three times the first. The combination
of columns with weights −3, 1, 0, 0 gives a column of zeros.

The rows are also linearly dependent; row 3 is two times row 2 minus five times row
1. (This is the same as the combination of b1, b2, b3, that had to vanish on the right-hand
side in order for Ax = b to be consistent. Unless b3−2b2 + 5b1 = 0, the third equation
would not become 0 = 0.)

Example 3. The columns of this triangular matrix are linearly independent:

No zeros on the diagonal A =




3 4 2
0 1 5
0 0 2


 .



2.3 Linear Independence, Basis, and Dimension 105

Look for a combination of the columns that makes zero:

Solve Ac = 0 c1




3
0
0


+ c2




4
1
0


+ c3




2
5
2


 =




0
0
0


 .

We have to show that c1, c2, c3 are all forced to be zero. The last equation gives
c3 = 0. Then the next equation gives c2 = 0, and substituting into the first equation forces
c1 = 0. The only combination to produce the zero vector is the trivial combination. The
nullspace of A contains only the zero vector c1 = c2 = c3 = 0.

The columns of A are independent exactly when N(A) = {zero vector}.

A similar reasoning applies to the rows of A, which are also independent. Suppose

c1(3,4,2)+ c2(0,1,5)+ c3(0,0,2) = (0,0,0).

From the first components we find 3c1 = 0 or c1 = 0. Then the second components give
c2 = 0, and finally c3 = 0.

The nonzero rows of any echelon matrix U must be independent. Furthermore, if we
pick out the columns that contain the pivots, they also are linearly independent. In our
earlier example, with

Two independent rows
Two independent columns

U =




1 3 3 2
0 0 3 1
0 0 0 0


 ,

the pivot columns 1 and 3 are independent. No set of three columns is independent, and
certainly not all four. It is true that columns 1 and 4 are also independent, but if that
last 1 were changed to 0 they would be dependent. It is the columns with pivots that are
guaranteed to be independent. The general rule is this:

2F The r nonzero rows of an echelon matrix U and a reduced matrix R are
linearly independent. So are the r columns that contain pivots.

Example 4. The columns of the n by n identity matrix are independent:

I =




1 0 · 0
0 1 · 0
· · · 0
0 0 0 1


 .

These columns e1, . . . ,en represent unit vectors in the coordinate directions; in R4,

e1 =




1
0
0
0


 , e2 =




0
1
0
0


 , e3 =




0
0
1
0


 , e4 =




0
0
0
1


 .
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Most sets of four vectors in R4 are independent. Those e’s might be the safest.

To check any set of vectors v1, . . . ,vn for independence, put them in the columns of A.
Then solve the system Ac = 0; the vectors are dependent if there is a solution other than
c = 0. With no free variables (rank n), there is no nullspace except c = 0; the vectors are
independent. If the rank is less than n, at least one free variable can be nonzero and the
columns are dependent.

One case has special importance. Let the n vectors have m components, so that A is an
m by n matrix. Suppose now that n > m. There are too many columns to be independents
There cannot be n pivots, since there are not enough rows to hold them. The rank will
be less than n. Every system Ac = 0 with more unknowns than equations has solutions
c 6= 0.

2G A set of n vectors in Rm must be linearly dependent if n > m.

The reader will recognize this as a disguised form of 2C: Every m by n system Ax = 0
has nonzero solutions if n > m.

Example 5. These three columns in R2 cannot be independent:

A =

[
1 2 1
1 3 2

]
.

To find the combination of the columns producing zero we solve Ac = 0:

A→U =

[
1 2 1
0 1 1

]
.

If we give the value 1 to the free variable c3, then back-substitution in Uc = 0 gives
c2 = −1, c1 = 1. With these three weights, the first column minus the second plus the
third equals zero: Dependence.

Spanning a Subspace

Now we define what it means for a set of vectors to span a space. The column space of
A is spanned by the columns. Their combinations produce the whole space:

2H If a vector space V consists of all linear combinations of w1, . . . ,w`, then
these vectors span the space. Every vector v in V is some combination of the
w’s:

Every v comes from w’s v = c1w1 + · · ·+ c`w` for some coefficients ci.

It is permitted that a different combination of w’s could give the same vector v. The
c’s need not be unique, because the spanning set might be excessively large—it could
include the zero vector, or even all vectors.
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Example 6. The vectors w1 = (1,0,0), w2 = (0,1,0), and w3 = (−2,0,0) span a plane
(the x-y plane) in R3. The first two vectors also span this plane, whereas w1 and w3 span
only a line.

Example 7. The column space of A is exactly the space that is spanned by its columns.
The row space is spanned by the rows. The definition is made to order. Multiplying A
by any x gives a combination of the columns; it is a vector Ax in the column space.

The coordinate vectors e1, . . . ,en coming from the identity matrix span Rn. Every
vector b = (b1, . . . ,bn) is a combination of those columns. In this example the weights
are the components bi themselves: b = b1e1 + · · ·+ bnen. But the columns of other
matrices also span Rn!

Basis for a Vector Space

To decide if b is a combination of the columns, we try to solve Ax = b. To decide if
the columns are independent, we solve Ax = 0. Spanning involves the column space,
and independence involves the nullspace. The coordinate vectors e1, . . . ,en span Rn

and they are linearly independent. Roughly speaking, no vectors in that set are wasted.
This leads to the crucial idea of a basis.

2I A basis for V is a sequence of vectors having two properties at once:

1. The vectors are linearly independent (not too many vectors).

2. They span the space V (not too few vectors).

This combination of properties is absolutely fundamental to linear algebra. It means
that every vector in the space is a combination of the basis vectors, because they span.
It also means that the combination is unique: If v = a1v1 + · · ·+ akvk and also v =
b1v1 + · · ·+ bkvk, then subtraction gives 0 = ∑(ai− bi)vi. Now independence plays its
part; every coefficient ai− bi must be zero. Therefore ai = bi. There is one and only
one way to write v as a combination of the basis vectors.

We had better say at once that the coordinate vectors e1, . . . ,en are not the only basis
for Rn. Some things in linear algebra are unique, but not this. A vector space has
infinitely many different bases. Whenever a square matrix is invertible, its columns are
independent—and they are a basis for Rn. The two columns of this nonsingular matrix
are a basis for R2:

A =

[
1 1
2 3

]

Every two-dimensional vector is a combination of those (independent!) columns.

Example 8. The x-y plane in Figure 2.4 is just R2. The vector v1 by itself is linearly
independent, but it fails to span R2. The three vectors v1, v2, v3 certainly span R2, but
are not independent. Any two of these vectors, say v1 and v2, have both properties—they
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span, and they are independent. So they form a basis. Notice again that a vector space
does not have a unique basis.

y

x

v3

v2

v1

Figure 2.4: A spanning set v1, v2, v3. Bases v1, v2 and v1, v3 and v2, v3.

Example 9. These four columns span the column space of U , but they are not indepen-
dent:

Echelon matrix U =




1 3 3 2
0 0 3 1
0 0 0 0


 .

There are many possibilities for a basis, but we propose a specific choice: The columns
that contain pivots (in this case the first and third, which correspond to the basic vari-
ables) are a basis for the column space. These columns are independent, and it is easy
to see that they span the space. In fact, the column space of U is just the x-y plane
within R3. C(U) is not the same as the column space C(A) before elimination—but the
number of independent columns didn’t change.

To summarize: The columns of any matrix span its column space. If they are indepen-
dent, they are a basis for the column space—whether the matrix is square or rectangular.
If we are asking the columns to be a basis for the whole space Rn, then the matrix must
be square and invertible.

Dimension of a Vector Space

A space has infinitely many different bases, but there is something common to all of
these choices. The number of basis vectors is a property of the space itself:

2J Any two bases for a vector space V contain the same number of vec-
tors. This number, which is shared by all bases and expresses the number of
“degrees of freedom” of the space, is the dimension of V.

We have to prove this fact: All possible bases contain the same number of vectors.
The x-y plane in Figure 2.4 has two vectors in every basis; its dimension is 2. In three
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dimensions we need three vectors, along the x-y-z axes or in three other (linearly in-
dependent!) directions. The dimension of the space Rn is n. The column space of U
in Example 9 had dimension 2; it was a “two-dimensional subspace of R3.” The zero
matrix is rather exceptional, because its column space contains only the zero vector. By
convention, the empty set is a basis for that space, and its dimension is zero.

Here is our first big theorem in linear algebra:

2K If v1, . . . ,vm and w1, . . . ,wn are both bases for the same vector space, then
m = n. The number of vectors is the same.

Proof. Suppose there are more w’s than v’s (n > m). We will arrive at a contradiction.
Since the v’s form a basis, they must span the space. Every w j can be written as a
combination of the v’s: If w1 = a11v1 + · · ·+ am1vm, this is the first column of a matrix
multiplication VA:

W =
[
w1 w2 · · · wn

]
=

[
v1 · · · vm

]



a11
...

am1


 = VA.

We don’t know each ai j, but we know the shape of A (it is m by n). The second vector
w2 is also a combination of the v’s. The coefficients in that combination fill the second
column of A. The key is that A has a row for every v and a column for every w. A is a
short, wide matrix, since n > m. There is a nonzero solution to Ax = 0. Then VAx = 0
which is Wx = 0. A combination of the w’s gives zero! The w’s could not be a basis—so
we cannot have n > m.

If m > n we exchange the v’s and w’s and repeat the same steps. The only way to
avoid a contradiction is to have m = n. This completes the proof that m = n. To repeat:
The dimension of a space is the number of vectors in every basis.

This proof was used earlier to show that every set of m+1 vectors in Rm must be de-
pendent. The v’s and w’s need not be column vectors—the proof was all about the matrix
A of coefficients. In fact we can see this general result: In a subspace of dimension k,
no set of more than k vectors can be independent, and no set of more than k vectors can.
span the space.

There are other “dual” theorems, of which we mention only one. We can start with a
set of vectors that is too small or too big, and end up with a basis:

2L Any linearly independent set in V can be extended to a basis, by adding
more vectors if necessary.

Any spanning set in V can be reduced to a basis, by discarding vectors if
necessary.

The point is that a basis is a maximal independent set. It cannot be made larger without
losing independence. A basis is also a minimal spanning set. It cannot be made smaller
and still span the space.
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You must notice that the word “dimensional” is used in two different ways. We speak
about a four-dimensional vector, meaning a vector in R4. Now we have defined a four-
dimensional subspace; an example is the set of vectors in R6 whose first and last com-
ponents are zero. The members of this four-dimensional subspace are six-dimensional
vectors like (0,5,1,3,4,0).

One final note about the language of linear algebra. We never use the terms “basis of a
matrix” or “rank of a space” or “dimension of a basis.” These phrases have no meaning.
It is the dimension of the column space that equals the rank of the matrix, as we prove
in the coming section.

Problem Set 2.3

Problems 1–10 are about linear independence and linear dependence.

1. Show that v1, v2, v3 are independent but v1, v2, v3, v4 are dependent:

v1 =




1
0
0


 v2 =




1
1
0


 v3 =




1
1
1


 v4 =




2
3
4


 .

Solve c1v1 + · · ·+ c4v4 = 0 or Ac = 0. The v’s go in the columns of A.

2. Find the largest possible number of independent vectors among

v1 =




1
−1
0
0


 v2 =




1
0
−1
0


 v3 =




1
0
0
−1


 v4 =




0
1
−1
0


 v5 =




0
1
0
−1


 v6 =




0
0
1
−1


 .

This number is the of the space spanned by the v’s.

3. Prove that if a = 0, d = 0, or f = 0 (3 cases), the columns of U are dependent:

U =




a b c
0 d e
0 0 f


 .

4. If a, d, f in Problem 3 are all nonzero, show that the only solution to Ux = 0 is x = 0.
Then U has independent columns.

5. Decide the dependence or independence of

(a) the vectors (1,3,2), (2,1,3), and (3.2,1).

(b) the vectors (1,−3,2), (2,1,−3), and (−3,2,1).
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6. Choose three independent columns of U . Then make two other choices. Do the same
for A. You have found bases for which spaces?

U =




2 3 4 1
0 6 7 0
0 0 0 9
0 0 0 0


 and A =




2 3 4 1
0 6 7 0
0 0 0 9
4 6 8 2


 .

7. If w1, w2, w3 are independent vectors, show that the differences v1 = w2−w3, v2 =
w1−w3, and v3 = w1−w2 are dependent. Find a combination of the v’s that gives
zero.

8. If w1, w2, w3 are independent vectors, show that the sums v1 = w2+w3, v2 = w1+w3,
and v3 = w1 +w2 are independent. (Write c1v1 +c2v2 +c3v3 = 0 in terms of the w’s.
Find and solve equations for the c’s.)

9. Suppose v1, v2, v3, v4 are vectors in R3.

(a) These four vectors are dependent because .

(b) The two vectors v1 and v2 will be dependent if .

(c) The vectors v1 and (0,0,0) are dependent because .

10. Find two independent vectors on the plane x+2y−3z− t = 0 in R4. Then find three
independent vectors. Why not four? This plane is the nullspace of what matrix?

Problems 11–18 are about the space spanned by a set of vectors. Take all linear
combinations of the vectors

11. Describe the subspace of R3 (is it a line or a plane or R3?) spanned by

(a) the two vectors (1,1,−1) and (−1,−1,1).

(b) the three vectors (0,1,1) and (1,1,0) and (0,0,0).

(c) the columns of a 3 by 5 echelon matrix with 2 pivots.

(d) all vectors with positive components.

12. The vector b is in the subspace spanned by the columns of A when there is a solution
to . The vector c is in the row space of A when there is a solution to . True
or false: If the zero vector is in the row space, the rows are dependent.

13. Find the dimensions of (a) the column space of A, (b) the column space of U , (c) the
row space of A, (d) the row space of U . Which two of the spaces are the same?

A =




1 1 0
1 3 1
3 1 −1


 and U =




1 1 0
0 2 1
0 0 0


 .
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14. Choose x = (x1,x2,x3,x4) in R4. It has 24 rearrangements like (x2,x1,x3,x4) and
(x4,x3,x1,x2). Those 24 vectors, including x itself, span a subspace S. Find specific
vectors x so that the dimension of S is: (a) 0, (b) 1, (c) 3, (d) 4.

15. v+w and v−w are combinations of v and w. Write v and w as combinations of v+w
and v−w. The two pairs of vectors the same space. When are they a basis for
the same space?

16. Decide whether or not the following vectors are linearly independent, by solving
c1v1 + c2v2 + c3v3 + c4v4 = 0:

v1 =




1
1
0
0


 , v2 =




1
0
1
0


 , v3 =




0
0
1
1


 , v4 =




0
1
0
1


 .

Decide also if they span R4, by trying to solve c1v1 + · · ·+ c4v4 = (0,0,0,1).

17. Suppose the vectors to be tested for independence are placed into the rows instead
of the columns of A, How does the elimination process from A to U decide for or
against independence?

18. To decide whether b is in the sub space spanned by w1, . . . ,wn, let the vectors w be
the columns of A and try to solve Ax = b. What is the result for

(a) w1 = (1,1,0), w2 = (2,2,1), w3 = (0,0,2), b = (3,4,5)?

(b) w1 = (1,2,0), w2 = (2,5,0), w3 = (0,0,2), w4 = (0,0,0), and any b?

Problems 19–37 are about the requirements for a basis.

19. If v1, . . . ,vn are linearly independent, the space they span has dimension . These
vectors are a for that space. If the vectors are the columns of an m by n matrix,
then m is than n.

20. Find a basis for each of these subspaces of R4:

(a) All vectors whose components are equal.

(b) All vectors whose components add to zero.

(c) All vectors that are perpendicular to (1,1,0,0) and (1,0,1,1).

(d) The column space (in R2) and nullspace (in R5) of U =
[

1 0 1 0 1
0 1 0 1 0

]
.

21. Find three different bases for the column space of U above. Then find two different
bases for the row space of U .

22. Suppose v1,v2, . . . ,v6 are six vectors in R4.

(a) Those vectors (do)(do not)(might not) span R4.
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(b) Those vectors (are)(are not)(might be) linearly independent.

(c) Any four of those vectors (are)(are not)(might be) a basis for R4.

(d) If those vectors are the columns of A, then Ax = b (has) (does not have) (might
not have) a solution.

23. The columns of A are n vectors from Rm. If they are linearly independent, what is
the rank of A? If they span Rm, what is the rank? If they are a basis for Rm, what
then?

24. Find a basis for the plane x−2y+3z = 0 in R3. Then find a basis for the intersection
of that plane with the xy-plane. Then find a basis for all vectors perpendicular to the
plane.

25. Suppose the columns of a 5 by 5 matrix A are a basis for R5.

(a) The equation Ax = 0 has only the solution x = 0 because .

(b) If b is in R5 then Ax = b is solvable because .

Conclusion: A is invertible. Its rank is 5.

26. Suppose S is a five-dimensional subspace of R6. True or false?

(a) Every basis for S can be extended to a basis for R6 by adding one more vector.

(b) Every basis for R6 can be reduced to a basis for S by removing one vector.

27. U comes from A by subtracting row 1 from row 3:

A =




1 3 2
0 1 1
1 3 2


 and U =




1 3 2
0 1 1
0 0 0


 .

Find bases for the two column spaces. Find bases for the two row spaces. Find bases
for the two nullspace.

28. True or false (give a good reason)?

(a) If the columns of a matrix are dependent, so are the rows.

(b) The column space of a 2 by 2 matrix is the same as its row space.

(c) The column space of a 2 by 2 matrix has the same dimension as its row space.

(d) The columns of a matrix are a basis for the column space.

29. For which numbers c and d do these matrices have rank 2?

A =




1 2 5 0 5
0 0 c 2 2
0 0 0 d 2


 and B =

[
c d
d c

]
.
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30. By locating the pivots, find a basis for the column space of

U =




0 5 4 3
0 0 2 1
0 0 0 0
0 0 0 0


 .

Express each column that is not in the basis as a combination of the basic columns,
Find also a matrix A with this echelon form U , but a different column space.

31. Find a counterexample to the following statement: If v1, v2, v3, v4 is a basis for the
vector space R4, and if W is a subspace, then some subset of the v’s is a basis for W.

32. Find the dimensions of these vector spaces:

(a) The space of all vectors in R4 whose components add to zero.

(b) The nullspace of the 4 by 4 identity matrix.

(c) The space of all 4 by 4 matrices.

33. Suppose V is known to have dimension k. Prove that

(a) any k independent vectors in V form a basis;

(b) any k vectors that span V form a basis.

In other words, if the number of vectors is known to be correct, either of the two
properties of a basis implies the other.

34. Prove that if V and W are three-dimensional subspaces of R5, then V and W must
have a nonzero vector in common. Hint: Start with bases for the two subspaces,
making six vectors in all.

35. True or false?

(a) If the columns of A are linearly independent, then Ax = b has exactly one solution
for every b.

(b) A 5 by 7 matrix never has linearly independent columns,

36. If A is a 64 by 17 matrix of rank 11, how many independent vectors satisfy Ax = 0?
How many independent vectors satisfy ATy = 0?

37. Find a basis for each of these subspaces of 3 by 3 matrices:

(a) All diagonal matrices.

(b) All symmetric matrices (AT = A).

(c) All skew-symmetric matrices (AT =−A).

Problems 38–42 are about spaces in which the “vectors” are functions.
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38. (a) Find all functions that satisfy dy
dx = 0.

(b) Choose a particular function that satisfies dy
dx = 3.

(c) Find all functions that satisfy dy
dx = 3.

39. The cosine space F3 contains all combinations y(x) = Acosx + Bcos2x +C cos3x.
Find a basis for the subspace that has y(0) = 0.

40. Find a basis for the space of functions that satisfy

(a)
dy
dx
−2y = 0.

(b)
dy
dx
− y

x
= 0.

41. Suppose y1(x), y2(x), y3(x) are three different functions of x. The vector space they
span could have dimension 1, 2, or 3. Give an example of y1, y2, y3 to show each
possibility.

42. Find a basis for the space of polynomials p(x) of degree ≤ 3. Find a basis for the
subspace with p(1) = 0.

43. Write the 3 by 3 identity matrix as a combination of the other five permutation matri-
ces! Then show that those five matrices are linearly independent. (Assume a combi
nation gives zero, and check entries to prove each term is zero.) The five permuta-
tions are a basis for the subspace of 3 by 3 matrices with row and column sums all
equal.

44. Review: Which of the following are bases for R3?

(a) (1,2,0) and (0,1,−1).

(b) (1,1,−1), (2,3,4), (4,1,−1), (0,1,−1).

(c) (1,2,2), (−1,2,1), (0,8,0).

(d) (1,2,2), (−1,2,1), (0,8,6).

45. Review: Suppose A is 5 by 4 with rank 4. Show that Ax = b has no solution when the
5 by 5 matrix [A b] is invertible. Show that Ax = b is solvable when [A b] is singular.

2.4 The Four Fundamental Subspaces

The previous section dealt with definitions rather than constructions. We know what a
basis is, but not how to find one. Now, starting from an explicit description of a subspace,
we would like to compute an explicit basis.

Subspaces can be described in two ways. First, we may be given a set of vectors that
span the space. (Example: The columns span the column space.) Second, we may be
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told which conditions the vectors in the space must satisfy. (Example: The nullspace
consists of all vectors that satisfy Ax = 0.)

The first description may include useless vectors (dependent columns). The second
description may include repeated conditions (dependent rows). We can’t write a basis
by inspection, and a systematic procedure is necessary.

The reader can guess what that procedure will be. When elimination on A produces
an echelon matrix U or a reduced R, we will find a basis for each of the subspaces
associated with A. Then we have to look at the extreme case of full rank:

When the rank is as large as possible, r = n or r = m or r = m = n, the matrix has a
left-inverse B or a right-inverse C or a two-sided A−1.

To organize the whole discussion, we take each of the four subspaces in turn. Two of
them are familiar and two are new.

1. The column space of A is denoted by C(A). Its dimension is the rank r.

2. The nullspace of A is denoted by N(A). Its dimension is n− r.

3. The row space of A is the column space of AT. It is C(AT), and it is spanned by the
rows of A. Its dimension is also r.

4. The left nullspace of A is the nullspace of AT. It contains all vectors y such that
ATy = 0, and it is written N(AT). Its dimension is .

The point about the last two subspaces is that they come from AT. If A is an m by n
matrix, you can see which “host” spaces contain the four subspaces by looking at the
number of components:

The nullspace N(A) and row space C(AT) are subspaces of Rn.
The left nullspace N(AT) and column space C(A) are subspaces of Rm.

The rows have n components and the columns have m. For a simple matrix like

A = U = R =

[
1 0 0
0 0 0

]
,

the column space is the line through [1
0 ]. The row space is the line through [1 0 0]T. It

is in R3. The nullspace is a plane in R3 and the left nullspace is a line in R2:

N(A) contains




0
1
0


 and




0
0
1


 , N(AT) contains

[
0
1

]
.
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Note that all vectors are column vectors. Even the rows are transposed, and the row
space of A is the column space of AT, Our problem will be to connect the four spaces for
U (after elimination) to the four spaces for A:

Basic
example

U =




1 3 3 2
0 0 3 3
0 0 0 0


 came from A =




1 3 3 2
2 6 9 7
−1 −3 3 4


 .

For novelty, we take the four subspaces in a more interesting order.

3. The row space of A For an echelon matrix like U , the row space is clear. It contains
all combinations of the rows, as every row space does—but here the third row contributes
nothing. The first two rows are a basis for the row space. A similar rule applies to every
echelon matrix U or R, with r pivots and r nonzero rows: The nonzero rows are a basis,
and the row space has dimension r. That makes it easy to deal with the original matrix
A.

2M The row space of A has the same dimension r as the row space of U ,
and it has the same bases, because the row spaces of A and U (and R) are the
same.

The reason is that each elementary operation leaves the row space unchanged. The rows
in U are combinations of the original rows in A. Therefore the row space of U contains
nothing new. At the same time, because every step can be reversed, nothing is lost; the
rows of A can be recovered from U . It is true that A and U have different rows, but the
combinations of the rows are identical: same space!

Note that we did not start with the m rows of A, which span the row space, and discard
m− r of them to end up with a basis. According to 2L, we could have done so. But it
might be hard to decide which rows to keep and which to discard, so it was easier just to
take the nonzero rows of U .

2. The nullspace of A Elimination simplifies a system of linear equations without
changing the solutions. The system Ax = 0 is reduced to Ux = 0, and this process is
reversible. The nullspace of A is the same as the nullspace of U and R. Only r of
the equations Ax = 0 are independent. Choosing the n− r “special solutions” to Ax = 0
provides a definite basis for the nullspace:

2N The nullspace N(A) has dimension n− r. The “special solutions” are a
basis—each free variable is given the value 1, while the other free variables
are 0. Then Ax = 0 or Ux = 0 or Rx = 0 gives the pivot variables by back-
substitution.

This is exactly the way we have been solving Ux = 0. The basic example above has
pivots in columns 1 and 3. Therefore its free variables are the second and fourth v and y.
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The basis for the nullspace is

Special solutions
v = 1
y = 0

x1 =




−3
1
0
0


 ;

v = 0
y = 1

x2 =




1
0
−1
1


 .

Any combination c1x1 + c2x2 has c1 as its v component, and c2 as its y component. The
only way to have c1x1 +c2x2 = 0 is to have c1 = c2 = 0, so these vectors are independent.
They also span the nullspace; the complete solution is vx1 + yx2. Thus the n− r = 4−2
vectors are a basis.

The nullspace is also called the kernel of A, and its dimension n− r is the nullity.

1. The column space of A The column space is sometimes called the range. This
is consistent with the usual idea of the range, as the set of all possible values f (x); x is
in the domain and f (x) is in the range. In our case the function is f (x) = Ax. Its domain
consists of all x in Rn; its range is all possible vectors Ax, which is the column space.
(In an earlier edition of this book we called it R(A).)

Our problem is to find bases for the column spaces of U and A. Those spaces are
different (just look at the matrices!) but their dimensions are the same.

The first and third columns of U are a basis for its column space. They are the
columns with pivots. Every other column is a combination of those two. Furthermore,
the same is true of the original A—even though its columns are different. The pivot
columns of A are a basis for its column space. The second column is three times
the first, just as in U . The fourth column equals (column 3) − (column 1). The same
nullspace is telling us those dependencies.

The reason is this: Ax = 0 exactly when Ux = 0. The two systems are equivalent and
have the same solutions. The fourth column of U was also (column 3) − (column 1).
Every linear dependence Ax = 0 among the columns of A is matched by a dependence
Ux = 0 among the columns of U , with exactly the same coefficients. If a set of columns
of A is independent, then so are the corresponding columns of U, and vice versa.

To find a basis for the column space C(A), we use what is already done for U . The
r columns containing pivots are a basis for the column space of U . We will pick those
same r columns in A:

2O The dimension of the column space C(A) equals the rank r, which also
equals the dimension of the row space: The number of independent columns
equals the number of independent rows. A basis for C(A) is formed by the r
columns of A that correspond, in U , to the columns containing pivots.

The row space and the column space have the same dimension r! This is one of
the most important theorems in linear algebra. It is often abbreviated as “row rank =
column rank.” It expresses a result that, for a random 10 by 12 matrix, is not at all
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obvious. It also says something about square matrices: If the rows of a square matrix
are linearly independent, then so are the columns (and vice versa). Again, that does not
seem self-evident (at least, not to the author).

To see once more that both the row and column spaces of U have dimension r, con-
sider a typical situation with rank r = 3. The echelon matrix U certainly has three
independent rows:

U =




d1 ∗ ∗ ∗ ∗ ∗
0 0 0 d2 ∗ ∗
0 0 0 0 0 d3

0 0 0 0 0 0


 .

We claim that U also has three independent columns, and no more, The columns have
only three nonzero components. If we can show that the pivot columns—the first, fourth,
and sixth—are linearly independent, they must be a basis (for the column space of U ,
not A!). Suppose a combination of these pivot columns produced zero:

c1




d1

0
0
0


+ c2




∗
d2

0
0


+ c3




∗
∗
d3

0


 =




0
0
0
0


 .

Working upward in the usual way, c3 must be zero because the pivot d3 6= 0, then c2 must
be zero because d2 6= 0, and finally c1 = 0. This establishes independence and completes
the proof. Since Ax = 0 if and only if Ux = 0, the first, fourth, and sixth columns of A—
whatever the original matrix A was, which we do not even know in this example—are a
basis for C(A).

The row space and column space both became clear after elimination on A. Now
comes the fourth fundamental subspace, which has been keeping quietly out of sight.
Since the first three spaces were C(A), N(A), and C(AT), the fourth space must be
N(AT), It is the nullspace of the transpose, or the left nullspace of A. ATy = 0 means
yTA = 0, and the vector appears on the left-hand side of A.

4. The left nullspace of A (= the nullspace of AT) If A is an m by n matrix, then
AT is n by m. Its nullspace is a subspace of Rm; the vector y has m components. Written
as yTA = 0, those components multiply the rows of A to produce the zero row:

yTA =
[
y1 · · · ym

][
A

]
=

[
0 · · · 0

]
.

The dimension of this nullspace N(AT) is easy to find, For any matrix, the number
of pivot variables plus the number of free variables must match the total number of
columns. For A, that was r +(n− r) = n. In other words, rank plus nullity equals n:

dimension of C(A)+dimension of N(A) = number of columns.
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This law applies equally to AT, which has m columns. AT is just as good a matrix as A.
But the dimension of its column space is also r, so

r +dimension
(
N(AT)

)
= m. (1)

2P The left nullspace N(AT) has dimension m− r.

The m− r solutions to yTA = 0 are hiding somewhere in elimination. The rows of A
combine to produce the m− r zero rows of U . Start from PA = LU , or L−1PA = U . The
last m−r rows of the invertible matrix L−1P must be a basis of y’s in the left nullspace—
because they multiply A to give the zero rows in U .

In our 3 by 4 example, the zero row was row 3 − 2(row 2) + 5(row 1). Therefore
the components of y are 5, −2, 1. This is the same combination as in b3−2b2 +5b1 on
the right-hand side, leading to 0 = 0 as the final equation. That vector y is a basis for
the left nullspace, which has dimension m− r = 3− 2 = 1. It is the last row of L−1P,
and produces the zero row in U—and we can often see it without computing L−1. When
desperate, it is always possible just to solve ATy = 0.

I realize that so far in this book we have given no reason to care about N(AT). It is
correct but not convincing if I write in italics that the left nullspace is also important. The
next section does better by finding a physical meaning for y from Kirchhoff’s Current
Law.

Now we know the dimensions of the four spaces. We can summarize them in a table,
and it even seems fair to advertise them as the

Fundamental Theorem of Linear Algebra, Part I

1. C(A) = column space of A; dimension r.

2. N(A) = nullspace of A; dimension n− r.

3. C(AT) = row space of A; dimension r.

4. N(AT) = left nullspace of A; dimension m− r.

Example 1. A =

[
1 2
3 6

]
has m = n = 2, and rank r = 1.

1. The column space contains all multiples of
[

1
3

]
. The second column is in the same

direction and contributes nothing new.

2. The nullspace contains all multiples of
[−2

1

]
. This vector satisfies Ax = 0.

3. The row space contains all multiples of
[

1
2

]
. I write it as a column vector, since

strictly speaking it is in the column space of AT.

4. The left nullspace contains all multiples of y =
[−3

1

]
. The rows of A with coeffi-

cients −3 and 1 add to zero, so ATy = 0.
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In this example all four subspaces are lines. That is an accident, coming from r = 1 and
n− r = 1 and m− r = 1. Figure 2.5 shows that two pairs of lines are perpendicular. That
is no accident!

Figure 2.5: The four fundamental subspaces (lines) for the singular matrix A.

If you change the last entry of A from 6 to 7, all the dimensions are different. The
column space and row space have dimension r = 2. The nullspace and left nullspace
contain only the vectors x = 0 and y = 0. The matrix is invertible.

Existence of Inverses

We know that if A has a left-inverse (BA = I) and a right-inverse (AC = I), then the two
inverses are equal: B = B(AC)(BA)C = C. Now, from the rank of a matrix, it is easy to
decide which matrices actually have these inverses. Roughly speaking, an inverse exists
only when the rank is as large as possible.

The rank always satisfies r ≤ m and also r ≤ n. An m by n matrix cannot have more
than m independent rows or n independent columns. There is not space for more than m
pivots, or more than n. We want to prove that when r = m there is a right-inverse, and
Ax = b always has a solution. When r = n there is a left-inverse, and the solution (if it
exists) is unique.

Only a square matrix can have both r = m and r = n, and therefore only a square
matrix can achieve both existence and uniqueness. Only a square matrix has a two-sided
inverse.

2Q EXISTENCE: Full row rank r = m. Ax = b has at least one solution x
for every b if and only if the columns span Rm. Then A has a right-inverse C
such that AC = Im (m by m). This is possible only if m≤ n.

UNIQUENESS: Full column rank r = n. Ax = b has at most one solution x
for every b if and only if the columns are linearly independent. Then A has an
n by m left-inverse B such that BA = In. This is possible only if m≥ n.
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In the existence case, one possible solution is x = Cb, since then Ax = ACb = b. But
there will be other solutions if there are other right-inverses. The number of solutions
when the columns span Rm is 1 or ∞.

In the uniqueness case, if there is a solution to Ax = b, it has to be x = BAx = Bb. But
there may be no solution. The number of solutions is 0 or 1.

There are simple formulas for the best left and right inverses, if they exist:

One-sided inverses B = (ATA)−1AT and C = AT(AAT)−1.

Certainly BA = I and AC = I. What is not so certain is that ATA and AAT are actually
invertible. We show in Chapter 3 that ATA does have an inverse if the rank is n, and AAT

has an inverse when the rank is m. Thus the formulas make sense exactly when the rank
is as large as possible, and the one-sided inverses are found.

Example 2. Consider a simple 2 by 3 matrix of rank 2:

A =

[
4 0 0
0 5 0

]
.

Since r = m = 2, the theorem guarantees a right-inverse C:

AC =

[
4 0 0
0 5 0

]


1
4 0
0 1

5
c31 c32


 =

[
1 0
0 1

]
.

There are many right-inverses because the last row of C is completely arbitrary. This is
a case of existence but not uniqueness. The matrix A has no left-inverse because the last
column of BA is certain to be zero. The specific right-inverse C = AT(AAT)−1 chooses
c31 and c32 to be zero:

Best right-inverse AT(AAT)−1 =




4 0
0 5
0 0




[
1

16 0
0 1

25

]
=




1
4 0
0 1

5
0 0


 = C.

This is the pseudoinverse—a way of choosing the best C in Section 6.3. The transpose
of A yields an example with infinitely many left-inverses:

BAT =

[
1
4 0 b13

0 1
5 b23

]


4 0
0 5
0 0


 =

[
1 0
0 1

]
.

Now it is the last column of B that is completely arbitrary. The best left-inverse (also the
pseudoinverse) has b13 = b23 = 0. This is a “uniqueness case,” when the rank is r = n.
There are no free variables, since n− r = 0. If there is a solution it will be the only one.
You can see when this example has one solution or no solution:


4 0
0 5
0 0




[
x1

x2

]
=




b1

b2

b3


 is solvable exactly when b3 = 0.
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A rectangular matrix cannot have both existence and uniqueness. If m is different from
n, we cannot have r = m and r = n.

A square matrix is the opposite. If m = n, we cannot have one property without the
other. A square matrix has a left-inverse if and only if it has a right-inverse. There is
only one inverse, namely B = C = A−1. Existence implies uniqueness and uniqueness
implies existence, when the matrix is square. The condition for invertibility is full rank:
r = m = n. Each of these conditions is a necessary and sufficient test:

1. The columns span Rn, so Ax = b has at least one solution for every b.

2. The columns are independent, so Ax = 0 has only the solution x = 0.

This list can be made much longer, especially if we look ahead to later chapters. Every
condition is equivalent to every other, and ensures that A is invertible.

3. The rows of A span Rn.

4. The rows are linearly independent.

5. Elimination can be completed: PA = LDU , with all n pivots.

6. The determinant of A is not zero.

7. Zero is not an eigenvalue of A.

8. ATA is positive definite.

Here is a typical application to polynomials P(t) of degree n− 1. The only such
polynomial that vanishes at t1, . . . , tn is P(t)≡ 0. No other polynomial of degree n−1 can
have n roots. This is uniqueness, and it implies existence: Given any values b1, . . . ,bn,
there exists a polynomial of degree n− 1 interpolating these values: P(ti) = bi. The
point is that we are dealing with a square matrix; the number n of coefficients in P(t) =
x1 + x2t + · · ·+ xntn−1 matches the number of equations:

Interpolation
P(ti) = bi




1 t1 t2
1 · · · tn−1

1
1 t2 t2

2 · · · tn−1
2

...
...

...
...

...
1 tn t2

n · · · tn−1
n







x1

x2
...

xn


 =




b1

b2
...

bn


 .

That Vandermonde matrix is n by n and full rank. Ax = b always has a solution—a
polynomial can be passed through any bi at distinct points ti. Later we shall actually find
the determinant of A; it is not zero.

Matrices of Rank 1

Finally comes the easiest case, when the rank is as small as possible (except for the zero
matrix with rank 0), One basic theme of mathematics is, given something complicated,
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to show how it can be broken into simple pieces. For linear algebra, the simple pieces
are matrices of rank 1:

Rank 1 A =




2 1 1
4 2 2
8 4 4
−2 −1 −1


 has r = 1.

Every row is a multiple of the first row, so the row space is one-dimensional. In fact, we
can write the whole matrix as the product of a column vector and a row vector:

A = (column)(row)




2 1 1
4 2 2
8 4 4
−2 −1 −1


 =




1
2
4
−1




[
2 1 1

]
.

The product of a 4 by 1 matrix and a 1 by 3 matrix is a 4 by 3 matrix. This product has
rank 1. At the same time, the columns are all multiples of the same column vector; the
column space shares the dimension r = 1 and reduces to a line.

Every matrix of rank 1 has the simple form A = uvT = column times row.

The rows are all multiples of the same vector vT, and the columns are all multiples of u.
The row space and column space are lines—the easiest case.

Problem Set 2.4

1. True or false: If m = n, then the row space of A equals the column space. If m < n,
then the nullspace has a larger dimension than .

2. Find the dimension and construct a basis for the four subspaces associated with each
of the matrices

A =

[
0 1 4 0
0 2 8 0

]
and U =

[
0 1 4 0
0 0 0 0

]
.

3. Find the dimension and a basis for the four fundamental subspaces for

A =




1 2 0 1
0 1 1 0
1 2 0 1


 and U =




1 2 0 1
0 1 1 0
0 0 0 0


 .
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4. Describe the four subspaces in three-dimensional space associated with

A =




0 1 0
0 0 1
0 0 0


 .

5. If the product AB is the zero matrix, AB = 0, show that the column space of B is
contained in the nullspace of A. (Also the row space of A is in the left nullspace of
B, since each row of A multiplies B to give a zero row.)

6. Suppose A is an m by n matrix of rank r. Under what conditions on those numbers
does

(a) A have a two-sided inverse: AA−1 = A−1A = I?

(b) Ax = b have infinitely many solutions for every b?

7. Why is there no matrix whose row space and nullspace both contain (1,1,1)?

8. Suppose the only solution to Ax = 0 (m equations in n unknowns) is x = 0. What is
the rank and why? The columns of A are linearly .

9. Find a 1 by 3 matrix whose nullspace consists of all vectors in R3 such that x1 +
2x2 +4x3 = 0. Find a 3 by 3 matrix with that same nullspace.

10. If Ax = b always has at least one solution, show that the only solution to ATy = 0 is
y = 0. Hint: What is the rank?

11. If Ax = 0 has a nonzero solution, show that ATy = f fails to be solvable for some
right-hand sides f . Construct an example of A and f .

12. Find the rank of A and write the matrix as A = uvT:

A =




1 0 0 3
0 0 0 0
2 0 0 6


 and A =

[
2 −2
6 −6

]
.

13. If a, b, c are given with a 6= 0, choose d so that

A =

[
a b
c d

]
= uvT

has rank 1. What are the pivots?

14. Find a left-inverse and/or a right-inverse (when they exist) for

A =

[
1 1 0
0 1 1

]
and M =




1 0
1 1
0 1


 and T =

[
a b
0 a

]
.
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15. If the columns of A are linearly independent (A is m by n), then the rank is , the
nullspace is , the row space is , and there exists a -inverse.

16. (A paradox) Suppose A has a right-inverse B. Then AB = I leads to ATAB = AT or
B(ATA)−1AT. But that satisfies BA = I; it is a left-inverse. Which step is not justified?

17. Find a matrix A that has V as its row space, and a matrix B that has V as its nullspace,
if V is the subspace spanned by


1
1
0


 ,




1
2
0


 ,




1
5
0


 .

18. Find a basis for each of the four subspaces of

A =




0 1 2 3 4
0 1 2 4 6
0 0 0 1 2


 =




1 0 0
1 1 0
0 1 1







0 1 2 3 4
0 0 0 1 2
0 0 0 0 0


 .

19. If A has the same four fundamental subspaces as B, does A = cB?

20. (a) If a 7 by 9 matrix has rank 5, what are the dimensions of the four subspaces?
What is the sum of all four dimensions?

(b) If a 3 by 4 matrix has rank 3, what are its column space and left nullspace?

21. Construct a matrix with the required property, or explain why you can’t.

(a) Column space contains
[

1
1
0

]
,
[

0
0
1

]
, row space contains

[
1
2

]
,
[

2
5

]
.

(b) Column space has basis
[

1
2
3

]
, nullspace has basis

[
3
2
1

]
.

(c) Dimension of nullspace = 1+ dimension of left nullspace.
(d) Left nullspace contains

[
1
3

]
, row space contains

[
3
1

]
.

(e) Row space = column space, nullspace 6= left nullspace.

22. Without elimination, find dimensions and bases for the four subspaces for

A =




0 3 3 3
0 0 0 0
0 1 0 1


 and B =




1 1
4 4
5 5


 .

23. Suppose the 3 by 3 matrix A is invertible. Write bases for the four subspaces for A,
and also for the 3 by 6 matrix B = [A A].

24. What are the dimensions of the four subspaces for A, B, and C, if I is the 3 by 3
identity matrix and 0 is the 3 by 2 zero matrix?

A =
[
I 0

]
and B =

[
I I

0T 0T

]
and C =

[
0
]
.
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25. Which subspaces are the same for these matrices of different sizes?

(a)
[
A
]

and

[
A
A

]
. (b)

[
A
A

]
and

[
A A
A A

]
.

Prove that all three matrices have the same rank r.

26. If the entries of a 3 by 3 matrix are chosen randomly between 0 and 1, what are the
most likely dimensions of the four subspaces? What if the matrix is 3 by 5?

27. (Important) A is an m by n matrix of rank r. Suppose there are right-hand sides b for
which Ax = b has no solution.

(a) What inequalities (< or ≤) must be true between m, n, and r?

(b) How do you know that ATy = 0 has a nonzero solution?

28. Construct a matrix with (1,0,1) and (1,2,0) as a basis for its row space and its
column space. Why can’t this be a basis for the row space and nullspace?

29. Without computing A, find bases for the four fundamental subspaces:

A =




1 0 0
6 1 0
9 8 1







1 2 3 4
0 1 2 3
0 0 1 2


 .

30. If you exchange the first two rows of a matrix A, which of the four subspaces stay
the same? If y = (1,2,3,4) is in the left nullspace of A, write down a vector in the
left nullspace of the new matrix.

31. Explain why v = (1,0,−1) cannot be a row of A and also be in the nullspace.

32. Describe the four subspaces of R3 associated with

A =




0 1 0
0 0 1
0 0 0


 and I +A =




1 1 0
0 1 1
0 0 1


 .

33. (Left nullspace) Add the extra column b and reduce A to echelon form:

[
A b

]
=




1 2 3 b1

4 5 6 b2

7 8 9 b3


→




1 2 3 b1

0 −3 −6 b2−4b1

0 0 0 b3−2b2 +b1


 .

A combination of the rows of A has produced the zero row. What combination is it?
(Look at b3−2b2 +b1 on the right-hand side.) Which vectors are in the nullspace of
AT and which are in the nullspace of A?
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34. Following the method of Problem 33, reduce A to echelon form and look at zero
rows. The b column tells which combinations you have taken of the rows:

(a)




1 2 b1

3 4 b2

4 6 b3


. (b)




1 2 b1

2 3 b2

2 4 b3

2 5 b4


.

From the b column after elimination, read off m−r basis vectors in the left nullspace
of A (combinations of rows that give zero).

35. Suppose A is the sum of two matrices of rank one: A = uvT +wzT.

(a) Which vectors span the column space of A?

(b) Which vectors span the row space of A?

(c) The rank is less than 2 if or if .

(d) Compute A and its rank if u = z = (1,0,0) and v = w = (0,0,1).

36. Without multiplying matrices, find bases for the row and column spaces of A:

A =




1 2
4 5
2 7




[
3 0 3
1 1 2

]
.

How do you know from these shapes that A is not invertible?

37. True or false (with a reason or a counterexample)?

(a) A and AT have the same number of pivots.

(b) A and AT have the same left nullspace.

(c) If the row space equals the column space then AT = A.

(d) If AT =−A then the row space of A equals the column space.

38. If AB = 0, the columns of B are in the nullspace of A. If those vectors are in Rn,
prove that rank(A)+ rank(B)≤ n.

39. Can tic-tac-toe be completed (5 ones and 4 zeros in A) so that rank(A) = 2 but neither
side passed up a winning move?

40. Construct any 2 by 3 matrix of rank 1. Copy Figure 2.5 and put one vector in each
subspace (two in the nullspace). Which vectors are orthogonal?

41. Redraw Figure 2.5 for a 3 by 2 matrix of rank r = 2. Which subspace is Z (zero
vector only)? The nullspace part of any vector x in R2 is xn = .
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2.5 Graphs and Networks

I am not entirely happy with the 3 by 4 matrix in the previous section. From a theoretical
point of view it was very satisfactory; the four subspaces were computable and their
dimensions r, n− r, r, m− r were nonzero. But the example was not produced by a
genuine application. It did not show how fundamental those subspaces really are.

This section introduces a class of rectangular matrices with two advantages. They
are simple, and they are important. They are incidence matrices of graphs, and every
entry is 1, −1, or 0. What is remarkable is that the same is true of L and U and basis
vectors for all four subspaces. Those subspaces play a central role in network theory.
We emphasize that the word “graph” does not refer to the graph of a function (like a
parabola for y = x2). There is a second meaning, completely different, which is closer to
computer science than to calculus—and it is easy to explain. This section is optional, but
it gives a chance to see rectangular matrices in action—and how the square symmetric
matrix ATA turns up in the end.

A graph consists of a set of vertices or nodes, and a set of edges that connect them.
The graph in Figure 2.6 has 4 nodes and 5 edges. It does not have an edge between
nodes 1 and 4 (and edges from a node to itself are forbidden). This graph is directed,
because of the arrow in each edge.

The edgenode incidence matrix is 5 by 4, with a row for every edge. If the edge goes
from node j to node k, then that row has −1 in column j and +1 in column k. The
incidence matrix A is shown next to the graph (and you could recover the graph if you
only had A). Row 1 shows the edge from node 1 to node 2. Row 5 comes from the fifth
edge, from node 3 to node 4.

Figure 2.6: A directed graph (5 edges, 4 nodes, 2 loops) and its incidence matrix A.

Notice the columns of A. Column 3 gives information about node 3—it tells which
edges enter and leave. Edges 2 and 3 go in, edge 5 goes out (with the minus sign). A is
sometimes called the connectivity matrix, or the topology matrix. When the graph has m
edges and n nodes, A is m by n (and normally m > n). Its transpose is the “node-edge”
incidence matrix.

Each of the four fundamental subspaces has a meaning in terms of the graph. We can
do linear algebra, or write about voltages and currents. We do both!
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Nullspace of A: Is there a combination of the columns that gives Ax = 0? Normally
the answer comes from elimination, but here it comes at a glance. The columns add up
to the zero column. The nullspace contains x = (1,1,1,1), since Ax = 0. The equation
Ax = b does not have a unique solution (if it has a solution at all). Any “constant vector”
x = (c,c,c,c) can be added to any particular solution of Ax = b. The complete solution
has this arbitrary constant c (like the +C when we integrate in calculus).

This has a meaning if we think of x1, x2, x3, x4 as the potentials (the voltages) at the
nodes. The five components of Ax give the differences in potential across the five edges.
The difference across edge 1 is x2− x1, from the ±1 in the first row.

The equation Ax = b asks: Given the differences b1, . . . ,b5, find the actual potentials
x1, . . . ,x4. But that is impossible to do! We can raise or lower all the potentials by the
same constant c, and the differences will not change—confirming that x = (c,c,c,c) is in
the nullspace of A. Those are the only vectors in the nullspace, since Ax = 0 means equal
potentials across every edge. The nullspace of this incidence matrix is one-dimensional.
The rank is 4−1 = 3.

Column Space: For which differences b1, . . . ,b5 can we solve Ax = b? To find a
direct test, look back at the matrix. Row 1 plus row 3 equals row 2. On the right-hand
side we need b1 +b3 = b2, or no solution is possible. Similarly, row 3 plus row 5 is row
4. The right-hand side must satisfy b3 + b5 = b4, for elimination to arrive at 0 = 0. To
repeat, if b is in the column space, then

b1−b2 +b3 = 0 and b3−b4 +b5 = 0. (1)

Continuing the search, we also find that rows 1+4 equal rows 2+5. But this is nothing
new; subtracting the equations in (1) already produces b1 + b4 = b2 + b5. There are
two conditions on the five components, because the column space has dimension 5−2.
Those conditions would come from elimination, but here they have a meaning on the
graph.

Loops: Kirchhoff’s Voltage Law says that potential differences around a loop must
add to zero, Around the upper loop in Figure 2.6, the differences satisfy (x2−x1)+(x3−
x2) = (x3− x1). Those differences are b1 +b3 = b2. To circle the lower loop and arrive
back at the same potential, we need b3 +b5 = b4.

2R The test for b to be in the column space is Kirchhoff’s Voltage Law:

The sum of potential differences around a loop must be zero.

Left Nullspace: To solve ATy = 0, we find its meaning on the graph. The vector y has
five components, one for each edge. These numbers represent currents flowing along
the five edges. Since AT is 4 by 5, the equations ATy = 0 give four conditions on those
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five currents. They are conditions of “conservation” at each node: Flow in equals flow
out at every node:

ATy = 0

−y1− y2 = 0
y1− y3− y4 = 0
y2 + y3− y5 = 0

y4 + y5 = 0

Total current to node 1 is zero
to node 2
to node 3
to node 4

The beauty of network theory is that both A and AT have important roles.
Solving ATy = 0 means finding a set of currents that do not “pile up” at any node. The

traffic keeps circulating, and the simplest solutions are currents around small loops.
Our graph has two loops, and we send 1 amp of current around each loop:

Loop vectors yT
1 =

[
1 −1 1 0 0

]
and yT

2 =
[
0 0 1 −1 1

]
.

Each loop produces a vector y in the left nullspace. The component +1 or −1 indicates
whether the current goes with or against the arrow. The combinations of y1 and y2 fill
the left nullspace, so y1 and y2 are a basis (the dimension had to be m− r = 5−3 = 2).
In fact y1− y2 = (1,−1,0,1,−1) gives the big loop around the outside of the graph.

The column space and left nullspace are closely related. The left nullspace contains
y1 = (1,1,1,0,0), and the vectors in the column space satisfy b1− b2 + b3 = 0. Then
yTb = 0: Vectors in the column space and left nullspace are perpendicular! That is soon
to become Part Two of the “Fundamental Theorem of Linear Algebra.”

Row Space: The row space of A contains vectors in R4, but not all vectors. Its
dimension is the rank r = 3. Elimination will find three independent rows, and we can
also look to the graph. The first three rows are dependent (row 1 + row 3 = row 2, and
those edges form a loop). Rows 1,2,4 are independent because edges 1,2,4 contain no
loops.

Rows 1, 2, 4 are a basis for the row space. In each row the entries add to zero. Every
combination ( f1, f2, f3, f4) in the row space will have that same property:

f in row space f1 + f2 + f3 + f4 = 0 x in nullspace x = c(1,1,1,1) (2)

Again this illustrates the Fundamental Theorem: The row space is perpendicular to the
nullspace. If f is in the row space and x is in the nullspace then f Tx = 0.

For AT, the basic law of network theory is Kirchhoff’s Current Law. The total flow
into every node is zero. The numbers f1, f2, f3, f4 are current sources into the nodes. The
source f1 must balance−y1−y2, which is the flow leaving node 1 (along edges 1 and 2).
That is the first equation in ATy = f . Similarly at the other three nodes—conservation
of charge requires flow in = flow out. The beautiful thing is that AT is exactly the right
matrix for the Current Law.

2S The equations ATy = f at the nodes express Kirchhoff’s Current Law:



132 Chapter 2 Vector Spaces

The net current into every node is zero. Flow in = Flow out.

This law can only be satisfied if the total current from outside is f1 + f2 + f3 +
f4 = 0. With f = 0, the law ATy = 0 is satisfied by a current that goes around
a loop.

Spanning Trees and Independent Rows

Every component of y1 and y2 in the left nullspace is 1 or −1 or 0 (from loop flows).
The same is true of x = (1,1,1,1) in the nullspace, and all the entries in PA = LDU! The
key point is that every elimination step has a meaning for the graph.

You can see it in the first step for our matrix A: subtract row 1 from row 2. This
replaces edge 2 by a new edge “1 minus 2”: That elimination step destroys an edge and

b
edge 1

edge 2
edge 1−2

row 1 −1 1 0 0

row 2 −1 0 1 0

row 1−2 0 1 −1 0

creates a new edge. Here the new edge “1− 2” is just the old edge 3 in the opposite
direction. The next elimination step will produce zeros in row 3 of the matrix. This
shows that rows 1, 2, 3 are dependent. Rows are dependent if the corresponding edges
contain a loop.

At the end of elimination we have a full set of r independent rows. Those r edges
form a tree—a graph with no loops. Our graph has r = 3, and edges 1, 2, 4 form one
possible tree. The full name is spanning tree because the tree “spans” all nodes of the
graph. A spanning tree has n−1 edges if the graph is connected, and including one more
edge will produce a loop.

In the language of linear algebra, n−1 is the rank of the incidence matrix A. The row
space has dimension n−1. The spanning tree from elimination gives a basis for that row
space—each edge in the tree corresponds to a row in the basis.

The fundamental theorem of linear algebra connects the dimensions of the subspaces:

Nullspace: dimension 1, contains x = (1, . . . ,1).

Column space: dimension r = n−1, any n−1 columns are independent.

Row space: dimension r = n−1, independent rows from any spanning tree.

Left nullspace: dimension m− r = m−n+1, contains y’s from the loops.

Those four lines give Euler’s formula, which in some way is the first theorem in topol-
ogy. It counts zero-dimensional nodes minus one-dimensional edges plus two-dimensional
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loops. Now it has a linear algebra proof for any connected graph:

(# of nodes)− (# of edges)+(# of loops) = (n)− (m)+(m−n+1) = 1. (3)

For a single loop of 10 nodes and 10 edges, the Euler number is 10−10+1. If those 10
nodes are each connected to an eleventh node in the center, then 11−20+10 is still 1.

Every vector f in the row space has xT f = f1+ · · ·+ fn = 0—the currents from outside
add to zero. Every vector b in the column space has yTb = 0—the potential differences
add to zero around all loops. In a moment we link x to y by a third law (Ohm’s law for
each resistor). First we stay with the matrix A for an application that seems frivolous
but is not.

The Ranking of Football Teams

At the end of the season, the polls rank college football teams. The ranking is mostly an
average of opinions, and it sometimes becomes vague after the top dozen colleges. We
want to rank all teams on a more mathematical basis.

The first step is to recognize the graph. If team j played team k, there is an edge
between them. The teams are the nodes, and the games are the edges. There are a few
hundred nodes and a few thousand edges—which will be given a direction by an arrow
from the visiting team to the home team. Figure 2.7 shows part of the Ivy League,
and some serious teams, and also a college that is not famous for big time football.
Fortunately for that college (from which I am writing these words) the graph is not
connected. Mathematically speaking, we cannot prove that MIT is not number 1 (unless
it happens to play a game against somebody).

b b

b

Harvard Yale

Princeton

)bb

b bb

b b

b

Purdue Ohio State

MIT

Michigan USC Texas

Notre Dame Georgia Tech

Figure 2.7: Part of the graph for college football.

If football were perfectly consistent, we could assign a “potential” x j to every team.
Then if visiting team v played home team h, the one with higher potential would win. In
the ideal case, the difference b in the score would exactly equal the difference xh− xv in
their potentials. They wouldn’t even have to play the game! There would be complete
agreement that the team with highest potential is the best.

This method has two difficulties (at least). We are trying to find a number x for every
team, and we want xh− xv = bi, for every game. That means a few thousand equations
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and only a few hundred unknowns. The equations xh− xv = bi go into a linear system
Ax = b, in which A is an incidence matrix. Every game has a row, with +1 in column h
and −1 in column v—to indicate which teams are in that game.

First difficulty: If b is not in the column space there is no solution. The scores must
fit perfectly or exact potentials cannot be found. Second difficulty: If A has nonzero
vectors in its nullspace, the potentials x are not well determined. In the first case x does
not exist; in the second case x is not unique. Probably both difficulties are present.

The nullspace always contains the vector of 1s, since A looks only at the differences
xh− xv. To determine the potentials we can arbitrarily assign zero potential to Harvard.
(I am speaking mathematically, not meanly.) But if the graph is not connected, every
separate piece of the graph contributes a vector to the nullspace. There is even the vector
with xMIT = 1 and all other x j = 0. We have to ground not only Harvard but one team
in each piece. (There is nothing unfair in assigning zero potential; if all other potentials
are below zero then the grounded team ranks first.) The dimension of the nullspace is
the number of pieces of the graph—and there will be no way to rank one piece against
another, since they play no games.

The column space looks harder to describe. Which scores fit perfectly with a set of
potentials? Certainly Ax = b is unsolvable if Harvard beats Yale, Yale beats Princeton,
and Princeton beats Harvard. More than that, the score differences in that loop of games
have to add to zero:

Kirchhoff’s law for score differences bHY +bYP +bPH = 0.

This is also a law of linear algebra. Ax = b can be solved when b satisfies the same linear
dependencies as the rows of A. Then elimination leads to 0 = 0.

In reality, b is almost certainly not in the column space. Football scores are not that
consistent. To obtain a ranking we can use least squares: Make Ax as close as possible
to b. That is in Chapter 3, and we mention only one adjustment. The winner gets a bonus
of 50 or even 100 points on top of the score difference. Otherwise winning by 1 is too
close to losing by 1. This brings the computed rankings very close to the polls, and Dr.
Leake (Notre Dame) gave a full analysis in Management Science in Sports (1976).

After writing that subsection, I found the following in the New York Times:

In its final rankings for 1985, the computer placed Miami (10-2) in the sev-
enth spot above Tennessee (9-1-2). A few days after publication, packages
containing oranges and angry letters from disgruntled Tennessee fans began
arriving at the Times sports department. The irritation stems from the fact that
Tennessee thumped Miami 35-7 in the Sugar Bowl. Final AP and UPI polls
ranked Tennessee fourth, with Miami significantly lower.

Yesterday morning nine cartons of oranges arrived at the loading dock. They
were sent to Bellevue Hospital with a warning that the quality and contents of
the oranges were uncertain.
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So much for that application of linear algebra.

Networks and Discrete Applied Mathematics

A graph becomes a network when numbers c1, . . . ,cm are assigned to the edges. The
number ci can be the length of edge i, or its capacity, or its stiffness (if it contains a
spring), or its conductance (if it contains a resistor). Those numbers go into a diagonal
matrix C, which is m by m. C reflects “material properties,” in contrast to the incidence
matrix A—which gives information about the connections.

Our description will be in electrical terms. On edge i, the conductance is ci and the
resistance is 1/ci. Ohm’s Law says that the current yi through the resistor is proportional
to the voltage drop ei:

Ohm’s Law yi = ciei (current) = (conductance)(voltage drop).

This is also written E = IR, voltage drop equals current times resistance. As a vector
equation on all edges at once, Ohm’s Law is y = Ce.

We need Kirchhoff’s Voltage Law and Current Law to complete the framework:

KVL: The voltage drops around each loop add to zero.

KCL: The currents yi (and fi) into each node add to zero.

The voltage law allows us to assign potentials x1, . . . ,xn to the nodes. Then the dif-
ferences around a loop give a sum like (x2− x1)+ (x3− x2)+ (x1− x3) = 0, in which
everything cancels. The current law asks us to add the currents into each node by the
multiplication ATy. If there are no external sources of current, Kirchhoff’s Current Law
is ATy = 0.

The other equation is Ohm’s Law, but we need to find the voltage drop e across
the resistor. The multiplication Ax gave the potential difference between the nodes.
Reversing the signs, −Ax gives the drop in potential. Part of that drop may be due to a
battery in the edge of strength bi. The rest of the drop is e = b−Ax across the resistor:

Ohm’s Law y = C(b−Ax) or C−1y+Ax = b. (4)

The fundamental equations of equilibrium combine Ohm and Kirchhoff into a cen-
tral problem of applied mathematics. These equations appear everywhere:

Equilibrium equations
C−1y + Ax = b
ATy = f .

(5)

That is a linear symmetric system, from which e has disappeared. The unknowns are the
currents y and the potentials x. You see the symmetric block matrix:

Block form

[
C−1 A
AT 0

][
y
x

]
=

[
b
f

]
. (6)
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For block elimination the pivot is C−1, the multiplier is ATC, and subtraction knocks out
AT below the pivot. The result is

[
C−1 A

0 −ATCA

][
y
x

]
=

[
b

f −ATCb

]

The equation for x alone is in the bottom row, with the symmetric matrix ATCA:

Fundamental equation ATCAx = ATCbł f . (7)

Then back-substitution in the first equation produces y. Nothing mysterious—substitute
y = C(b−Ax) into ATy = f to reach (7).

Important Remark One potential must be fixed in advance: xn = 0. The nth node
is grounded, and the nth column of the original incidence matrix is removed. The re-
sulting matrix is what we now mean by A: its n−1 columns are independent. The square
matrix ATCA, which is the key to solving equation (7) for x, is an invertible matrix of
order n−1:

[
AT

]

(n−1)×m


 C




m×m


 A




m×(n−1)

=


 ATCA




(n−1)×(n−1)

Example 1. Suppose a battery b3 and a current source f2 (and five resistors) connect
four nodes. Node 4 is grounded and the potential x4 = 0 is fixed. The first thing is the

current law ATy = f at nodes 1, 2, 3:

−y1 − y3 − y5 = 0
y1 − y2 = f2

y2 + y3 − y4 = 0
and AT =



−1 0 −1 0 −1
1 −1 0 0 0
0 1 1 −1 0


 .

No equation is written for node 4, where the current law is y4 +y5 + f2 = 0. This follows
from adding the other three equations.

The other equation is C−1y + Ax = b. The potentials x are connected to the currents
y by Ohm’s Law. The diagonal matrix C contains the five conductances ci = 1/Ri. The
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right-hand side accounts for the battery of strength b3 in edge 3. The block form has
C−1y+Ax = b above ATy = f :

[
C−1 A
AT 0

][
y
x

]
=




R1 −1 1 0
R2 0 −1 1

R3 −1 0 1
R4 0 0 −1

R5 −1 0 0
−1 0 −1 0 −1
1 −1 0 0 0
0 1 1 −1 0







y1

y2

y3

y4

y5

x1

x2

x3




=




0
0
b3

0
0
0
f2

0




The system is 8 by 8, with five currents and three potentials. Elimination of y’s reduces
to the 3 by 3 system ATCAx = ATCb− f . The matrix ATCA contains the reciprocals
ci = 1/Ri (because in elimination you divide by the pivots). We also show the fourth
row and column, from the grounded node, outside the 3 by 3 matrix:

ATCA =




c1 + c3 + c5 −c1 −c3

−c1 c1 + c2 −c2

−c3 −c2 c2 + c3 + c4




−c5 0 −c4

−c5 (node 1)
0 (node 2)
−c4 (node 3)

c4 + c5 (node 4)

The first entry is 1 + 1 + 1, or c1 + c3 + c5 when C is included, because edges 1, 3, 5
touch node 1. The next diagonal entry is 1+1 or c1 + c2, from the edges touching node
2. Off the diagonal the c’s appear with minus signs. The edges to the grounded node
4 belong in the fourth row and column, which are deleted when column 4 is removed
from A (making ATCA invertible). The 4 by 4 matrix would have all rows and columns
adding to zero, and (1,1,1,1) would be in its nullspace.

Notice that ATCA is symmetric. It has positive pivots and it comes from the basic
framework of applied mathematics illustrated in Figure 2.8.

x

e = b − Ax

ATy = f

A (Voltage Law) AT (Current Law)

y = Ceb

f

C (Ohm’s Law)

Figure 2.8: The framework for equilibrium: sources b and f , three steps to ATCA.

In mechanics, x and y become displacements and stresses. In fluids, the unknowns
are pressure and flow rate. In statistics, e is the error and x is the best least-squares fit to
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the data. These matrix equations and the corresponding differential equations are in our
textbook Introduction to Applied Mathematics, and the new Applied Mathematics and
Scientific Computing. (See www.wellesleycambridge.com.)

We end this chapter at that high point—the formulation of a fundamental problem in
applied mathematics. Often that requires more insight than the solution of the problem.
We solved linear equations in Chapter 1, as the first step in linear algebra. To set up the
equations has required the deeper insight of Chapter 2. The contribution of mathematics,
and of people, is not computation but intelligence.

Problem Set 2.5

1. For the 3-node triangular graph in the figure following, write the 3 by 3 incidence
matrix A. Find a solution to Ax = 0 and describe all other vectors in the nullspace of
A. Find a solution to ATy = 0 and describe all other vectors in the left nullspace of
A.

b b

b

edge 1 edge 3

node 1

edge 2node 2 node 3
b b

b

b

y1 y2

x1

y3x2 x3

x4
y4 y6

y5

2. For the same 3 by 3 matrix, show directly from the columns that every vector b in
the column space will satisfy b1 +b2−b3 = 0. Derive the same thing from the three
rows—the equations in the system Ax = b. What does that mean about potential
differences around a loop?

3. Show directly from the rows that every vector f in the row space will satisfy f1 +
f2 + f3 = 0. Derive the same thing from the three equations ATy = f . What does that
mean when the f ’s are currents into the nodes?

4. Compute the 3 by 3 matrix ATA, and show that it is symmetric but singular—what
vectors are in its nullspace? Removing the last column of A (and last row of AT)
leaves the 2 by 2 matrix in the upper left corner; show that it is not singular.

5. Put the diagonal matrix C with entries c1, c2, c3 in the middle and compute ATCA.
Show again that the 2 by 2 matrix in the upper left corner is invertible.

6. Write the 6 by 4 incidence matrix A for the second graph in the figure. The vector
(1,1,1,1) is in the nullspace of A, but now there will be m−n + 1 = 3 independent
vectors that satisfy ATy = 0. Find three vectors y and connect them to the loops in
the graph.
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7. If that second graph represents six games between four teams, and the score dif-
ferences are b1, . . . ,b6, when is it possible to assign potentials x1, . . . ,x4 so that the
potential differences agree with the b’s? You are finding (from Kirchhoff or from
elimination) the conditions that make Ax = b solvable.

8. Write down the dimensions of the four fundamental subspaces for this 6 by 4 inci-
dence matrix, and a basis for each subspace.

9. Compute ATA and ATCA, where the 6 by 6 diagonal matrix C has entries c1, . . . ,c6.
How can you tell from the graph where the c’s will appear on the main diagonal of
ATCA?

10. Draw a graph with numbered and directed edges (and numbered nodes) whose inci-
dence matrix is

A =




−1 1 0 0
−1 0 1 0
0 1 0 −1
0 0 −1 1


 .

Is this graph a tree? (Are the rows of A independent?) Show that removing the last
edge produces a spanning tree. Then the remaining rows are a basis for ?

11. With the last column removed from the preceding A, and with the numbers 1. 2, 2, 1
on the diagonal of C, write out the 7 by 7 system

C−1y + Ax = 0
ATy = f .

Eliminating y1, y2, y3, y4 leaves three equations ATCAx = − f for x1, x2, x3. Solve
the equations when f = (1,1,6). With those currents entering nodes 1, 2, 3 of the
network, what are the potentials at the nodes and currents on the edges?

12. If A is a 12 by 7 incidence matrix from a connected graph, what is its rank? How
many free variables are there in the solution to Ax = b? How many free variables
are there in the solution to ATy = f ? How many edges must be removed to leave a
spanning tree?

13. In the graph above with 4 nodes and 6 edges, find all 16 spanning trees.

14. If MIT beats Harvard 35-0, Yale ties Harvard, and Princeton beats Yale 7-6, what
score differences in the other 3 games (H-P MIT-P, MIT-Y) will allow potential dif-
ferences that agree with the score differences? If the score differences are known for
the games in a spanning tree, they are known for all games.

15. In our method for football rankings, should the strength of the opposition be consid-
ered — or is that already built in?
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16. If there is an edge between every pair of nodes (a complete graph), how many edges
are there? The graph has n nodes, and edges from a node to itself are not allowed.

17. For both graphs drawn below, verify Euler’s formula:

(# of nodes) − (# of edges) + (# of loops) = 1.

18. Multiply matrices to find ATA, and guess how its entries come from the graph:

(a) The diagonal of ATA tells how many into each node.

(b) The off-diagonals −1 or 0 tell which pairs of nodes are .

19. Why does the nullspace of ATA contain (1,1,1,1)? What is its rank?

20. Why does a complete graph with n = 6 nodes have m = 15 edges? A spanning tree
connecting all six nodes has edges. There are nn−2 = 64 spanning trees!

21. The adjacency matrix of a graph has Mi j = 1 if nodes i and j are connected by an
edge (otherwise Mi j = 0). For the graph in Problem 6 with 6 nodes and 4 edges,
write down M and also M2. Why does (M2)i j count the number of 2-step paths from
node i to node j?

2.6 Linear Transformations

We know how a matrix moves subspaces around when we multiply by A. The nullspace
goes into the zero vector. All vectors go into the column space, since Ax is always a
combination of the columns. You will soon see something beautiful—that A takes its
row space into its column space, and on those spaces of dimension r it is 100 percent in-
vertible. That is the real action of A. It is partly hidden by nullspaces and left nullspaces,
which lie at right angles and go their own way (toward zero).

What matters now is what happens inside the space—which means inside n-dimensional
space, if A is n by n. That demands a closer look.

Suppose x is an n-dimensional vector. When A multiplies x, it transforms that vector
into a new vector Ax. This happens at every point x of the n-dimensional space Rn.
The whole space is transformed, or “mapped into itself,” by the matrix A. Figure 2.9
illustrates four transformations that come from matrices:
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A =

[
c 0
0 c

] 1. A multiple of the identity matrix, A = cI, stretches every vector
by the same factor c. The whole space expands or contracts (or
somehow goes through the origin and out the opposite side, when
c is negative).

A =

[
0 −1
1 0

] 2. A rotation matrix turns the whole space around the origin. This
example turns all vectors through 90°, transforming every point
(x,y) to (−y,x).

A =

[
0 1
1 0

] 3. A reflection matrix transforms every vector into its image on
the opposite side of a mirror. In this example the mirror is the
45° line y = x, and a point like (2,2) is unchanged. A point like
(2,−2) is reversed to (−2,2). On a combination like v = (2,2)+
(2,−2) = (4,0), the matrix leaves one part and reverses the other
part. The output is Av = (2,2)+(−2,2) = (0,4)
That reflection matrix is also a permutation matrix! It is alge-
braically so simple, sending (x,y) to (y,x), that the geometric pic-
ture was concealed.

A =

[
1 0
0 0

] 4. A projection matrix takes the whole space onto a lower-
dimensional subspace (not invertible). The example transforms
each vector (x,y) in the plane to the nearest point (x,0) on the hor-
izontal axis. That axis is the column space of A. The y-axis that
projects to (0,0) is the nullspace.

(cx, cy)

(x, y)

stretching

(−y, x)

(x, y)

90° rotation

(y, x)

(x, y)

reflection (45° mirror)

(x, y)

(x, 0)

projection on axis

Figure 2.9: Transformations of the plane by four matrices.

Those examples could be lifted into three dimensions. There are matrices to stretch
the earth or spin it or reflect it across the plane of the equator (forth pole transforming to
south pole). There is a matrix that projects everything onto that plane (both poles to the
center). It is also important to recognize that matrices cannot do everything, and some
transformations T (x) are not possible with Ax:

(i) It is impossible to move the origin, since A0 = 0 for every matrix.

(ii) If the vector x goes to x′, then 2x must go to 2x′. in general cx must go to cx′, since
A(cx) = c(Ax).

(iii) If the vectors x and y go to x′ and y′, then their sum x+ y must go to x′+ y′—since
A(x+ y) = Ax+Ay.

Matrix multiplication imposes those rules on the transformation. The second rule con-
tains the first (take c = 0 to get A0 = 0). We saw rule (iii) in action when (4,0) was
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reflected across the 45° line. It was split into (2,2) + (2,−2) and the two parts were
reflected separately. The same could be done for projections: split, project separately,
and add the projections. These rules apply to any transformation that comes from a
matrix.

Their importance has earned them a name: Transformations that obey rules (i)–(iii)
are called linear transformations. The rules can be combined into one requirement:

2T For all numbers c and d and all vectors x and y, matrix multiplication
satisfies the rule of linearity:

A(cx+dy) = c(Ax)+d(Ay). (1)

Every transformation T (x) that meets this requirement is a linear transforma-
tion.

Any matrix leads immediately to a linear transformation. The more interesting question
is in the opposite direction: Does every linear transformation lead to a matrix? The
object of this section is to find the answer, yes. This is the foundation of an approach
to linear algebra—starting with property (1) and developing its consequences—that is
much more abstract than the main approach in this book. We preferred to begin directly
with matrices, and now we see how they represent linear transformations.

A transformation need not go from Rn to the same space Rn. It is absolutely permitted
to transform vectors in Rn to vectors in a different space Rm. That is exactly what is done
by an m by n matrix! The original vector x has n components, and the transformed vector
Ax has m components. The rule of linearity is equally satisfied by rectangular matrices,
so they also produce linear transformations.

Having gone that far, there is no reason to stop. The operations in the linearity con-
dition (1) are addition and scalar multiplication, but x and y need not be column vectors
in Rn. Those are not the only spaces. By definition, any vector space allows the com-
binations cx + dy—the “vectors” are x and y, but they may actually be polynomials or
matrices or functions x(t) and y(t). As long as the transformation satisfies equation (1),
it is linear.

We take as examples the spaces Pn, in which the vectors are polynomials p(t) of
degree n. They look like p = a0 +a1t + · · ·+antn, and the dimension of the vector space
is n+1 (because with the constant term, there are n+1 coefficients).

Example 1. The operation of differentiation, A = d/dt, is linear:

Ap(t) =
d
dt

(a0 +a1t + · · ·+antn) = a1 + · · ·+nantn−1. (2)

The nullspace of this A is the one-dimensional space of constants: da0/dt = 0. The
column space is the n-dimensional space Pn−1; the right-hand side of equation (2) is
always in that space. The sum of nullity (= 1) and rank (= n) is the dimension of the
original space Pn.
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Example 2. Integration from 0 to t is also linear (it takes Pn to Pn+1):

Ap(t) =
∫ t

0
(a0 + · · ·+antn)dt = a0t + · · ·+ an

n+1
tn+1. (3)

This time there is no nullspace (except for the zero vector, as always!) but integration
does not produce all polynomials in Pn+1. The right side of equation (3) has no constant
term. Probably the constant polynomials will be the left nullspace.

Example 3. Multiplication by a fixed polynomial like 2+3t is linear:

Ap(t) = (2+3t)(a0 + · · ·+antn) = 2a0 + · · ·+3antn+1.

Again this transforms Pn to Pn+1, with no nullspace except p = 0.

In these examples (and in almost all examples), linearity is not difficult to verify. It
hardly even seems interesting. If it is there, it is practically impossible to miss. Nev-
ertheless, it is the most important property a transformation can have1. Of course most
transformations are not linear—for example, to square the polynomial (Ap = p2), or to
add 1 (Ap = p + 1), or to keep the positive coefficients (A(t− t2) = t). It will be linear
transformations, and only those, that lead us back to matrices.

Transformations Represented by Matrices

Linearity has a crucial consequence: If we know Ax for each vector in a basis, then we
know Ax for each vector in the entire space. Suppose the basis consists of the n vectors
x1, . . . ,xn. Every other vector x is a combination of those particular vectors (they span
the space). Then linearity determines Ax:

Linearity If x = c1x1 + · · ·+ cnxn then Ax = c1(Ax1)+ · · ·+ cn(Axn). (4)

The transformation T (x) = Ax has no freedom left, after it has decided what to do with
the basis vectors. The rest is determined by linearity. The requirement (1) for two vectors
x and y leads to condition (4) for n vectors x1, . . . ,xn. The transformation does have a
free hand with the vectors in the basis (they are independent). When those are settled,
the transformation of every vector is settled.

Example 4. What linear transformation takes x1 and x2 to Ax1 and Ax2?

x1 =

[
1
0

]
goes to Ax1 =




2
3
4


 ; x2 =

[
0
1

]
goes to Ax2 =




4
6
8


 .

It must be multiplication T (x) = Ax by the matrix

A =




2 4
3 6
4 8


 .

1Invertibility is perhaps in second place as an important property.
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Starting with a different basis (1,1) and (2,−1), this same A is also the only linear
transformation with

A

[
1
1

]
=




6
9

12


 and A

[
2
−1

]
=




0
0
0


 .

Next we find matrices that represent differentiation and integration. First we must
decide on a basis. For the polynomials of degree 3 there is a natural choice for the four
basis vectors:

Basis for P3 p1 = 1, p2 = t, p3 = t2, p4 = t3.

That basis is not unique (it never is), but some choice is necessary and this is the most
convenient. The derivatives of those four basis vectors are 0, 1, 2t, 3t2:

Action of d/dt Ap1 = 0, Ap2 = p1, Ap3 = 2p2, Ap4 = 3p3. (5)

“d/dt” is acting exactly like a matrix, but which matrix? Suppose we were in the usual
four-dimensional space with the usual basis—the coordinate vectors p1 = (1,0,0,0),
p2 = (0,1,0,0), p3 = (0,0,1,0), p4 = (0,0,0,1). The matrix is decided by equation (5):

Differentiation matrix Adiff =




0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0


 .

Ap1 is its first column, which is zero. Ap2 is the second column, which is p1. Ap3 is
2p2 and Ap4 is 3p3. The nullspace contains p1 (the derivative of a constant is zero).
The column space contains p1, p2, p3 (the derivative of a cubic is a quadratic). The
derivative of a combination like p = 2 + t− t2− t3 is decided by linearity, and there is
nothing new about that—it is the way we all differentiate. It would be crazy to memorize
the derivative of every polynomial.

The matrix can differentiate that p(t), because matrices build in linearity!

d p
dt

= Ap−→




0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0







2
1
−1
−1


 =




1
−2
−3
0


−→ 1−2t−3t2.

In short, the matrix carries all the essential information. If the basis is known, and the
matrix is known, then the transformation of every vector is known.

The coding of the information is simple. To transform a space to itself, one basis is
enough. A transformation from one space to another requires a basis for each.
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2U Suppose the vectors x1, . . . ,xn are a basis for the space V, and vectors
y1, . . . ,ym are a basis for W. Each linear transformation T from V to W is
represented by a matrix A. The jth column is found by applying T to the jth
basis vector x j, and writing T (x j) as a combination of the y’s:

Column j of A T (x j) = Ax j = a1 jy1 +a2 jy2 + · · ·+am jym. (6)

For the differentiation matrix, column 1 came from the first basis vector p1 = 1. Its
derivative is zero, so column 1 is zero. The last column came from (d/dt)t3 = 3t2. Since
3t2 = 0p1 +0p2 +3p3 +0p4, the last column contained 0, 0, 3. 0. The rule (6) constructs
the matrix, a column at a time.

We do the same for integration. That goes from cubics to quartics, transforming
V = P3 into W = P4, so we need a basis for W. The natural choice is y1 = 1, y2 = t,
y3 = t2, y4 = t3, y5 = t4, spanning the polynomials of degree 4. The matrix A will be m
by n, or 5 by 4. It comes from applying integration to each basis vector of V:

∫ t

0
1dt = t or Ax1 = y2, . . . ,

∫ t

0
t3dt =

1
4

t4 or Ax4 =
1
4

y5.

Integration matrix Aint =




0 0 0 0
1 0 0 0
0 1

2 0 0
0 0 1

3 0
0 0 0 1

4




.

Differentiation and integration are inverse operations. Or at least integration followed
by differentiation brings back the original function. To make that happen for matrices,
we need the differentiation matrix from quartics down to cubics, which is 4 by 5:

Adiff =




0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4


 and AdiffAint =




1
1

1
1


 .

Differentiation is a left-inverse of integration. Rectangular matrices cannot have two-
sided inverses! In the opposite order, AintAdiff = I cannot be true. The 5 by 5 product has
zeros in column 1. The derivative of a constant is zero. In the other columns AintAdiff is
the identity and the integral of the derivative of tn is tn.
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Rotations Q, Projections P, and Reflections H

This section began with 90° rotations, projections onto the x-axis, and reflections through
the 45° line. Their matrices were especially simple:

Q =

[
0 −1
1 0

]

(rotation)

P =

[
1 0
0 0

]

(projection)

H =

[
0 1
1 0

]

(reflection)

.

The underlying linear transformations of the x-y plane are also simple. But rotations
through other angles, projections onto other lines, and reflections in other mirrors are
almost as easy to visualize, They are still linear transformations, provided that the origin
is fixed: A0 = 0. They must be represented by matrices. Using the natural basis

[
1
0

]
and[

0
1

]
, we want to discover those matrices.

1. Rotation Figure 2.10 shows rotation through an angle θ . It also shows the effect on
the two basis vectors. The first one goes to (cosθ ,sinθ), whose length is still 1; it
lies on the “θ -line.” The second basis vector (0,1) rotates into (−sinθ ,cosθ). By
rule (6), those numbers go into the columns of the matrix (we use c and s for cosθ
and sinθ ). This family of rotations Qθ is a perfect chance to test the correspondence
between transformations and matrices:

Does the inverse of Qθ equal Q−θ (rotation backward through θ )? Yes.

Qθ Q−θ =

[
c −s
s c

][
c s
−s c

]
=

[
1 0
0 1

]
.

Does the square of Qθ equal Q2θ (rotation through a double angle)? Yes.

Q2
θ =

[
c −s
s c

][
c −s
s c

]
=

[
c2− s2 −2cs

2cs c2− s2

]
=

[
cos2θ −sin2θ
sin2θ cos2θ

]
.

Does the product of Qθ and Qϕ equal Qθ+ϕ (rotation through θ then ϕ)?
Yes.

Qθ Qϕ =

[
cosθ cosϕ− sinθ sinϕ · · ·
sinθ cosϕ + cosθ sinϕ · · ·

]
=

[
cos(θ +ϕ) · · ·
sin(θ +ϕ) · · ·

]
.

The last case contains the first two. The inverse appears when ϕ is −θ , and the
square appears when ϕ is +θ . All three questions were decided by trigonometric
identities (and they give a new way to remember those identities). It was no accident
that all the answers were yes. Matrix multiplication is defined exactly so that the
product of the matrices corresponds to the product of the transformations.

2V Suppose A and B are linear transformations from V to W and from U
to V. Their product AB starts with a vector u in U, goes to Bu in V, and
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θ

θ

[

1
0

]

[

0
1

]

[ c

s
]

[−s

c
]

R =





c −s

s c





P =





c2 cs

cs s2





b

b

b

b

[

1
0

]

[

0
1

]

1

1

s [ c

s
]

c [ c

s
]

c

θ

s

Figure 2.10: Rotation through θ (left). Projection onto the θ -line (right).

finishes with ABu in W. This “composition” AB is again a linear transfor-
mation (from U to W). Its matrix is the product of the individual matrices
representing A and B.

For AdiffAint, the composite transformation was the identity (and AintAdiff annihilated
all constants). For rotations, the order of multiplication does not matter. Then U =
V = W is the x-y plane, and Qθ Qϕ is the same as QϕQθ . For a rotation and a
reflection, the order makes a difference.

Technical note: To construct the matrices, we need bases for V and W, and then for
U and V. By keeping the same basis for V, the product matrix goes correctly from
the basis in U to the basis in W. If we distinguish the transformation A from its
matrix (call that [A]), then the product rule 2V becomes extremely concise: [AB] =
[A][B]. The rule for multiplying matrices in Chapter 1 was totally determined by this
requirement—it must match the product of linear transformations.

2. Projection Figure 2.10 also shows the projection of (1,0) onto the θ -line. The
length of the projection is c = cosθ . Notice that the point of projection is not (c,s), as
I mistakenly thought; that vector has length 1 (it is the rotation), so we must multiply
by c. Similarly the projection of (0,1) has length s, and falls at s(c,s) = (cs,s2), That
gives the second column of the projection matrix P:

Projection onto θ -line P =

[
c2 cs
cs s2

]
.

This matrix has no inverse, because the transformation has no inverse. Points on the
perpendicular line are projected onto the origin; that line is the nullspace of P. Points
on the θ -line are projected to themselves! Projecting twice is the same as projecting
once, and P2 = P:

P2 =

[
c2 cs
cs s2

]2

=

[
c2(c2 + s2) cs(c2 + s2)
cs(c2 + s2) s2(c2 + s2)

]
= P.
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b

b
b

b

b

b

2c

[

c

s

]

−

[

1

0

]

=

[

2c2
− 1

2cs

]

2s

[

c

s

]

−

[

0

1

]

=

[

2cs

2s2
− 1

]

[

1

0

]

[

0

1

]

H = 2P − I =

[

2c2
− 1 2cs

2cs 2s2
− 1

]

Image + original = 2 × projection

Hx + x = 2Px

θ

Figure 2.11: Reflection through the θ -line: the geometry and the matrix.

Of course c2 + s2 = cos2 θ + sin2 θ = 1. A projection matrix equals its own square.

3. Reflection Figure 2.11 shows the reflection of (1,0) in the θ -line. The length of the
reflection equals the length of the original, as it did after rotation—but here the θ -
line stays where it is. The perpendicular line reverses direction; all points go straight
through the mirror, Linearity decides the rest.

Reflection matrix H =

[
2c2−1 2cs

2cs 2s2−1

]
.

This matrix H has the remarkable property H2 = I. Two reflections bring back
the original. A reflection is its own inverse, H = H−1, which is clear from the
geometry but less clear from the matrix. One approach is through the relationship of
reflections to projections: H = 2P− I. This means that Hx + x = 2Px—the image
plus the original equals twice the projection. It also confirms that H2 = I:

H2 = (2P− I)2 = 4P2−4P+ I = I, since P2 = P.

Other transformations Ax can increase the length of x; stretching and shearing are in
the exercises. Each example has a matrix to represent it—which is the main point of this
section. But there is also the question of choosing a basis, and we emphasize that the
matrix depends on the choice of basis. Suppose the first basis vector is on the θ -line and
the second basis vector is perpendicular:

(i) The projection matrix is back to P =
[

1 0
0 0

]
. This matrix is constructed as always:

its first column comes from the first basis vector (projected to itself). The second
column comes from the basis vector that is projected to zero.
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(ii) For reflections, that same basis gives H =
[

1 0
0 −1

]
. The second basis vector is re-

flected onto its negative, to produce this second column. The matrix H is still 2P−I
when the same basis is used for H and P.

(iii) For rotations, the matrix is not changed. Those lines are still rotated through θ , and
Q = [ c −s

s c ] as before.

The whole question of choosing the best basis is absolutely central, and we come back
to it in Chapter 5. The goal is to make the matrix diagonal, as achieved for P and H. To
make Q diagonal requires complex vectors, since all real vectors are rotated.

We mention here the effect on the matrix of a change of basis, while the linear trans-
formation stays the same. The matrix A (or Q or P or H) is altered to S−1AS. Thus a
single transformation is represented by different matrices (via different bases, accounted
for by S). The theory of eigenvectors will lead to this formula S−1AS, and to the best
basis.

Problem Set 2.6

1. What matrix has the effect of rotating every vector through 90° and then projecting
the result onto the x-axis? What matrix represents projection onto the x-axis followed
by projection onto the y-axis?

2. Does the product of 5 reflections and 8 rotations of the x-y plane produce a rotation
or a reflection?

3. The matrix A =
[

2 0
0 1

]
produces a stretching in the x-direction. Draw the circle x2 +

y2 = 1 and sketch around it the points (2x,y) that result from multiplication by A.
What shape is that curve?

4. Every straight line remains straight after a linear transformation. If z is halfway
between x and y, show that Az is halfway between Ax and Ay.

5. The matrix A =
[

1 0
3 1

]
yields a shearing transformation, which leaves the y-axis un-

changed. Sketch its effect on the x-axis, by indicating what happens to (1,0) and
(2,0) and (−1,0)—and how the whole axis is transformed.

6. What 3 by 3 matrices represent the transformations that

(a) project every vector onto the x-y plane?

(b) reflect every vector through the x-y plane?

(c) rotate the x-y plane through 90°, leaving the z-axis alone?

(d) rotate the x-y plane, then x-z, then y-z, through 90°?

(e) carry out the same three rotations, but each one through 180°?
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7. On the space P3 of cubic polynomials, what matrix represents d2/dt2? Construct
the 4 by 4 matrix from the standard basis 1, t, t2, t3. Find its nullspace and column
space. What do they mean in terms of polynomials?

8. From the cubics P3 to the fourth-degree polynomials P4, what matrix represents
multiplication by 2 + 3t? The columns of the 5 by 4 matrix A come from applying
the transformation to 1, t, t2, t3.

9. The solutions to the linear differential equation d2u/dt2 = u form a vector space
(since combinations of solutions are still solutions). Find two independent solutions,
to give a basis for that solution space.

10. With initial values u = x and du/dt = y at t = 0, what combination of basis vectors
in Problem 9 solves u′′ = u? This transformation from initial values to solution is
linear. What is its 2 by 2 matrix (using x = 1, y = 0 and x = 0, y = 1 as basis for V,
and your basis for W)?

11. Verify directly from c2 + s2 = 1 that reflection matrices satisfy H2 = 1.

12. Suppose A is a linear transformation from the x-y plane to itself. Why does A−1(x+
y) = A−1x + A−1y? If A is represented by the matrix M, explain why A−1 is repre-
sented by M−1.

13. The product (AB)C of linear transformations starts with a vector x and produces
u = Cx. Then rule 2V applies AB to u and reaches (AB)Cx.

(a) Is this result the same as separately applying C then B then A?

(b) Is the result the same as applying BC followed by A? Parentheses are unnecessary
and the associative law (AB)C = A(BC) holds for linear transformations. This is
the best proof of the same law for matrices.

14. Prove that T 2 is a linear transformation if T is linear (from R3 to R3).

15. The space of all 2 by 2 matrices has the four basis “vectors”
[

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
.

For the linear transformation of transposing, find its matrix A with respect to this
basis. Why is A2 = I?

16. Find the 4 by 4 cyclic permutation matrix: (x1,x2,x3,x4) is transformed to Ax =
(x2,x3,x4,x1). What is the effect of A2? Show that A3 = A−1.

17. Find the 4 by 3 matrix A that represents a right shift: (x1,x2,x3) is transformed to
(0,x1,x2,x3). Find also the left shift matrix B from R4 back to R3, transforming
(x1,x2,x3,x4) to (x2,x3,x4). What are the products AB and BA?
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18. In the vector space P3 of all p(x) = a0 + a1x + a2x2 + a3x3, let S be the subset of
polynomials with

∫ 1
0 p(x)dx = 0. Verify that S is a subspace and find a basis.

19. A nonlinear transformation is invertible if T (x) = b has exactly one solution for
every b. The example T (x) = x2 is not invertible because x2 = b has two solutions
for positive b and no solution for negative b. Which of the following transformations
(from the real numbers R1 to the real numbers R1) are invertible? None are linear,
not even (c).

(a) T (x) = x3. (b) T (x) = ex.
(c) T (x) = x+11. (d) T (x) = cosx.

20. What is the axis and the rotation angle for the transformation that takes (x1,x2,x3)
into (x2,x3,x1)?

21. A linear transformation must leave the zero vector fixed: T (0) = 0. Prove this from
T (v+w) = T (v)+T (w) by choosing w = . Prove it also from the requirement
T (cv) = cT (v) by choosing c =

22. Which of these transformations is not linear? The input is v = (v1,v2).

(a) T (v) = (v2,v1). (b) T (v) = (v1,v1).
(c) T (v) = (0,v1). (d) T (v) = (0,1).

23. If S and T are linear with S(v) = T (v) = v, then S(T (v)) = v or v2?

24. Suppose T (v) = v, except that T (0,v2) = (0,0). Show that this transformation satis-
fies T (cv) = cT (v) but not T (v+w) = T (v)+T (w).

25. Which of these transformations satisfy T (v + w) = T (v)+ T (w), and which satisfy
T (cv) = cT (v)?

(a) T (v) = v/‖v‖. (b) T (v) = v1 + v2 + v3.
(c) T (v) = (v1,2v2,3v3). (d) T (v) = largest component of v.

26. For these transformations of V = R2 to W = R2, find T (T (v)).

(a) T (v) =−v.

(b) T (v) = v+(1,1).

(c) T (v) = 90° rotation = (−v2,v1).

(d) T (v) = projection =
(

v1 + v2

2
,
v1 + v2

2

)
.

27. The “cyclic” transformation T is defined by T (v1,v2,v3) = (v2,v3,v1). What is
T (T (T (v)))? What is T 100(v)?
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28. Find the range and kernel (those are new words for the column space and nullspace)
of T .

(a) T (v1,v2) = (v2,v1). (b) T (v1,v2,v3) = (v1,v2).
(c) T (v1,v2) = (0,0). (d) T (v1,v2) = (v1,v1).

29. A linear transformation from V to W has an inverse from W to V when the range
is all of W and the kernel contains only v = 0. Why are these transformations not
invertible?

(a) T (v1,v2) = (v2,v2) W = R2.

(b) T (v1,v2) = (v1,v2,v1 + v2) W = R3.

(c) T (v1,v2) = v1 W = R1.

30. Suppose a linear T transforms (1,1) to (2,2) and (2,0) to (0,0). Find T (v) when

(a) v = (2,2). (b) v = (3,1). (c) v = (−1,1). (d) v = (a,b).

Problems 31–35 may be harder. The input space V contains all 2 by 2 matrices
M.

31. M is any 2 by 2 matrix and A =
[

1 2
3 4

]
. The linear transformation T is defined by

T (M) = AM. What rules of matrix multiplication show that T is linear?

32. Suppose A =
[

1 2
3 6

]
. Show that the identity matrix I is not in the range of T . Find a

nonzero matrix M such that T (M) = AM is zero.

33. Suppose T transposes every matrix M. Try to find a matrix A that gives AM =
MT for every M. Show that no matrix A will do it. To professors: Is this a linear
transformation that doesn’t come from a matrix?

34. The transformation T that transposes every matrix is definitely linear. Which of these
extra properties are true?

(a) T 2 = identity transformation.

(b) The kernel of T is the zero matrix.

(c) Every matrix is in the range of T .

(d) T (M) =−M is impossible.

35. Suppose T (M) =
[

1 0
0 0

]
[M ]

[
0 0
0 1

]
. Find a matrix with T (M) 6= 0. Describe all ma-

trices with T (M) = 0 (the kernel of T ) and all output matrices T (M) (the range of
T ).

Problems 36–40 are about changing the basis

36. (a) What matrix transforms (1,0) into (2,5) and transforms (0,1) to (1,3)?

(b) What matrix transforms (2,5) to (1,0) and (1,3) to (0,1)?
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(c) Why does no matrix transform (2,6) to (1,0) and (1,3) to (0,1)?

37. (a) What matrix M transforms (1,0) and (0,1) to (r, t) and (s,u)?
(b) What matrix N transforms (a,c) and (b,d) to (1,0) and (0,1)?
(c) What condition on a, b, c, d will make part (b) impossible?

38. (a) How do M and N in Problem 37 yield the matrix that transforms (a,c) to (r, t)
and (b,d) to (s,u)?

(b) What matrix transforms (2,5) to (1,1) and (1,3) to (0,2)?

39. If you keep the same basis vectors but put them in a different order, the change-of-
basis matrix M is a matrix. If you keep the basis vectors in order but change
their lengths, M is a matrix.

40. The matrix that transforms (1,0) and (0,1) to (1,4) and (1,5) is M = . The
combination a(1,4)+ b(1,5) that equals (1,0) has (a,b) = ( , ). How are
those new coordinates of (1,0) related to M or M−1?

41. What are the three equations for A, B, C if the parabola Y = A + Bx +Cx2 equals 4
at x = a, 5 at x = b, and 6 at x = c? Find the determinant of the 3 by 3 matrix. For
which numbers a, b, c will it be impossible to find this parabola Y ?

42. Suppose v1, v2, v3 are eigenvectors for T . This means T (vi) = λivi for i = 1,2,3.
What is the matrix for T when the input and output bases are the v’s?

43. Every invertible linear transformation can have I as its matrix. For the output basis
just choose wi = T (vi). Why must T be invertible?

44. Suppose T is reflection across the x-axis and S is reflection across the y-axis. The
domain V is the x-y plane. If v = (x,y) what is S(T (v))? Find a simpler description
of the product ST .

45. Suppose T is reflection across the 45° line, and S is reflection across the y-axis, If
v = (2,1) then T (v) = (1,2). Find S(T (v)) and T (S(v)). This shows that generally
ST 6= T S.

46. Show that the product ST of two reflections is a rotation. Multiply these reflection
matrices to find the rotation angle:[

cos2θ sin2θ
sin2θ −cos2θ

] [
cos2α sin2α
sin2α −cos2α

]
.

47. The 4 by 4 Hadamard matrix is entirely +1 and −1:

H =




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


 .
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Find H−1 and write v = (7,5,3,1) as a combination of the columns of H.

48. Suppose we have two bases v1, . . . ,vn and w1, . . . ,wn for Rn. If a vector has coeffi-
cients bi in one basis and ci in the other basis, what is the change-of-basis matrix in
b = Mc? Start from

b1v1 + · · ·+bnvn = V b = c1w1 + · · ·+ cnwn = Wc.

Your answer represents T (v) = v with input basis of v’s and output basis of w’s.
Because of different bases, the matrix is not I.

49. True or false: If we know T (v) for n different nonzero vectors in R2, then we know
T (v) for every vector in Rn.

50. (Recommended) Suppose all vectors x in the unit square 0≤ x1 ≤ 1, 0≤ x2 ≤ 1 are
transformed to Ax (A is 2 by 2).

(a) What is the shape of the transformed region (all Ax)?

(b) For which matrices A is that region a square?

(c) For which A is it a line?

(d) For which A is the new area still 1?

Review Exercises

1.1 Find a basis for the following subspaces of R4:

(a) The vectors for which x1 = 2x4.

(b) The vectors for which x1 + x2 + x3 = 0 and x3 + x4 = 0.

(c) The subspace spanned by (1,1,1,1), (1,2,3,4), and (2,3,4,5).

1.2 By giving a basis, describe a two-dimensional subspace of R3 that contains none of
the coordinate vectors (1,0,0), (0,1,0), (0,0,1).

1.3 True or false, with counterexample if false:

(a) If the vectors x1, . . . ,xm span a subspace S, then dimS = m.

(b) The intersection of two subspaces of a vector space cannot be empty.

(c) If Ax = Ay, then x = y.

(d) The row space of A has a unique basis that can be computed by reducing A to
echelon form.

(e) If a square matrix A has independent columns, so does A2.
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1.4 What is the echelon form U of A?

A =




1 2 0 2 1
−1 −2 1 1 0
1 2 −3 −7 −2


 .

What are the dimensions of its four fundamental subspaces?

1.5 Find the rank and the nullspace of

A =




0 0 1
0 0 1
1 1 1


 and B =




0 0 1 2
0 0 1 2
1 1 1 0


 .

1.6 Find bases for the four fundamental subspaces associated with

A =

[
1 2
3 6

]
, B =

[
0 0
1 2

]
, C =

[
1 1 0 0
0 1 0 1

]
.

1.7 What is the most general solution to u+ v+w = 1, u−w = 2?

1.8 (a) Construct a matrix whose nullspace contains the vector x = (1,1,2).

(b) Construct a matrix whose left nullspace contains y = (1,5).

(c) Construct a matrix whose column space is spanned by (1,1,2) and whose row
space is spanned by (1,5).

(d) If you are given any three vectors in R6 and any three vectors in R5, is there a
6 by 5 matrix whose column space is spanned by the first three and whose row
space is spanned by the second three?

1.9 In the vector space of 2 by 2 matrices,

(a) is the set of rank 1 matrices a subspace?

(b) what subspace is spanned by the permutation matrices?

(c) what subspace is spanned by the positive matrices (all ai j > 0)?

(d) what subspace is spanned by the invertible matrices?

1.10 Invent a vector space that contains all linear transformations from Rn to Rn. You
have to decide on a rule for addition. What is its dimension?

1.11 (a) Find the rank of A, and give a basis for its nullspace.

A = LU =




1
2 1
2 1 2
3 2 4 1







1 2 0 1 2 1
0 0 2 2 0 0
0 0 0 0 0 1
0 0 0 0 0 0


 .
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(b) The first 3 rows of U are a basis for the row space of A—true or false?
Columns 1, 3, 6 of U are a basis for the column space of A—true or false?
The four rows of A are a basis for the row space of A—true or false?

(c) Find as many linearly independent vectors b as possible for which Ax = b has a
solution.

(d) In elimination on A, what multiple of the third row is subtracted to knock out
the fourth row?

1.12 If A is an n by n− 1 matrix, and its rank is n− 2, what is the dimension of its
nullspace?

1.13 Use elimination to find the triangular factors in A = LU , if

A =




a a a a
a b b b
a b c c
a b c d


 .

Under what conditions on the numbers a, b, c, d are the columns linearly indepen-
dent?

1.14 Do the vectors (1,1,3), (2,3,6), and (1,4,3) form a basis for R3?

1.15 What do you know about C(A) when the number of solutions to Ax = b is

(a) 0 or 1, depending on b.

(b) ∞, independent of b.

(c) 0 or ∞, depending on b.

(d) 1, regardless of b.

1.16 In the previous exercise, how is r related to m and n in each example?

1.17 If x is a vector in Rn, and xTy = 0 for every y, prove that x = 0.

1.18 If A is an n by n matrix such that A2 = A and rankA = n, prove that A = I.

1.19 What subspace of 3 by 3 matrices is spanned by the elementary matrices Ei j, with
1s on the diagonal and at most one nonzero entry below?

1.20 How many 5 by 5 permutation matrices are there? Are they linearly independent?
Do they span the space of all 5 by 5 matrices? No need to write them all down.

1.21 What is the rank of the n by n matrix with every entry equal to 1? How about the
“checkerboard matrix,” with ai j = 0 when i+ j is even, ai j = 1 when i+ j is odd?
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1.22 (a) Ax = b has a solution under what conditions on b, for the following A and b?

A =




1 2 0 3
0 0 0 0
2 4 0 1


 and b =




b1

b2

b3


 .

(b) Find a basis for the nullspace of A.

(c) Find the general solution to Ax = b, when a solution exists.

(d) Find a basis for the column space of A.

(e) What is the rank of AT?

1.23 How can you construct a matrix that transforms the coordinate vectors e1,e2,e3 into
three given vectors v1,v2,v3? When will that matrix be invertible?

1.24 If e1,e2,e3 are in the column space of a 3 by 5 matrix, does it have a left-inverse?
Does it have a right-inverse?

1.25 Suppose T is the linear transformation on R3 that takes each point (u,v,w) to (u +
v+w,u+ v,u), Describe what T−1 does to the point (x,y,z).

1.26 True or false?

(a) Every subspace of R4 is the nullspace of some matrix.

(b) If A has the same nullspace as AT, the matrix must be square.

(c) The transformation that takes x to mx+b is linear (from R1 to R1).

1.27 Find bases for the four fundamental subspaces of

A1 =




1 2 0 3
0 2 2 2
0 0 0 0
0 0 0 4


 and A2 =




1
1
1




[
1 4

]
.

1.28 (a) If the rows of A are linearly independent (A is m by n) then the rank is , the
column space is , and the left nullspace is .

(b) If A is 8 by 10 with a two-dimensional nullspace, show that Ax = b can be solved
for every b.

1.29 Describe the linear transformations of the x-y plane that are represented with stan-
dard basis (1,0) and (0,1) by the matrices

A1 =

[
1 0
0 −1

]
, A2 =

[
1 0
2 1

]
, A3 =

[
0 1
−1 0

]
.

1.30 (a) If A is square, show that the nullspace of A2 contains the nullspace of A.
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(b) Show also that the column space of A2 is contained in the column space of A.

1.31 When does the rank-1 matrix A = uvT have A2 = 0?

1.32 (a) Find a basis for the space of all vectors in R6 with x1 + x2 = x3 + x4 = x5 + x6.

(b) Find a matrix with that subspace as its nullspace.

(c) Find a matrix with that subspace as its column space.

1.33 Suppose the matrices in PA = LU are



0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0







0 0 1 −3 2
2 −1 4 2 1
4 −2 9 1 4
2 −1 5 −1 5


 =




1 0 0 0
0 1 0 0
1 1 1 0
2 1 0 1







2 −1 4 2 1
0 0 1 −3 2
0 0 0 0 2
0 0 0 0 0


 .

(a) What is the rank of A?

(b) What is a basis for the row space of A?

(c) True or false: Rows 1, 2, 3 of A are linearly independent.

(d) What is a basis for the column space of A?

(e) What is the dimension of the left nullspace of A?

(f) What is the general solution to Ax = 0?



Chapter 3
Orthogonality

3.1 Orthogonal Vectors and Subspaces

A basis is a set of independent vectors that span a space. Geometrically, it is a set of
coordinate axes. A vector space is defined without those axes, but every time I think of
the x-y plane or three-dimensional space or Rn, the axes are there. They are usually per-
pendicular! The coordinate axes that the imagination constructs are practically always
orthogonal. In choosing a basis, we tend to choose an orthogonal basis.

The idea of an orthogonal basis is one of the foundations of linear algebra. We need
a basis to convert geometric constructions into algebraic calculations, and we need an
orthogonal basis to make those calculations simple. A further specialization makes the
basis just about optimal: The vectors should have length 1. For an orthonormal basis
(orthogonal unit vectors), we will find

1. the length ‖x‖ of a vector;

2. the test xTy = 0 for perpendicular vectors; and

3. how to create perpendicular vectors from linearly independent vectors.

More than just vectors, subspaces can also be perpendicular. We will discover, so
beautifully and simply that it will be a delight to see, that the fundamental subspaces
meet at right angles. Those four subspaces are perpendicular in pairs, two in Rm and
two in Rn. That will complete the fundamental theorem of linear algebra.

The first step is to find the length of a vector. It is denoted by ‖x‖, and in two
dimensions it comes from the hypotenuse of a right triangle (Figure 3.1a). The square
of the length was given a long time ago by Pythagoras: ‖x‖2 = x2

1 + x2
2.

In three-dimensional space, x = (x1,x2,x3) is the diagonal of a box (Figure 3.1b). Its
length comes from two applications of the Pythagorean formula. The two-dimensional
case takes care of (x1,x2,0) = (1,2,0) across the base. This forms a right angle with the
vertical side (0,0,x3) = (0,0,3). The hypotenuse of the bold triangle (Pythagoras again)



160 Chapter 3 Orthogonality

b

1

2
√

5

(1, 0)

(0, 2)
(1, 2)

‖x‖2 = x2

1
+ x2

2
+ x2

3

5 = 12 + 22

14 = 12 + 22 + 32

(a) (b)

x

(0, 0, 3)

(1, 2, 3) has length
√

14

(1, 0, 0)

(0, 2, 0)

(1, 2, 0) has length
√

5

Figure 3.1: The length of vectors (x1,x2) and (x1,x2,x3).

is the length ‖x‖ we want:

Length in 3D ‖x‖2 = 12 +22 +32 and ‖x‖=
√

x2
1 + x2

2 + x2
3.

The extension to x = (x1, . . . ,xn) in n dimensions is immediate. By Pythagoras n−1
times, the length ‖x‖ in Rn is the positive square root of xTx:

Length squared ‖x‖2 = x2
1 + x2

2 + · · ·+ x2
n = xTx. (1)

The sum of squares matches xTx—and the length of x = (1,2,−3) is
√

14:

xTx =
[
1 2 −3

]



1
2
−3


 = 12 +22 +(−3)2 = 14.

Orthogonal Vectors

How can we decide whether two vectors x and y are perpendicular? What is the test
for orthogonality in Figure 3.2? In the plane spanned by x and y, those vectors are
orthogonal provided they form a right triangle. We go back to a2 +b2 = c2:

Sides of a right triangle ‖x‖2 +‖y‖2 = ‖x− y‖2. (2)

Applying the length formula (1), this test for orthogonality in Rn becomes
(
x2

1 + · · ·+ x2
n
)
+

(
y2

1 + · · ·+ y2
n
)

= (x1− y1)2 + · · ·+(xn− yn)2.

The right-hand side has an extra −2xiyi from each (xi− yi)2:

right-hand side =
(
x2

1 + · · ·+ x2
n
)−2(x1y1 + · · ·+ xnyn)+

(
y2

1 + · · ·+ y2
n
)
.
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y =

[

−1

2

]

x =

[

4

2

]

√

25

√

20
√

5

xTy = 0

b

Right angle

xTy = 0

greater than 90°
xTy < 0

less than 90°

xTy > 0

Figure 3.2: A right triangle with 5+20 = 25. Dotted angle 100°, dashed angle 30°.

We have a right triangle when that sum of cross-product terms xiyi is zero:

Orthogonal vectors xTy = x1y1 + · · ·+ xnyn = 0. (3)

This sum is xTy = ∑xiyi = yTx, the row vector xT times the column vector y:

Inner product xTy =
[
x1 · · · xn

]



y1
...

yn


 = x1y1 + · · ·+ xnyn. (4)

This number is sometimes called the scalar product or dot product, and denoted by (x,y)
or x · y. We will use the name inner product and keep the notation xTy.

3A The inner product xTy is zero if and only if x and y are orthogonal vectors.
If xTy > 0, their angle is less than 90°. If xTy < 0, their angle is greater than
90°.

The length squared is the inner product of x with itself: xTx = x2
1 + · · ·+ x2

n = ‖x‖2. The
only vector with length zero—the only vector orthogonal to itself—is the zero vector.
This vector x = 0 is orthogonal to every vector in Rn.

Example 1. (2,2,−1) is orthogonal to (−1,2,2). Both have length
√

4+4+1 = 3.

Useful fact: If nonzero vectors v1, . . . ,vk are mutually orthogonal (every vector is
perpendicular to every other), then those vectors are linearly independent.

Proof. Suppose c1v1 + · · ·+ ckvk = 0. To show that c1 must be zero, take the inner
product of both sides with v1. Orthogonality of the v’s leaves only one term:

vT
1 (c1v1 + · · ·+ ckvk) = c1vT

1 v1 = 0. (5)

The vectors are nonzero, so vT
1 v1 6= 0 and therefore c1 = 0. The same is true of every ci.

The only combination of the v’s producing zero has all ci = 0: independence!

The coordinate vectors e1, . . . ,en in Rn are the most important orthogonal vectors.
Those are the columns of the identity matrix. They form the simplest basis for Rn, and
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they are unit vectors—each has length ‖ei‖= 1. They point along the coordinate axes. If
these axes are rotated, the result is a new orthonormal basis: a new system of mutually
orthogonal unit vectors. In R2 we have cos2 θ + sin2 θ = 1:

Orthonormal vectors in R2 v1 = (cosθ ,sinθ) and v2 = (−sinθ ,cosθ).

Orthogonal Subspaces

We come to the orthogonality of two subspaces. Every vector in one subspace must be
orthogonal to every vector in the other subspace. Subspaces of R3 can have dimension
0, 1, 2, or 3. The subspaces are represented by lines or planes through the origin—
and in the extreme cases, by the origin alone or the whole space. The subspace {0}
is orthogonal to all subspaces. A line can be orthogonal to another line, or it can be
orthogonal to a plane, but a plane cannot be orthogonal to a plane.

I have to admit that the front wall and side wall of a room look like perpendicular
planes in R3. But by our definition, that is not so! There are lines v and w in the front
and side walls that do not meet at a right angle. The line along the corner is in both
walls, and it is certainly not orthogonal to itself.

3B Two subspaces V and W of the same space Rn are orthogonal if every
vector v in V is orthogonal to every vector w in W: vTw = 0 for all v and w.

Example 2. Suppose V is the plane spanned by v1 = (1,0,0,0) and v2 = (1,1,0,0). If
W is the line spanned by w = (0,0,4,5), then w is orthogonal to both v’s. The line W
will be orthogonal to the whole plane V.

In this case, with subspaces of dimension 2 and 1 in R4, there is room for a third
subspace. The line L through z = (0,0,5,−4) is perpendicular to V and W. Then the
dimensions add to 2+1+1 = 4. What space is perpendicular to all of V, W, and L?

The important orthogonal subspaces don’t come by accident, and they come two at
a time. In fact orthogonal subspaces are unavoidable: They are the fundamental sub-
spaces! The first pair is the nullspace and row space. Those are subspaces of Rn—the
rows have n components and so does the vector x in Ax = 0. We have to show, using
Ax = 0, that the rows of A are orthogonal to the nullspace vector x.

3C Fundamental theorem of orthogonality The row space is orthogonal
to the nullspace (in Rn). The column space is orthogonal to the left nullspace
(in Rm).

First Proof. Suppose x is a vector in the nullspace. Then Ax = 0, and this system of m
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equations can be written out as rows of A multiplying x:

Every row is
orthogonal to x

Ax =




· · · row 1 · · ·
· · · row 2 · · ·
...

...
...

· · · row m · · ·







x1

x2
...

xn


 =




0
0
...
0


 . (6)

The main point is already in the first equation: row 1 is orthogonal to x. Their inner
product is zero; that is equation 1. Every right-hand side is zero, so x is orthogonal to
every row. Therefore x is orthogonal to every combination of the rows. Each x in the
nullspace is orthogonal to each vector in the row space, so N(A)⊥C(AT).

The other pair of orthogonal subspaces comes from ATy = 0, or yTA = 0:

yTA =
[
y1 · · · ym

]




c c
o o
l l
u · · · u
m m
n n

1 n




=
[
0 · · · 0

]
. (7)

The vector y is orthogonal to every column. The equation says so, from the zeros on
the right-hand side. Therefore y is orthogonal to every combination of the columns.
It is orthogonal to the column space, and it is a typical vector in the left nullspace:
N(AT)⊥C(A). This is the same as the first half of the theorem, with A replaced by
AT.

Second Proof. The contrast with this “coordinate-free proof” should be useful to the
reader. It shows a more “abstract” method of reasoning. I wish I knew which proof is
clearer, and more permanently understood.

If x is in the nullspace then Ax = 0. If v is in the row space, it is a combination of the
rows: v = ATz for some vector z. Now, in one line:

Nullspace ⊥ Row space vTx = (ATz)Tx = zTAx = zT0 = 0. (8)

Example 3. Suppose A has rank 1, so its row space and column space are lines:

Rank-1 matrix A =




1 3
2 6
3 9


 .

The rows are multiples of (1,3). The nullspace contains x = (−3,1), which is orthogonal
to all the rows. The nullspace and row space are perpendicular lines in R2:

[
1 3

][
3
−1

]
= 0 and

[
2 6

][
3
−1

]
= 0 and

[
3 9

][
3
−1

]
= 0.
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In contrast, the other two subspaces are in R3. The column space is the line through
(1,2,3). The left nullspace must be the perpendicular plane y1 + 2y2 + 3y3 = 0. That
equation is exactly the content of yTA = 0.

The first two subspaces (the two lines) had dimensions 1+1 = 2 in the space R2. The
second pair (line and plane) had dimensions 1 + 2 = 3 in the space R3. In general, the
row space and nullspace have dimensions that add to r +(n− r) = n. The other pair
adds to r +(m− r) = m. Something more than orthogonality is occurring, and I have to
ask your patience about that one further point: the dimensions.

It is certainly true that the null space is perpendicular to the row space—but it is not
the whole truth. N(A) contains every vector orthogonal to the row space. The nullspace
was formed from all solutions to Ax = 0.

Definition. Given a subspace V of Rn, the space of all vectors orthogonal to V is called
the orthogonal complement of V. It is denoted by V⊥ = “V perp.”

Using this terminology, the nullspace is the orthogonal complement of the row space:
N(A) = (C(AT))⊥. At the same time, the row space contains all vectors that are orthog-
onal to the nullspace. A vector z can’t be orthogonal to the nullspace but outside the row
space. Adding z as an extra row of A would enlarge the row space, but we know that
there is a fixed formula r +(n− r) = n:

Dimension formula dim(row space)+dim(nullspace) = number of columns.

Every vector orthogonal to the nullspace is in the row space: C(AT) = (N(A))⊥.
The same reasoning applied to AT produces the dual result: The left nullspace N(AT)

and the column space C(A) are orthogonal complements. Their dimensions add up to
(m− r)+ r = m, This completes the second half of the fundamental theorem of linear
algebra. The first half gave the dimensions of the four subspaces. including the fact that
row rank = column rank. Now we know that those subspaces are perpendicular. More
than that, the subspaces are orthogonal complements.

3D Fundamental Theorem of Linear Algebra, Part II
The nullspace is the orthogonal complement of the row space in Rn.

The left nullspace is the orthogonal complement of the column space in Rm.

To repeat, the row space contains everything orthogonal to the nullspace. The column
space contains everything orthogonal to the left nullspace. That is just a sentence, hidden
in the middle of the book, but it decides exactly which equations can be solved! Looked
at directly, Ax = b requires b to be in the column space. Looked at indirectly. Ax = b
requires b to be perpendicular to the left nullspace.

3E Ax = b is solvable if and only if yTb = 0 whenever yTA = 0.
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The direct approach was “b must be a combination of the columns.” The indirect ap-
proach is “b must be orthogonal to every vector that is orthogonal to the columns.” That
doesn’t sound like an improvement (to put it mildly). But if only one or two vectors
are orthogonal to the columns. it is much easier to check those one or two conditions
yTb = 0. A good example is Kirchhoff’s Voltage Law in Section 2.5. Testing for zero
around loops is much easier than recognizing combinations of the columns.

When the left-hand sides of Ax = b add to zero, the right-hand sides must, too:

x1− x2 = b1

x2− x3 = b2

x3− x1 = b3

is solvable if and only if b1 +b2 +b3 = 0. Here A =




1 −1 0
0 1 −1
−1 0 1


 .

This test b1 + b2 + b3 = 0 makes b orthogonal to y = (1,1,1) in the left nullspace. By
the Fundamental Theorem, b is a combination of the columns!

The Matrix and the Subspaces

We emphasize that V and W can be orthogonal without being complements. Their
dimensions can be too small. The line V spanned by (0,1,0) is orthogonal to the line
W spanned by (0,0,1), but V is not W⊥. The orthogonal complement of W is a two-
dimensional plane, and the line is only part of W⊥. When the dimensions are right,
orthogonal subspaces are necessarily orthogonal complements:

If W = V⊥ then V = W⊥ and dimV+dimW = n.

In other words V⊥⊥ = V. The dimensions of V and W are right, and the whole space
Rn is being decomposed into two perpendicular parts (Figure 3.3).

W

V

Two orthogonal axes in R3

Not orthogonal complements

W

V

Line W perpendicular to plane V

Orthogonal complements V = W⊥

Figure 3.3: Orthogonal complements in R3: a plane and a line (not two lines).

Splitting Rn into orthogonal parts will split every vector into x = v+w. The vector v
is the projection onto the subspace V. The orthogonal component w is the projection of
x onto W. The next sections show how to find those projections of x. They lead to what
is probably the most important figure in the book (Figure 3.4).

Figure 3.4 summarizes the fundamental theorem of linear algebra. It illustrates the
true effect of a matrix—what is happening inside the multiplication Ax. The nullspace
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Figure 3.4: The true action Ax = A(xrow + xnull) of any m by n matrix.

is carried to the zero vector. Every Ax is in the column space. Nothing is carried to the
left nullspace. The real action is between the row space and column space, and you see
it by looking at a typical vector x. It has a “row space component” and a “nullspace
component,” with x = xr + xn. When multiplied by A, this is Ax = Axr +Axn:

The nullspace component goes to zero: Axn = 0.

The row space component goes to the column space: Axr = Ax.

Of course everything goes to the column space—the matrix cannot do anything else. I
tried to make the row and column spaces the same size, with equal dimension r.

3F From the row space to the column space, A is actually invertible. Every
vector b in the column space comes from exactly one vector xr in the row
space.

Proof. Every b in the column space is a combination Ax of the columns. In fact, b is
Axr, with xr in the row space, since the nullspace component gives Axn = 0, If another
vector x′r in the row space gives Ax′r = b, then A(xr− x′r) = b−b = 0. This puts xr− x′r
in the nullspace and the row space, which makes it orthogonal to itself. Therefore it is
zero, and xr− x′r. Exactly one vector in the row space is carried to b.

Every matrix transforms its row space onto its column space.

On those r-dimensional spaces A is invertible. On its nullspace A is zero. When A is
diagonal, you see the invertible submatrix holding the r nonzeros.

AT goes in the opposite direction, from Rm to Rn and from C(A) back to C(AT).
Of course the transpose is not the inverse! AT moves the spaces correctly, but not the
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individual vectors. That honor belongs to A−1 if it exists—and it only exists if r = m = n.
We cannot ask A−1 to bring back a whole nullspace out of the zero vector.

When A−1 fails to exist, the best substitute is the pseudoinverse A+. This inverts A
where that is possible: A+Ax = x for x in the row space. On the left nullspace, nothing
can be done: A+y = 0. Thus A+ inverts A where it is invertible, and has the same rank r.
One formula for A+ depends on the singular value decomposition—for which we first
need to know about eigenvalues.

Problem Set 3.1

1. Find the lengths and the inner product of x = (1,4,0,2) and y = (2,−2,1,3).

2. Give an example in R2 of linearly independent vectors that are not orthogonal. Also,
give an example of orthogonal vectors that are not independent.

3. Two lines in the plane are perpendicular when the product of their slopes is −1.
Apply this to the vectors x = (x1,x2) and y = (y1,y2), whose slopes are x2/x1 and
y2/y1, to derive again the orthogonality condition xTy = 0.

4. How do we know that the ith row of an invertible matrix B is orthogonal to the jth
column of B−1, if i 6= j?

5. Which pairs are orthogonal among the vectors v1, v2, v3, v4?

v1 =




1
2
−2
1


 , v2 =




4
0
4
0


 , v3 =




1
−1
−1
−1


 , v4 =




1
1
1
1


 .

6. Find all vectors in R3 that are orthogonal to (1,1,1) and (1,−1,0). Produce an
orthonormal basis from these vectors (mutually orthogonal unit vectors).

7. Find a vector x orthogonal to the row space of A, and a vector y orthogonal to the
column space, and a vector z orthogonal to the nullspace:

A =




1 2 1
2 4 3
3 6 4


 .

8. If V and W are orthogonal subspaces, show that the only vector they have in common
is the zero vector: V∩W = {0}.

9. Find the orthogonal complement of the plane spanned by the vectors (1,1,2) and
(1,2,3), by taking these to be the rows of A and solving Ax = 0. Remember that the
complement is a whole line.
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10. Construct a homogeneous equation in three unknowns whose solutions are the linear
combinations of the vectors (1,1,2) and (1,2,3). This is the reverse of the previous
exercise, but the two problems are really the same.

11. The fundamental theorem is often stated in the form of Fredholm’s alternative: For
any A and b, one and only one of the following systems has a solution:

(i) Ax = b.

(ii) ATy = 0, yTb 6= 0.

Either b is in the column space C(A) or there is a y in N(AT) such that yTb 6= 0.
Show that it is contradictory for (i) and (ii) both to have solutions.

12. Find a basis for the orthogonal complement of the row space of A:

A =

[
1 0 2
1 1 4

]
.

Split x = (3,3,3) into a row space component xr and a nullspace component xn.

13. Illustrate the action of AT by a picture corresponding to Figure 3.4, sending C(A)
back to the row space and the left nullspace to zero.

14. Show that x− y is orthogonal to x+ y if and only if ‖x‖= ‖y‖.

15. Find a matrix whose row space contains (1,2,1) and whose nullspace contains (1,−2,1),
or prove that there is no such matrix.

16. Find all vectors that are perpendicular to (1,4,4,1) and (2,9,8,2).

17. If V is the orthogonal complement of W in Rn, is there a matrix with row space V
and nullspace W? Starting with a basis for V, construct such a matrix.

18. If S = {0} is the subspace of R4 containing only the zero vector, what is S⊥? If S is
spanned by (0,0,0,1), what is S⊥? What is (S⊥)⊥?

19. Why are these statements false?

(a) If V is orthogonal to W, then V⊥ is orthogonal to W⊥.

(b) V orthogonal to W and W orthogonal to Z makes V orthogonal to Z.

20. Let S be a subspace of Rn. Explain what (S⊥)⊥ = S means and why it is true.

21. Let P be the plane in R2 with equation x + 2y− z = 0. Find a vector perpendicular
to P. What matrix has the plane P as its nullspace, and what matrix has P as its row
space?

22. Let S be the subspace of R4 containing all vectors with x1 + x2 + x3 + x4 = 0. Find a
basis for the space S⊥, containing all vectors orthogonal to S.
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23. Construct an unsymmetric 2 by 2 matrix of rank 1. Copy Figure 3.4 and put one
vector in each subspace. Which vectors are orthogonal?

24. Redraw Figure 3.4 for a 3 by 2 matrix of rank r = 2. Which subspace is Z (zero
vector only)? The nullspace part of any vector x in R2 is xn = .

25. Construct a matrix with the required property or say why that is impossible.

(a) Column space contains
[

1
2
−3

]
and

[ 2
−3
5

]
, nullspace contains

[
1
1
1

]
.

(b) Row space contains
[

1
2
−3

]
and

[ 2
−3
5

]
, nullspace contains

[
1
1
1

]
.

(c) Ax =
[

1
1
1

]
has a solution and AT

[
1
0
0

]
=

[
0
0
0

]
.

(d) Every row is orthogonal to every column (A is not the zero matrix).

(e) The columns add up to a column of 0s, the rows add to a row of 1s.

26. If AB = 0 then the columns of B are in the of A. The rows of A are in the
of B. Why can’t A and B be 3 by 3 matrices of rank 2?

27. (a) If Ax = b has a solution and ATy = 0, then y is perpendicular to .

(b) If ATy = c has a solution and Ax = 0, then x is perpendicular to .

28. This is a system of equations Ax = b with no solution:

x+2y+2z = 5

2x+2y+3z = 5

3x+4y+5z = 9.

Find numbers y1, y2, y3 to multiply the equations so they add to 0 = 1. You have
found a vector y in which subspace? The inner product yTb is 1.

29. In Figure 3.4, how do we know that Axr is equal to Ax? How do we know that this
vector is in the column space? If A =

[
1 1
1 1

]
and x =

[
1
0

]
what is xr?

30. If Ax is in the nullspace of AT then Ax = 0. Reason: Ax is also in the of A and
the spaces are . Conclusion: ATA has the same nullspace as A.

31. Suppose A is a symmetric matrix (AT = A).

(a) Why is its column space perpendicular to its nullspace?

(b) If Ax = 0 and Az = 5z, which subspaces contain these “eigenvectors” x and z?
Symmetric matrices have perpendicular eigenvectors (see Section 5.5).

32. (Recommended) Draw Figure 3.4 to show each subspace for

A =

[
1 2
3 6

]
and B =

[
1 0
3 0

]
.
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33. Find the pieces xr and xn, and draw Figure 3.4 properly, if

A =




1 −1
0 0
0 0


 and x =

[
2
0

]
.

Problems 34–44 are about orthogonal subspaces.

34. Put bases for the orthogonal subspaces V and W into the columns of matrices V and
W . Why does V TW = zero matrix? This matches vTw = 0 for vectors.

35. The floor and the wall are not orthogonal subspaces because they share a nonzero
vector (along the line where they meet). Two planes in R3 cannot be orthogonal!
Find a vector in both column spaces C(A) and C(B):

A =




1 2
1 3
1 2


 and B =




5 4
6 3
5 1


 .

This will be a vector Ax and also Bx̂. Think 3 by 4 with the matrix [A B].

36. Extend Problem 35 to a p-dimensional subspace V and a q-dimensional subspace W
of Rn. What inequality on p+q guarantees that V intersects W in a nonzero vector?
These subspaces cannot be orthogonal.

37. Prove that every y in N(AT) is perpendicular to every Ax in the column space, using
the matrix shorthand of equation (8). Start from ATy = 0.

38. If S is the subspace of R3 containing only the zero vector, what is S⊥? If S is spanned
by (1,1,1), what is S⊥? If S is spanned by (2,0,0) and (0,0,3), what is S⊥?

39. Suppose S only contains (1,5,1) and (2,2,2) (not a subspace). Then S⊥ is the
nullspace of the matrix A = . S⊥ is a subspace even if S is not.

40. Suppose L is a one-dimensional subspace (a line) in R3. Its orthogonal complement
L⊥ is the perpendicular to L. Then (L⊥)⊥ is a perpendicular to L⊥. In
fact (L⊥)⊥ is the same as .

41. Suppose V is the whole space R4. Then V⊥ contains only the vector . Then
(V⊥)⊥ is . So (V⊥)⊥ is the same as .

42. Suppose S is spanned by the vectors (1,2,2,3) and (1,3,3,2). Find two vectors that
span S⊥. This is the same as solving Ax = 0 for which A?

43. If P is the plane of vectors in R4 satisfying x1 + x2 + x3 + x4 = 0, write a basis for
P⊥. Construct a matrix that has P as its nullspace.

44. If a subspace S is contained in a subspace V, prove that S⊥ contains V⊥.

Problems 45–50 are about perpendicular columns and rows.
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45. Suppose an n by n matrix is invertible: AA−1 = I. Then the first column of A−1 is
orthogonal to the space spanned by which rows of A?

46. Find ATA if the columns of A are unit vectors, all mutually perpendicular.

47. Construct a 3 by 3 matrix A with no zero entries whose columns are mutually per-
pendicular. Compute ATA. Why is it a diagonal matrix?

48. The lines 3x+ y = b1 and 6x+2y = b2 are . They are the same line if . In
that case (b1,b2) is perpendicular to the vector . The nullspace of the matrix is
the line 3x+ y = . One particular vector in that nullspace is .

49. Why is each of these statements false?

(a) (1,1,1) is perpendicular to (1,1,−2), so the planes x+y+z = 0 and x+y−2z =
0 are orthogonal subspaces.

(b) The subspace spanned by (1,1,0,0,0) and (0,0,0,1,1) is the orthogonal com-
plement of the subspace spanned by (1,−1,0,0,0) and (2,−2,3,4,−4).

(c) Two subspaces that meet only in the zero vector are orthogonal.

50. Find a matrix with v = (1,2,3) in the row space and column space. Find another
matrix with v in the nullspace and column space. Which pairs of subspaces can v not
be in?

51. Suppose A is 3 by 4, B is 4 by 5, and AB = 0. Prove rank(A)+ rank(B)≤ 4.

52. The command N = null(A) will produce a basis for the nullspace of A. Then the
command B = null(N’) will produce a basis for the of A.

3.2 Cosines and Projections onto Lines

Vectors with xTy = 0 are orthogonal. Now we allow inner products that are not zero,
and angles that are not right angles. We want to connect inner products to angles, and
also to transposes. In Chapter 1 the transpose was constructed by flipping over a matrix
as if it were some kind of pancake. We have to do better than that.

One fact is unavoidable: The orthogonal case is the most important. Suppose we
want to find the distance from a point b to the line in the direction of the vector a. We
are looking along that line for the point p closest to b. The key is in the geometry: The
line connecting b to p (the dotted line in Figure 3.5) is perpendicular to a. This fact will
allow us to find the projection p. Even though a and b are not orthogonal, the distance
problem automatically brings in orthogonality.

The situation is the same when we are given a plane (or any subspace S) instead of a
line. Again the problem is to find the point p on that subspace that is closest to b. This
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b

b

ae = b − p

θ p =
projection of b

onto line through a

Figure 3.5: The projection p is the point (on the line through a) closest to b.

point p is the projection of b onto the subspace. A perpendicular line from b to S meets
the subspace at p. Geometrically, that gives the distance between points b and subspaces
S. But there are two questions that need to be asked:

1. Does this projection actually arise in practical applications?

2. If we have a basis for the subspace S, is there a formula for the projection p?

The answers are certainly yes. This is exactly the problem of the least-squares solu-
tion to an overdetermined system. The vector b represents the data from experiments
or questionnaires, and it contains too many errors to be found in the subspace S. When
we try to write b as a combination of the basis vectors for S, it cannot be done—the
equations are inconsistent, and Ax = b has no solution.

The least-squares method selects p as the best choice to replace b. There can be no
doubt of the importance of this application. In economics and statistics, least squares
enters regression analysis. In geodesy, the U.S. mapping survey tackled 2.5 million
equations in 400,000 unknowns.

A formula for p is easy when the subspace is a line. We will project b onto a in several
different ways, and relate the projection p to inner products and angles. Projection onto a
higher dimensional subspace is by far the most important case; it corresponds to a least-
squares problem with several parameters, and it is solved in Section 3.3. The formulas
are even simpler when we produce an orthogonal basis for S.

inner products and cosines

We pick up the discussion of inner products and angles. You will soon see that it is not
the angle, but the cosine of the angle, that is directly related to inner products. We look
back to trigonometry in the two-dimensional case to find that relationship. Suppose the
vectors a and b make angles α and β with the x-axis (Figure 3.6). The length ‖a‖ is the
hypotenuse in the triangle OaQ. So the sine and cosine of α are

sinα =
a2

‖a‖ , cosα =
a1

‖a‖ .
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b
θ

[

cos θ

sin θ

]

[

1

0

]

u · i = cos θ

b

β

αθ

O
x

y

‖b‖

‖a‖

‖b − a‖

b = (b1, b2)

a = (a1, a2)

Q

Figure 3.6: The cosine of the angle θ = β −α using inner products.

For the angle β , the sine is b2/‖b‖ and the cosine is b1/‖b‖ . The cosine of θ = β −α
comes from an identity that no one could forget:

Cosine formula cosθ = cosβ cosα + sinβ sinα =
a1b1 +a2b2

‖a‖‖b‖ . (1)

The numerator in this formula is exactly the inner product of a and b. It gives the
relationship between aTb and cosθ :

3G The cosine of the angle between any nonzero vectors a and b is

Cosine of θ cosθ =
aTb

‖a‖‖b‖ . (2)

This formula is dimensionally correct; if we double the length of b, then both numerator
and denominator are doubled, and the cosine is unchanged. Reversing the sign of b, on
the other hand, reverses the sign of cosθ—and changes the angle by 180°.

There is another law of trigonometry that leads directly to the same result. It is not so
unforgettable as the formula in equation (1), but it relates the lengths of the sides of any
triangle:

Law of Cosines ‖b−a‖2 = ‖b‖2 +‖a‖2−2‖b‖‖a‖cosθ . (3)

When θ is a right angle, we are back to Pythagoras: ‖b− a‖2 = ‖b‖2 + ‖a‖2. For any
angle θ , the expression ‖b−a‖2 is (b−a)T(b−a), and equation (3) becomes

bTb−2aTb+aTa = bTb+aTa−2‖b‖‖a‖cosθ .

Canceling bTb and aTa on both sides of this equation, you recognize formula (2) for the
cosine: aTb = ‖a‖‖b‖cosθ . In fact, this proves the cosine formula in n dimensions,
since we only have to worry about the plane triangle Oab.

Projection onto a Line

Now we want to find the projection point p. This point must be some multiple p = x̂a of
the given vector a—every point on the line is a multiple of a. The problem is to compute
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b

b

ae = b − p

θ
p = x̂a =

aTb

aTa
a

Figure 3.7: The projection p of b onto a, with cosθ =
Op
Ob

=
aTb

‖a‖‖b‖ .

the coefficient x̂. All we need is the geometrical fact that the line from b to the closest
point p = x̂a is perpendicular to the vector a:

(b− â)⊥a, or aT(b− â) = 0, or x̂ =
aTb
aTa

. (4)

That gives the formula for the number x̂ and the projection p:

3H The projection of the vector b onto the line in the direction of a is p = x̂a:

Projection onto a line p = x̂a =
aTb
aTa

a. (5)

This allows us to redraw Figure 3.5 with a correct formula for p (Figure 3.7).
This leads to the Schwarz inequality in equation (6), which is the most important

inequality in mathematics. A special case is the fact that arithmetic means 1
2(x + y) are

larger than geometric means
√

xy. (It is also equivalent—see Problem 1 at the end of
this section—to the triangle inequality for vectors.) The Schwarz inequality seems to
come almost accidentally from the statement that ‖e‖2 = ‖b− p‖2 in Figure 3.7 cannot
be negative:

∥∥∥∥b− aTb
aTa

a
∥∥∥∥

2

= bTb−2
(aTb)2

aTa
+

(
aTb
aTa

)2

aTa =
(bTb)(aTa)− (aTb)2

(aTa)
≥ 0.

This tells us that (bTb)(aTa)≥ (aTb)2—and then we take square roots:

3I All vectors a and b satisfy the Schwarz inequality, which is |cosθ | ≤ 1 in
Rn:

Schwarz inequality |aTb| ≤ ‖a‖‖b‖. (6)

According to formula (2), the ratio between aTb and ‖a‖‖b‖ is exactly |cosθ |. Since
all cosines lie in the interval −1 ≤ cosθ ≤ 1, this gives another proof of equation (6):
the Schwarz inequality is the same as |cosθ | ≤ 1. In some ways that is a more easily
understood proof, because cosines are so familiar. Either proof is all right in Rn, but
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notice that ours came directly from the calculation of ‖b− p‖2. This stays nonnegative
when we introduce new possibilities for the lengths and inner products. The name of
Cauchy is also attached to this inequality |aTb| ≤ ‖a‖‖b‖, and the Russians refer to it as
the Cauchy-Schwarz-Buniakowsky inequality! Mathematical historians seem to agree
that Buniakowsky’s claim is genuine.

One final observation about |aTb| ≤ ‖a‖‖b‖. Equality holds if and only if b is a
multiple of a. The angle is θ = 0° or θ = 180° and the cosine is 1 or −1. In this case b
is identical with its projection p, and the distance between b and the line is zero.

Example 1. Project b = (1,2,3) onto the line through a = (1,1,1) to get x̂ and p:

x̂ =
aTb
aTa

=
6
3

= 2.

The projection is p = x̂a = (2,2,2). The angle between a and b has

cosθ =
‖p‖
‖b‖ =

√
12√
14

and also cosθ =
aTb

‖a‖‖b‖ =
6√

3
√

14
.

The Schwarz inequality |aTb| ≤ ‖a‖‖b‖ is 6≤√3
√

14. If we write 6 as
√

36, that is the
same as

√
36≤√42. The cosine is less than 1, because b is not parallel to a.

Projection Matrix of Rank 1

The projection of b onto the line through a lies at p = a(aTb/aTa). That is our formula
p = x̂a, but it is written with a slight twist: The vector a is put before the number
x̂ = aTb/aTa. There is a reason behind that apparently trivial change. Projection onto
a line is carried out by a projection matrix P, and written in this new order we can see
what it is. P is the matrix that multiplies b and produces p:

P = a
aTb
aTa

so the projection matrix is P =
aaT

aTa
. (7)

That is a column times a row—a square matrix—divided by the number aTa.

Example 2. The matrix that projects onto the line through a = (1,1,1) is

P =
aaT

aTa
=

1
3




1
1
1




[
1 1 1

]
=




1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3


 .

This matrix has two properties that we will see as typical of projections:

1. P is a symmetric matrix.

2. Its square is itself: P2 = P.

P2b is the projection of Pb—and Pb is already on the line! So P2b = Pb. This matrix P
also gives a great example of the four fundamental subspaces:
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The column space consists of the line through a = (1,1,1).

The nullspace consists of the plane perpendicular to a.

The rank is r = 1.

Every column is a multiple of a, and so is Pb = x̂a. The vectors that project to p = 0
are especially important. They satisfy aTb = 0—they are perpendicular to a and their
component along the line is zero. They lie in the nullspace = perpendicular plane.

Actually that example is too perfect. It has the nullspace orthogonal to the column
space, which is haywire. The nullspace should be orthogonal to the row space. But
because P is symmetric, its row and column spaces are the same.

Remark on scaling The projection matrix aaT/aTa is the same if a is doubled:

a =




2
2
2


 gives P =

1
12




2
2
2




[
2 2 2

]
=




1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3


 as before.

The line through a is the same, and that’s all the projection matrix cares about. If a has
unit length, the denominator is aTa = 1 and the matrix is just P = aaT.

Example 3. Project onto the “θ -direction” in the x-y plane. The line goes through
a = (cosθ ,sinθ) and the matrix is symmetric with P2 = P:

P =
aaT

aTa
=

[
c
s

][
c s

]

[
c s

][
c
s

] =

[
c2 cs
cs s2

]
.

Here c is cosθ , s is sinθ , and c2 + s2 = 1 in the denominator. This matrix P was dis-
covered in Section 2.6 on linear transformations. Now we know P in any number of
dimensions. We emphasize that it produces the projection p:

To project b onto a, multiply by the projection matrix P: p = Pb.

Transposes from Inner Products

Finally we connect inner products to AT. Up to now, AT is simply the reflection of A
across its main diagonal; the rows of A become the columns of AT, and vice versa. The
entry in row i, column j of AT is the ( j, i) entry of A:

Transpose by reflection AT
i j = (A) ji.

There is a deeper significance to AT, Its close connection to inner products gives a new
and much more “abstract” definition of the transpose:
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3J The transpose AT can be defined by the following property: The inner
product of Ax with y equals the inner product of x with ATy. Formally, this
simply means that

(Ax)Ty = xTATy = xT(ATy). (8)

This definition gives us another (better) way to verify the formula (AB)T = BTAT, Use
equation (8) twice:

Move A then move B (ABx)Ty = (Bx)T(ATY ) = xT(BTATy).

The transposes turn up in reverse order on the right side, just as the inverses do in the
formula (AB)−1 = B−1A−1. We mention again that these two formulas meet to give the
remarkable combination (A−1)T = (AT)−1.

Problem Set 3.2

1. (a) Given any two positive numbers x and y, choose the vector b equal to (
√

x,
√

y),
and choose a = (

√
y,
√

x). Apply the Schwarz inequality to compare the arith-
metic mean 1

2(x+ y) with the geometric mean
√

xy.
(b) Suppose we start with a vector from the origin to the point x, and then add a

vector of length ‖y‖ connecting x to x + y. The third side of the triangle goes
from the origin to x+ y. The triangle inequality asserts that this distance cannot
be greater than the sum of the first two:

‖x+ y‖ ≤ ‖x‖+‖y‖.
After squaring both sides, and expanding (x + y)T(x + y), reduce this to the
Schwarz inequality.

2. Verify that the length of the projection in Figure 3.7 is ‖p‖= ‖b‖cosθ , using formula
(5).

3. What multiple of a = (1,1,1) is closest to the point b = (2,4,4)? Find also the point
closest to a on the line through b.

4. Explain why the Schwarz inequality becomes an equality in the case that a and b
lie on the same line through the origin, and only in that case. What if they lie on
opposite sides of the origin?

5. In n dimensions, what angle does the vector (1,1, . . . ,1) make with the coordinate
axes? What is the projection matrix P onto that vector?

6. The Schwarz inequality has a one-line proof if a and b are normalized ahead of time
to be unit vectors:

|aTb|=
∣∣∑a jb j

∣∣≤∑ |a j||b j| ≤∑ |a j|2 + |b j|2
2

=
1
2

+
1
2

= ‖a‖‖b‖.
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Which previous problem justifies the middle step?

7. By choosing the correct vector b in the Schwarz inequality, prove that

(a1 + · · ·+an)2 ≤ n(a2
1 + · · ·+a2

n).

When does equality hold?

8. The methane molecule CH4 is arranged as if the carbon atom were at the center of a
regular tetrahedron with four hydrogen atoms at the vertices. If vertices are placed
at (0,0,0), (1,1,0), (1,0,1), and (0,1,1)—note that all six edges have length

√
2,

so the tetrahedron is regular—what is the cosine of the angle between the rays going
from the center (1

2 ,
1
2 ,

1
2) to the vertices? (The bond angle itself is about 109.5°, an

old friend of chemists.)

9. Square the matrix P = aaT/aTa, which projects onto a line, and show that P2 = P.
(Note the number aTa in the middle of the matrix aaTaaT!)

10. Is the projection matrix P invertible? Why or why not?

11. (a) Find the projection matrix P1 onto the line through a = [1
3 ] and also the matrix P2

that projects onto the line perpendicular to a.

(b) Compute P1 +P2 and P1P2 and explain.

12. Find the matrix that projects every point in the plane onto the line x+2y = 0.

13. Prove that the trace of P = aaT/aTa—which is the sum of its diagonal entries—
always equals 1.

14. What matrix P projects every point in R3 onto the line of intersection of the planes
x+ y+ t = 0 and x− t = 0?

15. Show that the length of Ax equals the length of ATx if AAT = ATA.

16. Suppose P is the projection matrix onto the line through a.

(a) Why is the inner product of x with Py equal to the inner product of Px with y?

(b) Are the two angles the same? Find their cosines if a = (1,1,−1), x = (2,0,1),
y = (2,1,2).

(c) Why is the inner product of Px with Py again the same? What is the angle
between those two?

Problems 17–26 ask for projections onto lines. Also errors e = b− p and matri-
ces P.

17. Project the vector b onto the line through a. Check that e is perpendicular to a:
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(a) b =




1
2
2


 and a =




1
1
1


 . (b) b =




1
3
1


 and a =



−1
−3
−1


 .

18. Draw the projection of b onto a and also compute it from p = x̂a:

(a) b =

[
cosθ
sinθ

]
and a =

[
1
0

]
. (b) b =

[
1
1

]
and a =

[
1
−1

]
.

19. In Problem 17, find the projection matrix P = aaT/aTa onto the line through each
vector a. Verify in both cases that P2 = P. Multiply Pb in each case to compute the
projection p.

20. Construct the projection matrices P1 and P2 onto the lines through the a’s in Problem
18. Is it true that (P1 +P2)2 = P1 +P2? This would be true if P1P2 = 0.

For Problems 21–26, consult the accompanying figures.

21. Compute the projection matrices aaT/aTa onto the lines through a1 = (−1,2,2) and
a2 = (2,2,−1), Multiply those projection matrices and explain why their product
P1P2 is what it is.

22. Project b = (1,0,0) onto the lines through a1 and a2 in Problem 21 and also onto
a3 = (2,−1,2). Add the three projections p1 + p2 + p3.

23. Continuing Problems 21–22, find the projection matrix P3 onto a3 = (2,−1,2). Ver-
ify that P1 +P2 +P3 = I. The basis a1, a2, a3 is orthogonal!

24. Project the vector b = (1,1) onto the lines through a1 = (1,0) and a2 = (1,2). Draw
the projections p1 and p2 and add p1 + p2. The projections do not add to b because
the a’s are not orthogonal.

25. In Problem 24, the projection of b onto the plane of a1 and a2 will equal b. Find
P = A(ATA)−1AT for A = [a1 a2]

[
1 1
0 2

]
.
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26. Project a1 = (1,0) onto a2 = (1,2). Then project the result back onto a1. Draw these
projections and multiply the projection matrices P1P2: Is this a projection?

3.3 Projections and Least Squares

Up to this point, Ax = b either has a solution or not. If b is not in the column space C(A),
the system is inconsistent and Gaussian elimination fails. This failure is almost certain
when there are several equations and only one unknown:

More equations
than unknowns—

no solution?

2x = b1

3x = b2

4x = b3.

This is solvable when b1, b2, b3 are in the ratio 2:3:4. The solution x will exist only if b
is on the same line as the column a = (2,3,4).

In spite of their unsolvability, inconsistent equations arise all the time in practice.
They have to be solved! One possibility is to determine x from part of the system, and
ignore the rest; this is hard to justify if all m equations come from the same source.
Rather than expecting no error in some equations and large errors in the others, it is
much better to choose the x that minimizes an average error E in the m equations.

The most convenient “average” comes from the sum of squares:

Squared error E2 = (2x−b1)2 +(3x−b2)2 +(4x−b3)2.

If there is an exact solution, the minimum error is E = 0. In the more likely case that b
is not proportional to a, the graph of E2 will be a parabola. The minimum error is at the
lowest point, where the derivative is zero:

dE2

dx
= 2

[
(2x−b1)2+(3x−b2)3+(4x−b3)4

]
= 0.

Solving for x, the least-squares solution of this model system ax = b is denoted by x̂:

Leastsquares solution x̃ =
2b1 +3b2 +4b3

22 +32 +42 =
aTb
aTa

.

You recognize aTb in the numerator and aTa in the denominator.
The general case is the same. We “solve” ax = b by minimizing

E2 = ‖ax−b‖2 = (a1x−b1)2 + · · ·+(amx−bm)2.

The derivative of E2 is zero at the point x̂, if

(a1x̂−b1)a1 + · · ·+(amx̂−bm)am = 0.

We are minimizing the distance from b to the line through a, and calculus gives the same
answer, x̂ = (a1b1 + · · ·+ambm)/(a2

1 + · · ·+a2
m), that geometry did earlier:
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3K The least-squares solution to a problem ax = b in one unknown is x̂ =
aTb
aTa

.

You see that we keep coming back to the geometrical interpretation of a least-squares
problem—to minimize a distance. By setting the derivative of E2 to zero, calculus con-
firms the geometry of the previous section. The error vector e connecting b to p must be
perpendicular to a:

Orthogonality of a and e aT(b− x̂a) = aTb− aTb
aTa

aTa = 0.

As a side remark, notice the degenerate case a = 0. All multiples of a are zero, and
the line is only a point. Therefore p = 0 is the only candidate for the projection. But
the formula for x̂ becomes a meaningless 0/0, and correctly reflects the fact that x̂ is
completely undetermined. All values of x give the same error E = ‖0x− b‖, so E2 is
a horizontal line instead of a parabola. The “pseudoinverse” assigns the definite value
x̂ = 0, which is a more “symmetric” choice than any other number.

Least Squares Problems with Several Variables

Now we are ready for the serious step, to project b onto a subspace—rather than just
onto a line. This problem arises from Ax = b when A is an m by n matrix. Instead
of one column and one unknown x, the matrix now has n columns. The number m of
observations is still larger than the number n of unknowns, so it must be expected that
Ax = b will be inconsistent. Probably, there will not exist a choice of x that perfectly
fits the data b. In other words, the vector b probably will not be a combination of the
columns of A; it will be outside the column space.

Again the problem is to choose x̂ so as to minimize the error, and again this mini-
mization will be done in the least-squares sense. The error is E = ‖Ax− b‖, and this
is exactly the distance from b to the point Ax in the column space. Searching for the
least-squares solution x̂, which minimizes E, is the same as locating the point p = Ax̂
that is closer to b than any other point in the column space.

We may use geometry or calculus to determine x̂. In n dimensions, we prefer the
appeal of geometry; p must be the “projection of b onto the column space.” The error
vector e = b−Ax̂ must be perpendicular to that space (Figure 3.8). Finding x̂ and the
projection p = Ax̂ is so fundamental that we do it in two ways:

1. All vectors perpendicular to the column space lie in the left nullspace. Thus the
error vector e = b−Ax̂ must be in the nullspace of AT:

AT(b−Ax̂) = 0 or ATAx̂ = ATb.
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Figure 3.8: Projection onto the column space of a 3 by 2 matrix.

2. The error vector must be perpendicular to each column a1, . . . ,an of A:

aT
1 (b−Ax̂) = 0

...
aT

n (b−Ax̂) = 0

or




aT
1
...

aT
n





b−Ax̂


 = 0.

This is again AT(b−Ax̂) = 0 and ATAx̂ = ATb, The calculus way is to take partial
derivatives of E2 = (Ax− b)T(Ax− b). That gives the same 2ATAx− 2ATb = 0. The
fastest way is just to multiply the unsolvable equation Ax = b by AT. All these equivalent
methods produce a square coefficient matrix ATA. It is symmetric (its transpose is not
AAT!) and it is the fundamental matrix of this chapter.

The equations ATAx̂ = ATb are known in statistics as the normal equations.

3L When Ax = b is inconsistent, its least-squares solution minimizes ‖Ax−
b‖2:

Normal equations ATAx̂ = ATb. (1)

ATA is invertible exactly when the columns of A are linearly independent!
Then,

Best estimate x̂ x̂ = (ATA)−1ATb. (2)

The projection of b onto the column space is the nearest point Ax̂:

Projection p = Ax̂ = A(ATA)−1ATb. (3)

We choose an example in which our intuition is as good as the formulas:

A =




1 2
1 3
0 0


 , b =




4
5
6


 ,

Ax = b has no solution
ATAx̂ = ATb gives the best x.
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Both columns end with a zero, so C(A) is the x-y plane within three-dimensional space
The projection of b = (4,5,6) is p = (4,5,0)—the x and y components stay the same
but z = 6 will disappear. That is confirmed by solving the normal equations:

ATA =

[
1 1 0
2 3 0

]


1 2
1 3
0 0


 =

[
2 5
5 13

]
.

x̂ = (ATA)−1ATb =

[
13 −5
−5 2

][
1 1 0
2 3 0

]


4
5
6


 =

[
2
1

]
.

Projection p = Ax̂ =




1 2
1 3
0 0




[
2
1

]
=




4
5
0


 .

In this special case, the best we can do is to solve the first two equations of Ax = b. Then
x̂1 = 2 and x̂2 = 1. The error in the equation 0x1 +0x2 = 6 is sure to be 6.

Remark 4. Suppose b is actually in the column space of A—it is a combination b = Ax
of the columns. Then the projection of b is still b:

b in column space p = A(ATA)−1ATAx = Ax = b.

The closest point p is just b itself—which is obvious.

Remark 5. At the other extreme, suppose b is perpendicular to every column, so ATb =
0. In this case b projects to the zero vector:

b in left nullspace p = A(ATA)−1ATb = A(ATA)−10 = 0.

Remark 6. When A is square and invertible, the column space is the whole space. Every
vector projects to itself, p equals b, and x̂ = x:

If A is invertible p = A(ATA)−1ATb = AA−1(AT)−1ATb = b.

This is the only case when we can take apart (ATA)−1, and write it as A−1(AT)−1. When
A is rectangular that is not possible.

Remark 7. Suppose A has only one column, containing a. Then the matrix ATA is the
number aTa and x̂ is aTb/aTa. We return to the earlier formula.

The Cross-Product Matrix ATA

The matrix ATA is certainly symmetric. Its transpose is (ATA)T = ATATT, which is ATA
again. Its i, j entry (and j, i entry) is the inner product of column i of A with column j
of A. The key question is the invertibility of ATA, and fortunately
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ATA has the same nullspace as A.

Certainly if Ax = 0 then ATAx = 0. Vectors x in the nullspace of A are also in the
nullspace of ATA. To go in the other direction, start by supposing that ATAx = 0, and
take the inner product with x to show that Ax = 0:

xTATAx = 0, or ‖Ax‖2 = 0, or Ax = 0.

The two nullspaces are identical. In particular, if A has independent columns (and only
x = 0 is in its nullspace), then the same is true for ATA:

3M If A has independent columns, then ATA is square, symmetric, and invert-
ible.

We show later that ATA is also positive definite (all pivots and eigenvalues are positive).
This case is by far the most common and most important. Independence is not so

hard in m-dimensional space if m > n. We assume it in what follows.

Projection Matrices

We have shown that the closest point to b is p = A(ATA)−1ATb. This formula expresses
in matrix terms the construction of a perpendicular line from b to the column space of
A. The matrix that gives p is a projection matrix, denoted by P:

Projection matrix P = A(ATA)−1AT. (4)

This matrix projects any vector b onto the column space of A.1 In other words, p = Pb
is the component of b in the column space, and the error e = b−Pb is the component
in the orthogonal complement. (I−P is also a projection matrix! It projects b onto the
orthogonal complement, and the projection is b−Pb.)

In short, we have a matrix formula for splitting any b into two perpendicular compo-
nents. Pb is in the column space C(A), and the other component (I−P)b is in the left
nullspace N(AT)—which is orthogonal to the column space.

These projection matrices can be understood geometrically and algebraically.

3N The projection matrix P = A(ATA)−1AT has two basic properties:

(i) It equals its square: P2 = P.

(ii) It equals its transpose: PT = P.

Conversely, any symmetric matrix with P2 = P represents a projection.
1There may be a risk of confusion with permutation matrices, also denoted by P, but the risk should be small,

and we try never to let both appear on the same page.
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Proof. It is easy to see why P2 = P. If we start with any b, then Pb lies in the subspace
we are projecting onto. When we project again nothing is changed. The vector Pb is
already in the subspace, and P(Pb) is still Pb. In other words P2 = P. Two or three or
fifty projections give the same point p as the first projection:

P2 = A(ATA)−1ATA(ATA)−1AT = A(ATA)−1AT = P.

To prove that P is also symmetric, take its transpose. Multiply the transposes in
reverse order, and use symmetry of (ATA)−1, to come back to P:

PT = (AT)T (
(ATA)−1)T

AT = A(ATA)−1AT = P.

For the converse, we have to deduce from P2 = P and PT = P that Pb is the projection
of b onto the column space of P. The error vector b−Pb is orthogonal to the space.
For any vector Pc in the space, the inner product is zero:

(b−Pb)TPc = bT(I−P)TPc = bT(P−P2)c = 0.

Thus b−Pb is orthogonal to the space, and Pb is the projection onto the column space.

Example 1. Suppose A is actually invertible. If it is 4 by 4, then its four columns are
independent and its column space is all of R4. What is the projection onto the whole
space? It is the identity matrix.

P = A(ATA)−1AT = AA−1(AT)−1AT = I. (5)

The identity matrix is symmetric, I2 = I, and the error b− Ib is zero.

The point of all other examples is that what happened in equation (5) is not allowed.
To repeat: We cannot invert the separate parts AT and A when those matrices are rectan-
gular. It is the square matrix ATA that is invertible.

Least-Squares Fitting of Data

Suppose we do a series of experiments, and expect the output b to be a linear function
of the input t. We look for a straight line b = C +Dt. For example:

1. At different times we measure the distance to a satellite on its way to Mars. In this
case t is the time and b is the distance. Unless the motor was left on or gravity is
strong, the satellite should move with nearly constant velocity v: b = b0 + vt.

2. We vary the load on a structure, and measure the movement it produces. In this
experiment t is the load and b is the reading from the strain gauge. Unless the load
is so great that the material becomes plastic, a linear relation b = C +Dt is normal
in the theory of elasticity.
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3. The cost of producing t books like this one is nearly linear, b = C+Dt, with editing
and typesetting in C and then printing and binding in D. C is the set-up cost and D
is the cost for each additional book.

How to compute C and D? If there is no experimental error, then two measurements
of b will determine the line b = C + Dt. But if there is error, we must be prepared to
“average” the experiments and find an optimal line. That line is not to be confused with
the line through a on which b was projected in the previous section! In fact, since there
are two unknowns C and D to be determined, we now project onto a two-dimensional
subspace. A perfect experiment would give a perfect C and D:

C + Dt1 = b1

C + Dt2 = b2
...

C + Dtm = bm.

(6)

This is an overdetermined system, with m equations and only two unknowns. If errors
are present, it will have no solution. A has two columns, and x = (C,D):




1 t1
1 t2
...

...
1 tm




[
C
D

]
=




b1

b2
...

bm


 , or Ax = b. (7)

The best solution (Ĉ, D̂) is the x̂ that minimizes the squared error E2:

Minimize E2 = ‖b−Ax‖2 = (b1−C−Dt1)2 + · · ·+(bm−C−Dtm)2.

The vector p = Ax̂ is as close as possible to b. Of all straight lines b = C + Dt, we are
choosing the one that best fits the data (Figure 3.9). On the graph, the errors are the
vertical distances b−C−Dt to the straight line (not perpendicular distances!). It is the
vertical distances that are squared, summed, and minimized.

Example 2. Three measurements b1, b2, b3 are marked on Figure 3.9a:

b = 1 at t =−1, b = 1 at t = 1, b = 3 at t = 2.

Note that the values t = −1,1,2 are not required to be equally spaced. The first step is
to write the equations that would hold if a line could go through all three points. Then
every C +Dt would agree exactly with b:

Ax = b is
C − D = 1
C + D = 1
C + 2D = 3

or




1 −1
1 1
1 2




[
C
D

]
=




1
1
3


 .
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Figure 3.9: Straight-line approximation matches the projection p of b.

If those equations Ax = b could be solved, there would be no errors. They can’t be solved
because the points are not on a line. Therefore they are solved by least squares:

ATAx̂ = ATb is

[
3 2
2 6

][
Ĉ
D̂

]
=

[
5
6

]
.

The best solution is Ĉ = 9
7 , D̂ = 4

7 and the best line is 9
7 + 4

7t.

Note the beautiful connections between the two figures. The problem is the same but
the art shows it differently. In Figure 3.9b, b is not a combination of the columns (1,1,1)
and (−1,1,2). In Figure 3.9, the three points are not on a line. Least squares replaces
points b that are not on a line by points p that are! Unable to solve Ax = b, we solve
Ax̂ = p.

The line 9
7 + 4

7t has heights 5
7 , 13

7 , 17
7 at the measurement times−1, 1, 2. Those points

do lie on a line. Therefore the vector p = (5
7 ,

13
7 , 17

7 ) is in the column space. This vector
is the projection. Figure 3.9b is in three dimensions (or m dimensions if there are m
points) and Figure 3.9a is in two dimensions (or n dimensions if there are n parameters).

Subtracting p from b, the errors are e = (2
7 ,−6

7 ,
4
7). Those are the vertical errors in

Figure 3.9a, and they are the components of the dashed vector in Figure 3.9b. This error
vector is orthogonal to the first column (1,1,1), since −2

7 − 6
7 + 4

7 = 0. It is orthogonal
to the second column (−1,1,2), because −2

7− 6
7 + 8

7 = 0. It is orthogonal to the column
space, and it is in the left nullspace.

Question: If the measurements b = (2
7 ,−6

7 ,
4
7) were those errors, what would be the

best line and the best x̂? Answer: The zero line—which is the horizontal axis—and
x̂ = 0. Projection to zero.

We can quickly summarize the equations for fitting by a straight line. The first column
of A contains 1s, and the second column contains the times ti. Therefore ATA contains
the sum of the 1s and the ti and the t2

i :
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3O The measurements b1, . . . ,bm are given at distinct points t1, . . . , tm. Then
the straight line Ĉ + D̂t which minimizes E2 comes from least squares:

ATA

[
Ĉ
D̂

]
= ATb or

[
m ∑ ti

∑ ti ∑ t2
i

][
Ĉ
D̂

]
=

[
∑bi

∑ tibi

]
.

Remark. The mathematics of least squares is not limited to fitting the data by straight
lines. In many experiments there is no reason to expect a linear relationship, and it
would be crazy to look for one. Suppose we are handed some radioactive material, The
output b will be the reading on a Geiger counter at various times t. We may know that
we are holding a mixture of two chemicals, and we may know their half-lives (or rates
of decay), but we do not know how much of each is in our hands. If these two unknown
amounts are C and D, then the Geiger counter readings would behave like the sum of
two exponentials (and not like a straight line):

b = Ce−λ t +De−µt . (8)

In practice, the Geiger counter is not exact. Instead, we make readings b1, . . . ,bm at
times t1, . . . , tm, and equation (8) is approximately satisfied:

Ax = b is
Ce−λ t1 + De−µt1 ≈ b1

...
Ce−λ tm + De−µtm ≈ bm.

If there are more than two readings, m > 2, then in all likelihood we cannot solve for
C and D. But the least-squares principle will give optimal values Ĉ and D̂.

The situation would be completely different if we knew the amounts C and D, and
were trying to discover the decay rates λ and µ . This is a problem in nonlinear least
squares, and it is harder. We would still form E2, the sum of the squares of the errors,
and minimize it. But setting its derivatives to zero will not give linear equations for the
optimal λ and µ . In the exercises, we stay with linear least squares.

Weighted Least Squares

A simple least-squares problem is the estimate x̂ of a patient’s weight from two obser-
vations x = b1 and x = b2. Unless b1 = b2, we are faced with an inconsistent system of
two equations in one unknown:

[
1
1

][
x
]

=

[
b1

b2

]
.

Up to now, we accepted b1 and b2 as equally reliable. We looked for the value x̂ that
minimized E2 = (x−b1)2 +(x−b2)2:

dE2

dx
= 0 at x̂ =

b1 +b2

2
.
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The optimal x̂ is the average. The same conclusion comes from ATAx̂ = ATb. In fact
ATA is a 1 by 1 matrix, and the normal equation is 2x̂ = b1 +b2.

Now suppose the two observations are not trusted to the same degree. The value
x = b1 may be obtained from a more accurate scale—or, in a statistical problem, from a
larger sample—than x = b2. Nevertheless, if b2 contains some information, we are not
willing to rely totally on b1. The simplest compromise is to attach different weights w2

1
and w2

2, and choose the x̂W that minimizes the weighted sum of squares:

Weighted error E2 = w2
1(x−b1)2 +w2

2(x−b2)2.

If w1 > w2, more importance is attached to b1. The minimizing process (derivative = 0)
tries harder to make (x−b1)2 small:

dE2

dx
= 2

[
w2

1(x−b1)+w2
2(x−b2)

]
= 0 at x̂W =

w2
1b1 +w2

2b2

w2
1 +w2

2
. (9)

Instead of the average of b1 and b2 (for w1 = w2 = 1), x̂W is a weighted average of the
data. This average is closer to b1 than to b2.

The ordinary least-squares problem leading to x̂W comes from changing Ax = b to
the new system WAx = Wb. This changes the solution from x̂ to x̂W . The matrix W TW
turns up on both sides of the weighted normal equations:

The least squares solution to WAx = Wb is x̂W :

Weighted normal equations (ATW TWA)x̂W = ATW TWb.

What happens to the picture of b projected to Ax̂? The projection Ax̂W is still the
point in the column space that is closest to b. But the word “closest” has a new meaning
when the length involves W . The weighted length of x equals the ordinary length of Wx.
Perpendicularity no longer means yTx = 0; in the new system the test is (Wy)T(Wx) = 0.
The matrix W TW appears in the middle. In this new sense, the projection Ax̂W and the
error b−Ax̂W are again perpendicular.

That last paragraph describes all inner products: They come from invertible matrices
W . They involve only the symmetric combination C = W TW . The inner product of x
and y is yTCx. For an orthogonal matrix W = Q, when this combination is C = QTQ = I,
the inner product is not new or different. Rotating the space leaves the inner product
unchanged. Every other W changes the length and inner product.
For any invertible matrix W, these rules define a new inner product and length:

Weighted by W (x,y)W = (Wy)T(Wx) and ‖x‖W = ‖Wx‖. (10)

Since W is invertible, no vector is assigned length zero (except the zero vector). All
possible inner products—which depend linearly on x and y and are positive when x =
y 6= 0—are found in this way, from some matrix C = W TW .
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In practice, the important question is the choice of C. The best answer comes from
statisticians, and originally from Gauss. We may know that the average error is zero.
That is the “expected value” of the error in b—although the error is not really expected
to be zero! We may also know the average of the square of the error; that is the variance.
If the errors in the bi are independent of each other, and their variances are σ2

i , then the
right weights are wi = 1/σi. A more accurate measurement, which means a smaller
variance, gets a heavier weight.

In addition to unequal reliability, the observations may not be independent. If the
errors are coupled—the polls for President are not independent of those for Senator,
and certainly not of those for Vice-President—then W has off-diagonal terms. The best
unbiased matrix C = W TW is the inverse of the covariance matrix—whose i, j entry is
the expected value of (error in bi) times (error in b j). Then the main diagonal of C−1

contains the variances σ2
i , which are the average of (error in bi)2.

Example 3. Suppose two bridge partners both guess (after the bidding) the total num-
ber of spades they hold. For each guess, the errors−1, 0, 1 might have equal probability
1
3 . Then the expected error is zero and the variance is 2

3 :

E(e) = 1
3(−1)+ 1

3(0)+ 1
3(1) = 0

E(e2) = 1
3(−1)2 + 1

3(0)2 + 1
3(1)2 = 2

3 .

The two guesses are dependent, because they are based on the same bidding—but not
identical, because they are looking at different hands. Say the chance that they are
both too high or both too low is zero, but the chance of opposite errors is 1

3 . Then
E(e1e2) = 1

3(−1), and the inverse of the covariance matrix is W TW :

[
E(e2

1) E(e1e2)
E(e1e2) E(e2

2)

]−1

=

[
2
3 −1

3
−1

3
2
3

]−1

=

[
2 1
1 2

]
= C = W TW.

This matrix goes into the middle of the weighted normal equations.

Problem Set 3.3

1. Find the best least-squares solution x̂ to 3x = 10, 4x = 5. What error E2 is minimized?
Check that the error vector (10−3x̂,5−4x̂) is perpendicular to the column (3,4).

2. Suppose the values b1 = 1 and b2 = 7 at times t1 = 1 and t2 = 2 are fitted by a line
b = Dt through the origin. Solve D = 1 and 2D = 7 by least squares, and sketch the
best line.
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3. Solve Ax = b by least squares, and find p = Ax̂ if

A =




1 0
0 1
1 1


 , b =




1
1
0


 .

Verify that the error b− p is perpendicular to the columns of A.

4. Write out E2 = ‖Ax−b‖2 and set to zero its derivatives with respect to u and v, if

A =




1 0
0 1
1 1


 , x =

[
u
v

]
, b =




1
3
4


 .

Compare the resulting equations with ATAx̂ = ATb, confirming that calculus as well
as geometry gives the normal equations. Find the solution x̂ and the projection p =
Ax̂. Why is p = b?

5. The following system has no solution:

Ax =




1 −1
1 0
1 1




[
C
D

]
=




4
5
9


 = b.

Sketch and solve a straight-line fit that leads to the minimization of the quadratic
(C−D−4)2 +(C−5)2 +(C+D−9)2? What is the projection of b onto the column
space of A?

6. Find the projection of b onto the column space of A:

A =




1 1
1 −1
−2 4


 , b =




1
2
7


 .

Split b into p + q, with p in the column space and q perpendicular to that space.
Which of the four subspaces contains q?

7. Find the projection matrix P onto the space spanned by a1 = (1,0,1) and a2 =
(1,1,−1).

8. If P is the projection matrix onto a k-dimensional subspace S of the whole space Rn,
what is the column space of P and what is its rank?

9. (a) If P = PTP, show that P is a projection matrix.

(b) What subspace does the matrix P = 0 project onto?

10. If the vectors a1, a2, and b are orthogonal, what are ATA and ATb? What is the
projection of b onto the plane of a1 and a2?
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11. Suppose P is the projection matrix onto the subspace S and Q is the projection onto
the orthogonal complement S⊥. What are P+Q and PQ? Show that P−Q is its own
inverse.

12. If V is the subspace spanned by (1,1,0,1) and (0,0,1,0), find

(a) a basis for the orthogonal complement V⊥.

(b) the projection matrix P onto V.

(c) the vector in V closest to the vector b = (0,1,0,−1) in V⊥.

13. Find the best straight-line fit (least squares) to the measurements

b = 4 at t =−2, b = 3 at t =−1,
b = 1 at t = 0, b = 0 at t = 2.

Then find the projection of b = (4,3,1,0) onto the column space of

A =




1 −2
1 −1
1 0
1 2


 .

14. The vectors a1 = (1,1,0) and a2 = (1,1,1) span a plane in R3. Find the projection
matrix P onto the plane, and find a nonzero vector b that is projected to zero.

15. If P is the projection matrix onto a line in the x-y plane, draw a figure to describe
the effect of the “reflection matrix” H = I− 2P. Explain both geometrically and
algebraically why H2 = I.

16. Show that if u has unit length, then the rank-1 matrix P = uuT is a projection matrix:
It has properties (i) and (ii) in 3N. By choosing u = a/‖a‖, P becomes the projection
onto the line through a, and Pb is the point p = x̂a. Rank-1 projections correspond
exactly to least-squares problems in one unknown.

17. What 2 by 2 matrix projects the x-y plane onto the −45° line x+ y = 0?

18. We want to fit a plane y = C +Dt +Ez to the four points

y = 3 at t = 1,z = 1 y = 6 at t = 0,z = 3
y = 5 at t = 2,z = 1 y = 0 at t = 0,z = 0.

(a) Find 4 equations in 3 unknowns to pass a plane through the points (if there is
such a plane).

(b) Find 3 equations in 3 unknowns for the best least-squares solution.

19. If PC = A(ATA)−1AT is the projection onto the column space of A, what is the pro-
jection PR onto the row space? (It is not PT

C !)
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20. If P is the projection onto the column space of A, what is the projection onto the left
nullspace?

21. Suppose L1 is the line through the origin in the direction of a1 and L2 is the line
through b in the direction of a2. To find the closest points x1a1 and b + x2a2 on the
two lines, write the two equations for the x1 and x2 that minimize ‖x1a1−x2a2−b‖.
Solve for x if a1 = (1,1,0), a2 = (0,1,0), b = (2,1,4).

22. Find the best line C +Dt to fit b = 4,2,−1,0,0 at times t =−2,−1,0,1,2.

23. Show that the best least-squares fit to a set of measurements y1, . . . ,ym by a horizontal
line (a constant function y = C) is their average

C =
y1 + · · ·+ ym

m
.

24. Find the best straight-line fit to the following measurements, and sketch your solu-
tion:

y = 2 at t =−1, y = 0 at t = 0,
y =−3 at t = 1, y =−5 at t = 2.

25. Suppose that instead of a straight line, we fit the data in Problem 24 by a parabola:
y = C + Dt + Et2. In the inconsistent system Ax = b that comes from the four mea-
surements, what are the coefficient matrix A, the unknown vector x, and the data
vector b? You need not compute x̂.

26. A Middle-Aged man was stretched on a rack to lengths L = 5, 6, and 7 feet under
applied forces of F = 1, 2, and 4 tons. Assuming Hooke’s law L = a + bF , find his
normal length a by least squares.

Problems 27–31 introduce basic ideas of statistics—the foundation for least
squares.

27. (Recommended) This problem projects b = (b1, . . . ,bm) onto the line through a =
(1, . . . ,1). We solve m equations ax = b in 1 unknown (by least squares).

(a) Solve aTax̂ = aTb to show that is the mean (the average) of the b’s,

(b) Find e = b−ax̂, the variance ‖e‖2, and the standard deviation ‖e‖.

(c) The horizontal line b̂ = 3 is closest to b = (1,2,6), Check that p = (3,3,3) is
perpendicular to e and find the projection matrix P.

28. First assumption behind least squares: Each measurement error has mean zero. Mul-
tiply the 8 error vectors b−Ax = (±1,±1,±1) by (ATA)−1AT to show that the 8
vectors x̂− x also average to zero. The estimate x̂ is unbiased.
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29. Second assumption behind least squares: The m errors ei are independent with
variance σ2, so the average of (b−Ax)(b−Ax)T is σ2I. Multiply on the left by
(ATA)−1AT and on the right by A(ATA)−1 to show that the average of (x̂−x)(x̂−x)T

is σ2(ATA)−1. This is the all-important covariance matrix for the error in x̂.

30. A doctor takes four readings of your heart rate. The best solution to x = b1, . . . ,x = b4

is the average x̂ of b1, . . . ,b4. The matrix A is a column of 1s. Problem 29 gives the
expected error (x̂−x)2 as σ2(ATA)−1 = . By averaging, the variance drops from
σ2 to σ2/4.

31. If you know the average x̂9 of 9 numbers b1, . . . ,b9, how can you quickly find the
average x̂10 with one more number b10? The idea of recursive least squares is to
avoid adding 10 numbers. What coefficient of x̂9 correctly gives x̂10?

x̂10 = 1
10 b̂10 + x̂9 = 1

10(b1 + · · ·+b10).

Problems 32–37 use four points b = (0,8,8,20) to bring out more ideas.

32. With b = 0,8,8,20 at t = 0,1,3,4, set up and solve the normal equations ATAx̂ = ATb.
For the best straight line as in Figure 3.9a, find its four heights pi and four errors ei.
What is the minimum value E2 = e2

1 + e2
2 + e2

3 + e2
4?

33. (Line C + Dt does go through p’s) With b = 0,8,8,20 at times t = 0,1,3,4, write
the four equations Ax = b (unsolvable). Change the measurements to p = 1,5,13,17
and find an exact solution to Ax̂ = p.

34. Check that e = b− p = (−1,3,−5,3) is perpendicular to both columns of A. What
is the shortest distance ‖e‖ from b to the column space of A?

35. For the closest parabola b = C +Dt +Et2 to the same four points, write the unsolv-
able equations Ax = b in three unknowns x = (C,D,E). Set up the three normal
equations ATAx̂ = ATb (solution not required). You are now fitting a parabola to four
points—what is happening in Figure 3.9b?

36. For the closest cubic b = C +Dt +Et2 +Ft3 to the same four points, write the four
equations Ax = b. Solve them by elimination, This cubic now goes exactly through
the points. What are p and e?

37. The average of the four times is t̂ = 1
4(0+1+3+4) = 2. The average of the four b’s

is b̂ = 1
4(0+8+8+20) = 9.

(a) Verify that the best line goes through the center point (̂t, b̂) = (2,9).

(b) Explain why C +Dt̂ = b̂ comes from the first equation in ATAx̂ = ATb.

38. What happens to the weighted average x̂W = (w2
1b1 + w2

2b2)/(w2
1 + w2

2) if the first
weight w1 approaches zero? The measurement b1 is totally unreliable.
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39. From m independent measurements b1, . . . ,bm of your pulse rate, weighted by w1, . . . ,wm,
what is the weighted average that replaces equation (9)? It is the best estimate when
the statistical variances are σ2

i ≡ 1/w2
i .

40. If W =
[

2 0
0 1

]
, find the W -inner product of x = (2,3) and y = (1,1), and the W -length

of x. What line of vectors is W -perpendicular to y?

41. Find the weighted least-squares solution x̂W to Ax = b:

A =




1 0
1 1
1 2


 b =




0
1
1


 W =




2 0 0
0 1 0
0 0 1


 .

Check that the projection Ax̂W is still perpendicular (in the W -inner product!) to the
error b−Ax̂W .

42. (a) Suppose you guess your professor’s age, making errors e =−2,−1,5 with prob-
abilities 1

2 ,
1
4 ,

1
4 . Check that the expected error E(e) is zero and find the variance

E(e2).

(b) If the professor guesses too (or tries to remember), making errors −1, 0, 1 with
probabilities 1

8 ,
6
8 ,

1
8 , what weights w1 and w2 give the reliability of your guess

and the professor’s guess?

3.4 Orthogonal Bases and Gram-Schmidt

In an orthogonal basis, every vector is perpendicular to every other vector. The coor-
dinate axes are mutually orthogonal. That is just about optimal, and the one possible
improvement is easy: Divide each vector by its length, to make it a unit vector. That
changes an orthogonal basis into an orthonormal basis of q’s:

3P The vectors q1, . . . ,qn are orthonormal if

qT
i q j =

{
0 whenever i 6= j, giving the orthogonality;
1 whenever i = j, giving the normalization.

A matrix with orthonormal columns will be called Q.

The most important example is the standard basis. For the x-y plane, the best-known
axes e1 = (1,0) and e2 = (0,1) are not only perpendicular but horizontal and vertical. Q
is the 2 by 2 identity matrix. In n dimensions the standard basis e1, . . . ,en again consists
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of the columns of Q = I:

Standard
basis

e1 =




1
0
0
...
0




, e2 =




0
1
0
...
0




, · · · , en =




0
0
0
...
1




.

That is not the only orthonormal basis! We can rotate the axes without changing the
right angles at which they meet. These rotation matrices will be examples of Q.

If we have a subspace of Rn, the standard vectors ei might not lie in that subspace.
But the subspace always has an orthonormal basis, and it can be constructed in a simple
way out of any basis whatsoever. This construction, which converts a skewed set of axes
into a perpendicular set, is known as Gram-Schmidt orthogonalization.

To summarize, the three topics basic to this section are:

1. The definition and properties of orthogonal matrices Q.

2. The solution of Qx = b, either n by n or rectangular (least squares).

3. The Gram-Schmidt process and its interpretation as a new factorization A = QR.

Orthogonal Matrices

3Q If Q (square or rectangular) has orthonormal columns, then QTQ = I:

Orthonormal
columns




— qT
1 —

— qT
2 —
...

— qT
n —






| | |

q1 q2 · · · qn

| | |


 =




1 0 · 0
0 1 · 0
· · · ·
0 0 · 1


 = I.

(1)
An orthogonal matrix is a square matrix with orthonormal columns.2 Then
QT is Q−1. For square orthogonal matrices, the transpose is the inverse.

When row i of QT multiplies column j of Q, the result is qT
j q j = 0. On the diagonal

where i = j, we have qT
i qi = 1. That is the normalization to unit vectors of length 1.

Note that QTQ = I even if Q is rectangular. But then QT is only a left-inverse.

Example 1.

Q =

[
cosθ −sinθ
sinθ cosθ

]
, QT = Q−1 =

[
cosθ sinθ
−sinθ cosθ

]
.

2Orthonormal matrix would have been a better name, but it is too late to change. Also, there is no accepted word
for a rectangular matrix with orthonormal columns. We still write Q, but we won’t call it an “orthogonal matrix”
unless it is square.
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Q rotates every vector through the angle θ , and QT rotates it back through −θ . The
columns are clearly orthogonal, and they are orthonormal because sin2θ + cos2θ = 1.
The matrix QT is just as much an orthogonal matrix as Q.

Example 2. Any permutation matrix P is an orthogonal matrix. The columns are cer-
tainly unit vectors and certainly orthogonal—because the 1 appears in a different place
in each column: The transpose is the inverse.

If P =




0 1 0
0 0 1
1 0 0


 then P−1 = PT =




0 0 1
1 0 0
0 1 0


 .

An anti-diagonal P, with P13 = P22 = P31 = I, takes the x-y-z axes into the z-y-x axes—
a “right-handed” system into a “left-handed” system. So we were wrong if we suggested
that every orthogonal Q represents a rotation. A reflection is also allowed. P =

[
0 1
1 0

]
reflects every point (x,y) into (y,x), its mirror image across the 45° line. Geometrically,
an orthogonal Q is the product of a rotation and a reflection.

There does remain one property that is shared by rotations and reflections, and in fact
by every orthogonal matrix. It is not shared by projections, which are not orthogonal or
even invertible. Projections reduce the length of a vector, whereas orthogonal matrices
have a property that is the most important and most characteristic of all:

3R Multiplication by any Q preserves lengths:

Lengths unchanged ‖Qx‖= ‖x‖ for every vector x. (2)

It also preserves inner products and angles, since (Qx)T(Qy) = xTQTQy = xTy.

The preservation of lengths comes directly from QTQ = I:

‖Qx‖2 = ‖x‖2 because (Qx)T(Qx) = xTQTQx = xTx. (3)

All inner products and lengths are preserved, when the space is rotated or reflected.
We come now to the calculation that uses the special property QT = Q−1. If we have a

basis, then any vector is a combination of the basis vectors. This is exceptionally simple
for an orthonormal basis, which will be a key idea behind Fourier series. The problem
is to find the coefficients of the basis vectors:

Write b as a combination b = x1q1 + x2q2 + · · ·+ xnqn.

To compute x1 there is a neat trick. Multiply both sides of the equation by qT
1 . On the

left-hand side is qT
1 b. On the right-hand side all terms disappear (because qT

1 q j = 0)
except the first term. We are left with

qT
1 b = x1qT

1 q1.
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Since qT
1 q1 = 1, we have found x1 = qT

1 b. Similarly the second coefficient is x2 = qT
2 b;

that term survives when we multiply by qT
2 . The other terms die of orthogonality. Each

piece of b has a simple formula, and recombining the pieces gives back b:

Every vector b is equal to (qT
1 b)q1 +(qT

2 b)q2 + · · ·+(qT
n b)qn. (4)

I can’t resist putting this orthonormal basis into a square matrix Q. The vector equa-
tion x1q1 + · · ·+xnqn = b is identical to Qx = b. (The columns of Q multiply the compo-
nents of x.) Its solution is x = Q−1b. But since Q−1 = QT—this is where orthonormality
enters—the solution is also x = QTb:

x = QTb =




— qT
1 —
...

— qT
n —





b


 =




qT
1 b
...

qT
n b


 (5)

The components of x are the inner products qT
i b, as in equation (4).

The matrix form also shows what happens when the columns are not orthonormal.
Expressing b as a combination x1a1 + · · ·+xnan is the same as solving Ax = b. The basis
vectors go into the columns of A. In that case we need A−1, which takes work. In the
orthonormal case we only need QT.

Remark 1. The ratio aTb/aTa appeared earlier, when we projected b onto a line. Here a
is q1, the denominator is 1, and the projection is (qT

1 b)q1. Thus we have a new interpre-
tation for formula (4): Every vector b is the sum of its one-dimensional projections onto
the lines through the q’s.

Since those projections are orthogonal, Pythagoras should still be correct. The square
of the hypotenuse should still be the sum of squares of the components:

‖b‖2 = (qT
1 b)2 +(qT

2 b)2 + · · ·+(qT
n b)2 which is ‖QTb‖2. (6)

Remark 2. Since QT = Q−1, we also have QQT = I. When Q comes before QT, mul-
tiplication takes the inner products of the rows of Q. (For QTQ it was the columns.)
Since the result is again the identity matrix, we come to a surprising conclusion: The
rows of a square matrix are orthonormal whenever the columns are. The rows point
in completely different directions from the columns, and I don’t see geometrically why
they are forced to be orthonormal—but they are.

Orthonormal columns
Orthonormal rows

Q =




1/
√

3 1/
√

2 1/
√

6
1/
√

3 0 −2/
√

6
1/
√

3 −1/
√

2 1/
√

6


 .

Rectangular Matrices with Orthogonal Columns

This chapter is about Ax = b, when A is not necessarily square. For Qx = b we now
admit the same possibility—there may be more rows than columns. The n orthonormal
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vectors qi in the columns of Q have m > n components. Then Q is an m by n matrix and
we cannot expect to solve Qx = b exactly. We solve it by least squares.

If there is any justice, orthonormal columns should make the problem simple. It
worked for square matrices, and now it will work for rectangular matrices. The key is to
notice that we still have QTQ = I. So QT is still the left-inverse of Q.

For least squares that is all we need. The normal equations came from multiplying
Ax = b by the transpose matrix, to give ATAx̂ = ATb. Now the normal equations are
QTQ = QTb. But QTQ is the identity matrix! Therefore x̂ = QTb, whether Q is square
and x̂ is an exact solution, or Q is rectangular and we need least squares.

3S If Q has orthonormal columns, the least-squares problem becomes easy:
rectangular system with no solution for most b.

Qx = b
QTQx̂ = QTb

x̂ = QTb
p = Qx̂
p = QQTb

rectangular system with no solution for most b.
normal equation for the best x̂—in which QTQ = I.
x̂i is qT

i b.
the projection of b is (qT

1 b)q1 + · · ·+(qT
n b)qn.

the projection matrix is P = QQT.

The last formulas are like p = Ax̂ and P = A(ATA)−1AT. When the columns are orthonor-
mal, the “cross-product matrix” ATA becomes QTQ = I. The hard part of least squares
disappears when vectors are orthonormal. The projections onto the axes are uncoupled,
and p is the sum p = (qT

1 b)q1 + · · ·+(qT
n b)qn.

We emphasize that those projections do not reconstruct b. In the square case m = n,
they did. In the rectangular case m > n, they don’t. They give the projection p and
not the original vector b—which is all we can expect when there are more equations
than unknowns, and the q’s are no longer a basis. The projection matrix is usually
A(ATA)−1AT, and here it simplifies to

P = Q(QTQ)−1QT or P = QQT. (7)

Notice that QTQ is the n by n identity matrix, whereas QQT is an m by m projection P.
It is the identity matrix on the columns of Q (P leaves them alone), But QQT is the zero
matrix on the orthogonal complement (the nullspace of QT).

Example 3. The following case is simple but typical. Suppose we project a point
b = (x,y,z) onto the x-y plane. Its projection is p = (x,y,0), and this is the sum of the
separate projections onto the x- and y-axes:

q1 =




1
0
0


 and (qT

1 b)q1 =




x
0
0


 ; q2 =




0
1
0


 and (qT

2 b)q2 =




0
y
0


 .
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The overall projection matrix is

P = q1qT
1 +q2qT

2 =




1 0 0
0 1 0
0 0 0


 , and P




x
y
z


 =




x
y
0


 .

Projection onto a plane = sum of projections onto orthonormal q1 and q2.

Example 4. When the measurement times average to zero, fitting a straight line leads to
orthogonal columns. Take t1 =−3, t2 = 0, and t3 = 3. Then the attempt to fit y = C+Dt
leads to three equations in two unknowns:

C + Dt1 = y1

C + Dt2 = y2

C + Dt3 = y3

, or




1 −3
1 0
1 3




[
C
D

]
=




y1

y2

y3


 .

The columns (1,1,1) and (−3,0,3) are orthogonal. We can project y separately onto
each column, and the best coefficients Ĉ and D̂ can be found separately:

Ĉ =

[
1 1 1

][
y1 y2 y3

]T

12 +12 +12 , D̂ =

[
−3 0 3

][
y1 y2 y3

]T

(−3)2 +02 +32 .

Notice that Ĉ = (y1 + y2 + y3)/3 is the mean of the data. Ĉ gives the best fit by a
horizontal line, whereas D̂t is the best fit by a straight line through the origin. The
columns are orthogonal, so the sum of these two separate pieces is the best fit by any
straight line whatsoever. The columns are not unit vectors, so Ĉ and D̂ have the length
squared in the denominator.

Orthogonal columns are so much better that it is worth changing to that case. if the
average of the observation times is not zero—it is t̄ = (t1 + · · ·+ tm)/m—then the time
origin can be shifted by t̄. Instead of y = C +Dt we work with y = c+d(t− t̄). The best
line is the same! As in the example, we find

ĉ =

[
1 · · · 1

][
y1 · · · ym

]T

12 +12 + · · ·+12 =
y1 + · · ·+ ym

m

d̂ =

[
(t1− t̄) · · · (tm− t̄)

][
y1 · · · ym

]T

(t1− t̄)2 + · · ·+(tm− t̄)2 = ∑(ti− t̄)yi

∑(ti− t̄)2 .

(8)

The best ĉ is the mean, and we also get a convenient formula for d̂. The earlier ATA
had the off-diagonal entries ∑ ti, and shifting the time by t̄ made these entries zero. This
shift is an example of the Gram-Schmidt process, which orthogonalizes the situation in
advance.

Orthogonal matrices are crucial to numerical linear algebra, because they introduce
no instability. While lengths stay the same, roundoff is under control. Orthogonalizing
vectors has become an essential technique. Probably it comes second only to elimina-
tion. And it leads to a factorization A = QR that is nearly as famous as A = LU .
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The Gram-Schmidt Process

Suppose you are given three independent vectors a, b, c. If they are orthonormal, life is
easy. To project a vector v onto the first one, you compute (aTv)a. To project the same
vector v onto the plane of the first two, you just add (aTv)a +(bTv)b. To project onto
the span of a, b, c, you add three projections. All calculations require only the inner
products aTv, bTv, and cTv. But to make this true, we are forced to say, “If they are
orthonormal.” Now we propose to find a way to make them orthonormal.

The method is simple. We are given a, b, c and we want q1, q2, q3. There is no
problem with q1: it can go in the direction of a. We divide by the length, so that q1 =
a/‖a‖ is a unit vector. The real problem begins with q2—which has to be orthogonal
to q1. If the second vector b has any component in the direction of q1 (which is the
direction of a), that component has to be subtracted:

Second vector B = b− (qT
1 b)q1 and q2 = B/‖B‖. (9)

B is orthogonal to q1. It is the part of b that goes in a new direction, and not in the a. In
Figure 3.10, B is perpendicular to q1. It sets the direction for q2.

b

q2

B

b

q1

a

Figure 3.10: The qi component of b is removed; a and B normalized to q1 and q2.

At this point q1 and q2 are set. The third orthogonal direction starts with c. It will
not be in the plane of q1 and q2, which is the plane of a and b. However, it may have a
component in that plane, and that has to be subtracted. (If the result is C = 0, this signals
that a, b, c were not independent in the first place) What is left is the component C we
want, the part that is in a new direction perpendicular to the plane:

Third vector C = c− (qT
1 c)q1− (qT

2 c)q2 and q3 = C/‖C‖. (10)

This is the one idea of the whole Gram-Schmidt process, to subtract from every new
vector its components in the directions that are already settled. That idea is used over
and over again.3 When there is a fourth vector, we subtract away its components in the
directions of q1, q2, q3.

3If Gram thought of it first, what was left for Schmidt?
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Example 5. Gram-Schmidt Suppose the independent vectors are a, b, c:

a =




1
0
1


 , b =




1
0
0


 , c =




2
1
0


 .

To find q1, make the first vector into a unit vector: q1 = a/
√

2. To find q2, subtract from
the second vector its component in the first direction:

B = b− (qT
1 b)q1 =




1
0
0


− 1√

2




1/
√

2
0

1/
√

2


 =

1
2




1
0
−1


 .

The normalized q2 is B divided by its length, to produce a unit vector:

q2 =




1/
√

2
0

−1/
√

2


 .

To find q3, subtract from c its components along q1 and q2:

C = c− (qT
1 c)q1− (qT

2 c)q2

=




2
1
0


−

√
2




1/
√

2
0

1/
√

2


−

√
2




1/
√

2
0

−1/
√

2


 =




0
1
0


 .

This is already a unit vector, so it is q3. I went to desperate lengths to cut down the num-
ber of square roots (the painful part of Gram-Schmidt). The result is a set of orthonormal
vectors q1, q2, q3, which go into the columns of an orthogonal matrix Q:

Orthonormal basis Q =


q1 q2 q3


 =




1/
√

2 1/
√

2 0
0 0 1

1/
√

2 −1/
√

2 0


 .

3T The Gram-Schmidt process starts with independent vectors a1, . . . ,an and
ends with orthonormal vectors q1, . . . ,qn. At step j it subtracts from a j its
components in the directions q1, . . . ,q j−1 that are already settled:

A j = a j− (qT
1 a j)q1−·· ·− (qT

j−1a j)q j−1. (11)

Then q j is the unit vector A j/‖A j‖.

Remark on the calculations I think it is easier to compute the orthogonal a, B, C,
without forcing their lengths to equal one. Then square roots enter only at the end, when
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dividing by those lengths. The example above would have the same B and C, without
using square roots. Notice the 1

2 from aTb/aTa instead of 1√
2

from qTb:

B =




1
0
0


− 1

2




1
0
1


 and then C =




2
1
0


−




1
0
1


−2




1
2
0
−1

2


 .

The Factorization A = QR

We started with a matrix A, whose columns were a, b, c. We ended with a matrix Q,
whose columns are q1, q2, q3. What is the relation between those matrices? The matrices
A and Q are m by n when the n vectors are in m-dimensional space, and there has to be
a third matrix that connects them.

The idea is to write the a’s as combinations of the q’s. The vector b in Figure 3.10 is
a combination of the orthonormal q1 and q2, and we know what combination it is:

b = (qT
1 b)q1 +(qT

2 b)q2.

Every vector in the plane is the sum of its q1 and q2 components. Similarly c is the sum
of its q1, q2, q3 components: c = (qT

1 c)q1 + (qT
2 c)q2 + (qT

3 c)q3. If we express that in
matrix form we have the new factorization A = QR:

QR factors A =


a b c


 =


q1 q2 q3







qT
1 a qT

1 b qT
1 c

qT
2 b qT

2 c
qT

3 c


 = QR (12)

Notice the zeros in the last matrix! R is upper triangular because of the way Gram-
Schmidt was done. The first vectors a and q1 fell on the same line. Then q1, q2 were in
the same plane as a, b. The third vectors c and q3 were not involved until step 3.

The QR factorization is like A = LU , except that the first factor Q has orthonormal
columns. The second factor is called R, because the nonzeros are to the right of the di-
agonal (and the letter U is already taken). The off-diagonal entries of R are the numbers
qT

1 b = 1/
√

2 and qT
1 c = qT

2 c =
√

2, found above. The whole factorization is

A =




1 1 2
0 0 1
1 0 0


 =




1/
√

2 1/
√

2 0
0 0 1

1/
√

2 −1/
√

2 0







√
2 1/

√
2
√

2
1/
√

2
√

2
1


 = QR.

You see the lengths of a, B, C on the diagonal of R. The orthonormal vectors q1, q2, q3,
which are the whole object of orthogonalization, are in the first factor Q.

Maybe QR is not as beautiful as LU (because of the square roots). Both factoriza-
tions are vitally important to the theory of linear algebra, and absolutely central to the
calculations. If LU is Hertz, then QR is Avis.
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The entries ri j = qT
i a j appear in formula (11), when ‖A j‖q j is substituted for A j:

a j = (qT
1 a j)q1 + · · ·+(qT

j−1a j)q j−1 +‖A j‖q j = Q times column j of R. (13)

3U Every m by n matrix with independent columns can be factored into
A = QR. The columns of Q are orthonormal, and R is upper triangular and
invertible. When m = n and all matrices are square, Q becomes an orthogonal
matrix.

I must not forget the main point of orthogonalization. It simplifies the least-squares
problem Ax = b. The normal equations are still correct, but ATA becomes easier:

ATA = RTQTQR = RTR. (14)

The fundamental equation ATAx̂ = ATb simplifies to a triangular system:

RTRx̂ = RTQTb or Rx̂ = QTb. (15)

Instead of solving QRx = b, which can’t be done, we solve Rx̂ = QTb which is just
back-substitution because R is triangular. The real cost is the mn2 operations of Gram-
Schmidt, which are needed to find Q and R in the first place.

The same idea of orthogonality applies to functions, The sines and cosines are or-
thogonal; the powers 1, x, x2 are not. When f (x) is written as a combination of sines and
cosines, that is a Fourier series. Each term is a projection onto a line—the line in func-
tion space containing multiples of cosnx or sinnx. It is completely parallel to the vector
case, and very important. And finally we have a job for Schmidt: To orthogonalize the
powers of x and produce the Legendre polynomials.

Function Spaces and Fourier Series

This is a brief and optional section, but it has a number of good intentions:

1. to introduce the most famous infinite-dimensional vector space (Hilbert space);

2. to extend the ideas of length and inner product from vectors v to functions f (x):

3. to recognize the Fourier series as a sum of one-dimensional projections (the orthog-
onal “columns” are the sines and cosines);

4. to apply Gram-Schmidt orthogonalization to the polynomials 1,x,x2, . . .; and

5. to find the best approximation to f (x) by a straight line.

We will try to follow this outline, which opens up a range of new applications for
linear algebra, in a systematic way.

1. Hilbert Space. After studying Rn, it is natural to think of the space R∞. It con-
tains all vectors v = (v1,v2,v3, . . .) with an infinite sequence of components. This space
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is actually too big when there is no control on the size of components v j. A much better
idea is to keep the familiar definition of length, using a sum of squares, and to include
only those vectors that have a finite length:

Length squared ‖v‖2 = v2
1 + v2

2 + v2
3 + · · · (16)

The infinite series must converge to a finite sum. This leaves (1, 1
2 ,

1
3 , . . .) but not (1,1,1, . . .).

Vectors with finite length can be added (‖v+w‖ ≤ ‖v‖+‖w‖) and multiplied by scalars,
so they form a vector space. It is the celebrated Hilbert space.

Hilbert space is the natural way to let the number of dimensions become infinite,
and at the same time to keep the geometry of ordinary Euclidean space. Ellipses become
infinite-dimensional ellipsoids, and perpendicular lines are recognized exactly as before.
The vectors v and w are orthogonal when their inner product is zero:

Orthogonality vTw = v1w1 + v2w2 + v3w3 + · · ·= 0.

This sum is guaranteed to converge, and for any two vectors it still obeys the Schwarz
inequality |vTw| ≤ ‖v‖‖w‖. The cosine, even in Hilbert space, is never larger than 1.

There is another remarkable thing about this space: It is found under a great many
different disguises. Its “vectors” can turn into functions, which is the second point.

2. Lengths and Inner Products. Suppose f (x) = sinx on the interval 0≤ x≤ 2π . This
f is like a vector with a whole continuum of components, the values of sinx along the
whole interval. To find the length of such a vector, the usual rule of adding the squares
of the components becomes impossible. This summation is replaced, in a natural and
inevitable way, by integration:

Length ‖ f‖ of function ‖ f‖2 =
∫ 2π

0
( f (x))2dx =

∫ 2π

0
(sinx)2dx = π (17)

Our Hilbert space has become a function space. The vectors are functions, we have a
way to measure their length, and the space contains all those functions that have a finite
length—just as in equation (16). It does not contain the function F(x) = 1/x, because
the integral of 1/x2 is infinite.

The same idea of replacing summation by integration produces the inner product of
two functions: If f (x) = sinx and g(x) = cosx, then their inner product is

( f ,g) =
∫ 2π

0
f (x)g(x)dx =

∫ 2π

0
sinxcosxdx = 0. (18)

This is exactly like the vector inner product f Tg. It is still related to the length by
( f , f ) = ‖ f‖2. The Schwarz inequality is still satisfied: |( f ,g)| ≤ ‖ f‖‖g‖. Of course,
two functions like sinx and cosx—whose inner product is zero—will be called orthogo-
nal. They are even orthonormal after division by their length

√
π .
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3. The Fourier series of a function is an expansion into sines and cosines:

f (x) = a0 +a1 cosx+b1 sinx+a2 cos2x+b2 sin2x+ · · · .
To compute a coefficient like b1, multiply both sides by the corresponding function sinx
and integrate from 0 to 2π . (The function f (x) is given on that interval.) In other words,
take the inner product of both sides with sinx:

∫ 2π

0
f (x)sinxdx = a0

∫ 2π

0
sinxdx+a1

∫ 2π

0
cosxsinxdx+b1

∫ 2π

0
(sinx)2dx+ · · · .

On the right-hand side, every integral is zero except one—the one in which sinx multi-
plies itself. The sines and cosines are mutually orthogonal as in equation (18) Therefore
b1 is the left-hand side divided by that one nonzero integral:

b1 =
∫ 2π

0 f (x)sinxdx
∫ 2π

0 (sinx)2dx
=

( f ,sinx)
(sinx,sinx)

.

The Fourier coefficient a1 would have cosx in place of sinx, and a2 would use cos2x.
The whole point is to see the analogy with projections. The component of the vector

b along the line spanned by a is bTa/aTa. A Fourier series is projecting f (x) onto sinx.
Its component p in this direction is exactly b1 sinx.

The coefficient b1 is the least squares solution of the inconsistent equation b1 sinx =
f (x). This brings b1 sinx as close as possible to f (x). All the terms in the series are
projections onto a sine or cosine. Since the sines and cosines are orthogonal, the Fourier
series gives the coordinates of the “vector” f (x) with respect to a set of (infinitely many)
perpendicular axes.

4. Gram-Schmidt for Functions. There are plenty of useful functions other than
sines and cosines, and they are not always orthogonal. The simplest are the powers of x,
and unfortunately there is no interval on which even 1 and x2 are perpendicular. (Their
inner product is always positive, because it is the integral of x2.) Therefore the closest
parabola to f (x) is not the sum of its projections onto 1, x, and x2. There will be a matrix
like (ATA)−1, and this coupling is given by the ill-conditioned Hilbert matrix. On the
interval 0≤ x≤ 1,

ATA =




(1,1) (1,x) (1,x2)
(x,1) (x,x) (x,x2)
(x2,1) (x2,x) (x2,x2)


 =




∫
1

∫
x

∫
x2

∫
x

∫
x2 ∫

x3
∫

x2 ∫
x3 ∫

x4


 =




1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5


 .

This matrix has a large inverse, because the axes 1, x, x2 are far from perpendicular. The
situation becomes impossible if we add a few more axes. It is virtually hopeless to solve
ATAx̂ = ATb for the closest polynomial of degree ten.

More precisely, it is hopeless to solve this by Gaussian elimination; every roundoff
error would be amplified by more than 1013. On the other hand, we cannot just give
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up; approximation by polynomials has to be possible. The right idea is to switch to
orthogonal axes (by Gram-Schmidt). We look for combinations of 1, x, and x2 that are
orthogonal.

It is convenient to work with a symmetrically placed interval like−1≤ x≤ 1, because
this makes all the odd powers of x orthogonal to all the even powers:

(1,x) =
∫ 1

−1
xdx = 0, (x,x2) =

∫ 1

−1
x3dx = 0.

Therefore the Gram-Schmidt process can begin by accepting v1 = 1 and v2 = x as the
first two perpendicular axes. Since (x,x2) = 0, it only has to correct the angle between 1
and x2. By formula (10), the third orthogonal polynomial is

Orthogonalize v3 = x2− (1,x2)
(1,1)

1− (x,x2)
(x,x)

x = x2−
∫ 1
−1 x2dx
∫ 1
−1 1dx

= x2− 1
3
.

The polynomials constructed in this way are called the Legendre polynomials and they
are orthogonal to each other over the interval −1≤ x≤ 1.

Check
(

1,x2− 1
3

)
=

∫ 1

−1

(
x2− 1

3

)
dx =

[
x3

3
− x

3

]1

−1
= 0.

The closest polynomial of degree ten is now computable, without disaster, by projecting
onto each of the first 10 (or 11) Legendre polynomials.

5. Best Straight Line. Suppose we want to approximate y = x5 by a straight line
C + Dx between x = 0 and x = 1. There are at least three ways of finding that line, and
if you compare them the whole chapter might become clear!

1. Solve [1 x]
[

C
D

]
= x5 by least squares. The equation ATAx̂ = ATb is

[
(1,1) (1,x)
(x,1) (x,x)

][
C
D

]
=

[
(1,x5)
(x,x5)

]
or

[
1 1

2
1
2

1
3

][
C
D

]
=

[
1
6
1
17

]
.

2. Minimize E2 =
∫ 1

0 (x5−C−Dx)2dx = 1
11− 2

6C− 2
7D+C2 +CD+ 1

3D2. The deriva-
tives with respect to C and D, after dividing by 2, bring back the normal equations
of method 1 (and the solution is Ĉ = 1

6 − 5
14 , D̂ = 5

17):

−1
6

+C +
1
2

D = 0 and − 1
7

+
1
2

C +
1
3

D = 0.

3. Apply Gram-Schmidt to replace x by x− (1,x)/(1,1). That is x− 1
2 , which is or-

thogonal to 1. Now the one-dimensional projections add to the best line:

C +Dx =
(x5,1)
(1,1)

1+
(x5,x− 1

2)
(x− 1

2 ,x− 1
2)

(x− 1
2) =

1
6

+
5
7

(
x− 1

2

)
.
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Problem Set 3.4

1. (a) Write the four equations for fitting y = C +Dt to the data

y =−4 at t =−2, y =−3 at t =−1
y =−1 at t = 1, y = 0 at t = 2.

Show that the columns are orthogonal.

(b) Find the optimal straight line, draw its graph, and write E2.

(c) Interpret the zero error in terms of the original system of four equations in two
unknowns: The right-hand side (−4,−3,−1,0) is in the space.

2. Project b = (0,3,0) onto each of the orthonormal vectors a1 = (2
3 ,

2
3 ,−1

3) and a2 =
(−1

3 ,
2
3 ,

2
3), and then find its projection p onto the plane of a1 and a2.

3. Find also the projection of b = (0,3,0) onto a3 = (2
3 ,−1

3 ,
2
3), and add the three pro-

jections. Why is P = a1aT
1 +a2aT

2 +a3aT
3 equal to I?

4. If Q1 and Q2 are orthogonal matrices, so that QTQ = I, show that Q1Q2 is also
orthogonal. If Q1 is rotation through θ , and Q2 is rotation through φ , what is Q1Q2?
Can you find the trigonometric identities for sin(θ +φ) and cos(θ +φ) in the matrix
multiplication Q1Q2?

5. If u is a unit vector, show that Q = I− 2uuT is a symmetric orthogonal matrix. (It
is a reflection, also known as a Householder transformation.) Compute Q when
uT =

[1
2

1
2 − 1

2 − 1
2

]
.

6. Find a third column so that the matrix

Q =




1/
√

3 1/
√

14
1/
√

3 2/
√

14
1/
√

3 −3/
√

14




is orthogonal. It must be a unit vector that is orthogonal to the other columns; how
much freedom does this leave? Verify that the rows automatically become orthonor-
mal at the same time.

7. Show, by forming bTb directly, that Pythagoras’s law holds for any combination
b = x1q1 + · · ·+ xnqn of orthonormal vectors: ‖b‖2 = x2

1 + · · ·+ x2
n. In matrix terms,

b = Qx, so this again proves that lengths are preserved: ‖Qx‖2 = ‖x‖2.

8. Project the vector b = (1,2) onto two vectors that are not orthogonal, a1 = (1,0)
and a2 = (1,1). Show that, unlike the orthogonal case, the sum of the two one-
dimensional projections does not equal b.

9. If the vectors q1, q2, q3 are orthonormal, what combination of q1 and q2 is closest to
q3?
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10. If q1 and q2 are the outputs from Gram-Schmidt, what were the possible input vectors
a and b?

11. Show that an orthogonal matrix that is upper triangular must be diagonal.

12. What multiple of a1 =
[

1
1

]
should be subtracted from a2 =

[
4
0

]
to make the result

orthogonal to a1? Factor
[

1 4
1 0

]
into QR with orthonormal vectors in Q.

13. Apply the Gram-Schmidt process to

a =




0
0
1


 , b =




0
1
1


 , c =




1
1
1




and write the result in the form A = QR.

14. From the nonorthogonal a, b, c, find orthonormal vectors q1, q2, q3:

a =




1
1
0


 , b =




1
0
1


 , c =




0
1
1


 .

15. Find an orthonormal set q1, q2, q3 for which q1, q2 span the column space of

A =




1 1
2 −1
−2 4


 .

Which fundamental subspace contains q3? What is the least-squares solution of
Ax = b if b = [1 2 7]T?

16. Express the Gram-Schmidt orthogonalization of a1, a2 as A = QR:

a1 =




1
2
2


 , a2 =




1
3
1


 .

Given n vectors ai with m components, what are the shapes of A, Q, and R?

17. With the same matrix A as in Problem 16, and with b = [1 1 1]T, use A = QR to
solve the least-squares problem Ax = b.

18. If A = QR, find a simple formula for the projection matrix P onto the column space
of A.

19. Show that these modified Gram-Schmidt steps produce the same C as in equation
(10):

C∗ = c− (qT
1 c)q1 and C = C∗− (qT

2C∗)q2.

This is much more stable, to subtract the projections one at a time.
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20. In Hilbert space, find the length of the vector v = (1/
√

2,1/
√

4,1/
√

8, . . .) and the
length of the function f (x) = ex (over the interval 0 ≤ x ≤ 1). What is the inner
product over this interval of ex and e−x?

21. What is the closest function acosx + bsinx to the function f (x) = sin2x on the in-
terval from −π to π? What is the closest straight line c+dx?

22. By setting the derivative to zero, find the value of b1 that minimizes

‖b1 sinx− cosx‖2 =
∫ 2π

0
(b1 sinx− cosx)2dx.

Compare with the Fourier coefficient b1.

23. Find the Fourier coefficients a0, a1, b1 of the step function y(x), which equals 1 on
the interval 0≤ x≤ π and 0 on the remaining interval π < x < 2π:

a0 =
(y,1)
(1,1)

a1 =
(y,cosx)

(cosx,cosx)
b1 =

(y,sinx)
(sinx,sinx)

.

24. Find the fourth Legendre polynomial. It is a cubic x3 +ax2 +bx+c that is orthogonal
to 1, x, and x2− 1

3 over the interval −1≤ x≤ 1.

25. What is the closest straight line to the parabola y = x2 over −1≤ x≤ 1?

26. In the Gram-Schmidt formula (10), verify that C is orthogonal to q1 and q2.

27. Find an orthonormal basis for the subspace spanned by a1 = (1,−1,0,0), a2 =
(0,1,−1,0), a3 = (0,0,1,−1).

28. Apply Gram-Schmidt to (1,−1,0), (0,1,−1), and (1,0,−1), to find an orthonormal
basis on the plane x1 +x2 +x3 = 0. What is the dimension of this subspace, and how
many nonzero vectors come out of Gram-Schmidt?

29. (Recommended) Find orthogonal vectors A, B, C by Gram-Schmidt from a, b, c:

a = (1,−1,0,0) b = (0,1,−1,0) c = (0,0,1,−1).

A, B, C and a, b, c are bases for the vectors perpendicular to d = (1,1,1,1).

30. If A = QR then ATA = RTR = triangular times triangular. Gram-Schmidt
on A corresponds to elimination on ATA. Compare

A =




1 0 0
−1 1 0
0 −1 1
0 0 −1


 with ATA =




2 −1 0
−1 2 −1
0 −1 2


 .

For ATA, the pivots are 2, 3
2 , 4

3 and the multipliers are −1
2 and −2

3 .
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(a) Using those multipliers in A, show that column 1 of A and B = column 2−
1
2(column 1) and C = column 3− 2

3(column 2) are orthogonal.

(b) Check that ‖column 1‖2 = 2, ‖B‖2 = 3
2 , and ‖C‖2 = 4

3 , using the pivots.

31. True or false (give an example in either case):

(a) Q−1 is an orthogonal matrix when Q is an orthogonal matrix.

(b) If Q (3 by 2) has orthonormal columns then ‖Qx‖ always equals ‖x‖.

32. (a) Find a basis for the subspace S in R4 spanned by all solutions of

x1 + x2 + x3− x4 = 0.

(b) Find a basis for the orthogonal complement S⊥.

(c) Find b1 in S and b2 in S⊥ so that b1 +b2 = b = (1,1,1,1).

3.5 The Fast Fourier Transform

The Fourier series is linear algebra in infinite dimensions. The “vectors” are functions
f (x); they are projected onto the sines and cosines; that produces the Fourier coefficients
ak and bk. From this infinite sequence of sines and cosines, multiplied by ak and bk, we
can reconstruct f (x). That is the classical case, which Fourier dreamt about, but in actual
calculations it is the discrete Fourier transform that we compute. Fourier still lives, but
in finite dimensions.

This is pure linear algebra, based on orthogonality. The input is a sequence of num-
bers y0, . . . ,yn−1, instead of a function f (x). The output c0, . . . ,cn−1 has the same length
n. The relation between y and c is linear, so it must be given by a matrix. This is the
Fourier matrix F , and the whole technology of digital signal processing depends on it.
The Fourier matrix has remarkable properties.

Signals are digitized, whether they come from speech or images or sonar or TV (or
even oil exploration). The signals are transformed by the matrix F , and later they can be
transformed back—to reconstruct. What is crucially important is that F and F−1 can be
quick:

F−1 must be simple. The multiplications by F and F−1 must be fast.

Those are both true. F−1 has been known for years, and it looks just like F . In fact,
F is symmetric and orthogonal (apart from a factor

√
n), and it has only one drawback:

Its entries are complex numbers. That is a small price to pay, and we pay it below. The
difficulties are minimized by the fact that all entries of F and F−1 tare powers of a single
number w. That number has wn = 1.
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The 4 by 4 discrete Fourier transform uses w = i (and notice i4 = 1). The success of
the whole DFT depends on F times its complex conjugate F :

FF =




1 1 1 1
1 i i2 i3

1 i2 i4 i6

1 i3 i6 i9







1 1 1 1
1 (−i) (−i)2 (−i)3

1 (−i)2 (−i)4 (−i)6

1 (−i)3 (−i)6 (−i)9


 = 4I. (1)

Immediately FF = 4I tells us that F−1 = F/4. The columns of F are orthogonal (to give
the zero entries in 4I). The n by n matrices will have FF = nI. Then the inverse of F is
just F/n. In a moment we will look at the complex number w = e2πi/n (which equals i
for n = 4).

It is remarkable that F is so easy to invert. If that were all (and up to 1965 it was all),
the discrete transform would have an important place. Now there is more. The multipli-
cations by F and F−1 can be done in an extremely fast and ingenious way. Instead of
n2 separate multiplications, coming from the n2 entries in the matrix, the matrix-vector
products Fc and F−1y require only 1

2n logn steps. This rearrangement of the multiplica-
tion is called the Fast Fourier Transform.

The section begins with w and its properties, moves on to F−1, and ends with the
FFT—the fast transform. The great application in signal processing is filtering, and the
key to its success is the convolution rule. In matrix language, all “circulant matrices”
are diagonalized by F . So they reduce to two FFTs and a diagonal matrix.

Complex Roots of Unity

Real equations can have complex solutions. The equation x2 +1 = 0 led to the invention
of i (and also to −i!). That was declared to be a solution, and the case was closed. If
someone asked about x2− i = 0, there was an answer: The square roots of a complex
number are again complex numbers. You must allow combinations x + iy, with a real
part x and an imaginary part y, but no further inventions are necessary. Every real or
complex polynomial of degree n has a full set of n roots (possibly complex and possibly
repeated). That is the fundamental theorem of algebra.

We are interested in equations like x4 = 1. That has four solutions—the fourth roots
of unity. The two square roots of unity are 1 and −1. The fourth roots are the square
roots of the square roots, 1 and −1, i and −i. The number i will satisfy i4 = 1 because
it satisfies i2 =−1. For the eighth roots of unity we need the square roots of i, and that
brings us to w = (1+ i)/

√
2. Squaring w produces (1+2i+ i2)/2, which is i—because

1+ i2 is zero. Then w8 = i4 = 1. There has to be a system here.
The complex numbers cosθ + isinθ in the Fourier matrix are extremely special. The

real part is plotted on the x-axis and the imaginary part on the y-axis (Figure 3.11). Then
the number w lies on the unit circle; its distance from the origin is cos2 θ + sin2 θ = 1.
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It makes an angle θ with the horizontal. The whole plane enters in Chapter 5, where
complex numbers will appear as eigenvalues (even of real matrices). Here we need only
special points w, all of them on the unit circle, in order to solve wn = 1.

w8 = 1

w2 = i

w = e2π/8 = cos 2π

8
+ i sin 2π

8w3

w4 = −1

w5

w6 = −i

w7 = w

bb

b

b

bb

bb

Real axis

2π

8

Figure 3.11: The eight solutions to z8 = 1 are 1,w,w2, . . . ,w7 with w = (1+ i)/
√

2.

The square of w can be found directly (it just doubles the angle):

w2 = (cosθ + isinθ)2 = cos2 θ − sin2 θ +2isinθ cosθ .

The real part cos2 θ − sin2 θ is cos2θ , and the imaginary part 2 sinθ cosθ is sin2θ .
(Note that i is not included; the imaginary part is a real number.) Thus w2 = cos2θ +
isin2θ . The square of w is still on the unit circle, but at the double angle 2θ . That
makes us suspect that wn lies at the angle nθ , and we are right.

There is a better way to take powers of w. The combination of cosine and sine is a
complex exponential, with amplitude one and phase angle θ :

cosθ + isinθ = eiθ . (2)

The rules for multiplying, like (e2)(e3) = e5, continue to hold when the exponents iθ are
imaginary. The powers of w = eiθ stay on the unit circle:

Powers of w w2 = ei2θ , wn = einθ ,
1
w

= e−iθ . (3)

The nth power is at the angle nθ . When n = −1, the reciprocal 1/w has angle −θ . If
we multiply cosθ + isinθ by cos(−θ)+ isin(−θ), we get the answer 1:

eiθ e−iθ = (cosθ + isinθ)(cosθ − isinθ) = cos2 θ + sin2 θ = 1.

Note. I remember the day when a letter came to MIT from a prisoner in New York,
asking if Euler’s formula (2) was true. It is really astonishing that three of the key
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functions of mathematics should come together in such a graceful way. Our best answer
was to look at the power series for the exponential:

eiθ = 1+ iθ +
(iθ)2

2!
+

(iθ)3

3!
+ · · · .

The real part 1−θ 2/2+ · · · is cosθ . The imaginary part θ −θ 3/6+ · · · is the sine, The
formula is correct, and I wish we had sent a more beautiful proof.

With this formula, we can solve wn = 1. It becomes einθ = 1, so that nθ must carry
us around the unit circle and back to the start. The solution is to choose θ = 2π/n: The
“primitive” nth root of unity is

wn = e2πi/n = cos
2π
n

+ isin
2π
n

. (4)

Its nth power is e2πi, which equals 1. For n = 8, this root is (1+ i)/
√

2:

w4 = cos
π
2

+ isin
π
2

= i and w8 = cos
π
4

+ isin
π
4

=
1+ i√

2

The fourth root is at θ = 90°, which is 1
4(360°). The other fourth roots are the powers

i2 =−1, i3 =−i, and i4 = 1. The other eighth roots are the powers w2
8,w

3
8, . . . ,w

8
8. The

roots are equally spaced around the unit circle, at intervals of 2π/n. Note again that the
square of w8 is w4, which will be essential in the Fast Fourier Transform. The roots add
up to zero. First 1+ i−1− i = 0, and then

Sum of eighth roots 1+w8 +w2
8 + · · ·+w7

8 = 0. (5)

One proof is to multiply the left side by w8, which leaves it unchanged. (It yields w8 +
w2

8 + · · ·+w8
8 and w8

8 equals 1.) The eight points each move through 45°, but they remain
the same eight points. Since zero is the only number that is unchanged when multiplied
by w8, the sum must be zero. When n is even the roots cancel in pairs (like 1 + i2 = 0
and i+ i3 = 0). But the three cube roots of 1 also add to zero.

The Fourier Matrix and Its Inverse

In the continuous case, the Fourier series can reproduce f (x) over a whole interval. It
uses infinitely many sines and cosines (or exponentials). In the discrete case, with only
n coefficients c0, . . . ,cn−1 to choose, we only ask for equality at n points. That gives n
equations. We reproduce the four values y = 2,4,6,8 when Fc = y:

Fc = y

c0 + c1 + c2 + c3 = 2
c0 + ic1 + i2c2 + i3c3 = 4
c0 + i2c1 + i4c2 + i6c3 = 6
c0 + i3c1 + i6c2 + i9c3 = 8.

(6)
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The input sequence is y = 2,4,6,8. The output sequence is c0,c1,c2,c3. The four equa-
tions (6) look for a four-term Fourier series that matches the inputs at four equally spaced
points x on the interval from 0 to 2π:

Discrete
Fourier
Series

c0 + c1eix + c2e2ix + c3e3ix =





2 at x = 0
4 at x = π/2
6 at x = π
8 at x = 3π/2.

Those are the four equations in system (6). At x = 2π the series returns y0 = 2 and
continues periodically. The Discrete Fourier Series is best written in this complex form,
as a combination of exponentials eikx rather than sinkx and coskx.

For every n, the matrix connecting y to c can be inverted. It represents n equations,
requiring the finite series c0 +c1eix + · · · (n terms) to agree with y (at n points). The first
agreement is at x = 0, where c0 + · · ·+cn−1 = y0. The remaining points bring powers of
w, and the full problem is Fc = y:

Fc = y




1 1 1 · 1
1 w w2 · wn−1

1 w2 w4 · w2(n−1)

· · · · ·
1 wn−1 w2(n−1) · w(n−1)2







c0

c1

c2

·
cn−1




=




y0

y1

y2

·
yn−1




. (7)

There stands the Fourier matrix F with entries Fjk = w jk. It is natural to number the
rows and columns from 0 to n− 1, instead of 1 to n. The first row has j = 0, the first
column has k = 0, and all their entries are w0 = 1.

To find the c’s we have to invert F . In the 4 by 4 case, F−1 was built from 1/i =−i.
That is the general rule, that F−1 comes from the complex number w−1 = w. It lies at
the angle −2π/n, where w was at the angle +2π/n:

3V The inverse matrix is built from the powers of w−1 = 1/w = w:

F−1 =
1
n




1 1 1 · 1
1 w−1 w−2 · w−(n−1)

1 w−2 1 · ·
· · · · ·
1 w−(n−1) w−2(n−1) · w−(n−1)2




=
F
n

. (8)

Thus F =




1 1 1
1 e2πi/3 e4πi/3

1 e4πi/3 e8πi/3


 has F−1 =

1
3




1 1 1
1 e−2πi/3 e−4πi/3

1 e−4πi/3 e−8πi/3


 .

Row j of F times column j of F−1 is always (1+1+ · · ·+1)/n = 1. The harder part is
off the diagonal, to show that row j of F times column k of F−1 gives zero:

1 ·1+w jw−k +w2 jw−2k + · · ·+w(n−1) jw−(n−1)k = 0 if j 6= k. (9)
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The key is to notice that those terms are the powers of W = w jw−k:

1+W +W 2 + · · ·+W n−1 = 0. (10)

This number W is still a root of unity: W n = wn jw−nk is equal to 1 j1−k = 1. Since j
is different from k, W is different from 1. It is one of the other roots on the unit circle.
Those roots all satisfy 1+W + · · ·+W n−1 = 0. Another proof comes from

1−W n = (1−W )(1+W +W 2 + · · ·+W n−1). (11)

Since W n = 1, the left side is zero. But W is not 1, so the last factor must be zero. The
columns of F are orthogonal.

The Fast Fourier Transform

Fourier analysis is a beautiful theory, and it is also very practical. To analyze a waveform
into its frequencies is the best way to take a signal apart. The reverse process brings it
back. For physical and mathematical reasons the exponentials are special, and we can
pinpoint one central cause: If you differentiate eikx, or integrate it, or translate x to
x +h, the result is still a multiple of eikx. Exponentials are exactly suited to differential
equations, integral equations, and difference equations. Each frequency component goes
its own way, as an eigenvector, and then they recombine into the solution. The analysis
and synthesis of signals—computing c from y and y from c—is a central part of scientific
computing.

We want to show that Fc and F−1y can be done quickly. The key is in the relation of
F4 to F2—or rather to two copies of F2, which go into a matrix F∗2 :

F4 =




1 1 1 1
1 i i2 i3

1 i2 i4 i6

1 i3 i6 i9


 is close to F∗2 =




1 1
1 −1

1 1
1 −1


 .

F4 contains the powers of w4 = i, the fourth root of 1. F∗2 contains the powers of w2 =−1,
the square root of 1. Note especially that half the entries in F∗2 are zero. The 2 by 2
transform, done twice, requires only half as much work as a direct 4 by 4 transform. If
64 by 64 transform could be replaced by two 32 by 32 transforms, the work would be
cut in half (plus the cost of reassembling the results). What makes this true, and possible
in practice, is the simple connection between w64 and w32:

(w64)2 = w32, or
(

e2πi/64
)2

= e2πi/32.

The 32nd root is twice as far around the circle as the 64th root. If w64 = 1, then (w2)32 =
1. The mth root is the square of the nth root, if m is half of n:

w2
n = wm if m = 1

2n. (12)
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The speed of the FFT, in the standard form presented here, depends on working with
highly composite numbers like 210 = 1024. Without the fast transform, it takes (1024)2

multiplications to produce F times c (which we want to do often). By contrast, a fast
transform can do each multiplication in only 5 ·1024 steps. It is 200 times faster, because
it replaces one factor of 1024 by 5. In general it replaces n2 multiplications by 1

2n`,
when n is 2`. By connecting Fn to two copies of Fn/2, and then to four copies of Fn/4,
and eventually to a very small F , the usual n2 steps are reduced to 1

2n log2 n.
We need to see how y = Fnc (a vector with n components) can be recovered from two

vectors that are only half as long. The first step is to divide c itself, by separating its
even-numbered components from its odd-numbered components:

c′ = (c0,c2, . . . ,cn−2) and c′′ = (c1,c3, . . . ,cn−1).

The coefficients just go alternately into c′ and c′′. From those vectors, the half-size
transform gives y′ = Fmc′ and y′′ = Fmc′′. Those are the two multiplications by the
smaller matrix Fm. The central problem is to recover y from the half-size vectors y′ and
y′′, and Cooley and Tukey noticed how it could be done:

3W The first m and the last m components of the vector y = Fnc are

y j = y′j +w j
ny′′j , j = 0, . . . ,m−1

y j+m = y′j−w j
ny′′j , j = 0, . . . ,m−1.

(13)

Thus the three steps are: split c into c′ and c′′, transform them by Fm into y′

and y′′, and reconstruct y from equation (13).

We verify in a moment that this gives the correct y. (You may prefer the flow graph
to the algebra.) This idea can be repeated. We go from F1024 to F512 to F256. The final
count is 1

2n`, when starting with the power n = 2` and going all the way to n = 1—where
no multiplication is needed. This number 1

4n` satisfies the rule given above: twice the
count for m, plus m extra multiplications, produces the count for n:

2
(

1
2

m(`−1)
)

+m =
1
2

n`.

Another way to count: There are ` steps from n = 2` to n = 1. Each step needs n/2
multiplications by Dn/2 in equation (13), which is really a factorization of Fn:

One FFT step F1024 =

[
I512 D512

I512 −D512

][
F512

F512

][
even-odd

permutation

]
. (14)

The cost is only slightly more than linear. Fourier analysis has been completely trans-
formed by the FFT. To verify equation (13), split y j into even and odd:

y j =
n−1

∑
k=0

w jk
n ck is identical to

m−1

∑
k=0

w2k j
n c2k +

m−1

∑
k=0

w(2k+1) j
n c2k+1.
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Each sum on the right has m = 1
2n terms. Since w2

n is wm, the two sums are

y j =
m−1

∑
k=0

wk j
m c′k +w j

n

m−1

∑
k=0

wk j
m c′′k = y′j +w j

ny′′j . (15)

For the second part of equation (13), j +m in place of j produces a sign change:

Inside the sums, wk( j+1)
m remains wk j

m since wkm
m = 1k = 1.

Outside, w j+m
n =−w j

n because wm
n = e2πim/n = eπi =−1.

The FFT idea is easily modified to allow other prime factors of n (not only powers of 2).
If n itself is a prime, a completely different algorithm is used.

Example 1. The steps from n = 4 to m = 2 are



c0

c1

c2

c3


→




c0

c2

c1

c3


→




F2c′

F2c′′


→


y


 .

Combined, the three steps multiply c by F4 to give y. Since each step is linear, it must
come from a matrix, and the product of those matrices must be F4:




1 1 1 1
1 i i2 i3

1 i2 i4 i6

1 i3 i6 i9


 =




1 1
1 i

1 −1
1 −i







1 1
1 −1

1 1
1 −1







1
1

1
1


 . (16)

You recognize the two copies of F2 in the center. At the right is the permutation matrix
that separates c into c′ and c′′. At the left is the matrix that multiplies by w j

n. If we
started with F8, the middle matrix would contain two copies of F4. Each of those would
be split as above. Thus the FFT amounts to a giant factorization of the Fourier matrix!
The single matrix F with n2 nonzeros is a product of approximately ` = log2 n matrices
(and a permutation) with a total of only n` nonzeros.

The Complete FFT and the Butterfly

The first step of the FFT changes multiplication by Fn to two multiplications by Fm.
The even-numbered components (c0,c2) are transformed separately from (c1,c3), Figure
3.12 gives a flow graph for n = 4. For n = 8, the key idea is to replace each F4 box by
F2 boxes. The new factor w4 = i is the square of the old factor w = w8 = e2πi/8. The
flow graph shows the order that the c’s enter the FFT and the log2 n stages that take them
through it—and it also shows the simplicity of the logic.

Every stage needs 1
2n multiplications so the final count is 1

2n logn. There is an amaz-
ing rule for the overall permutation of c’s before entering the FFT: Write the subscripts
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b b b

b b b

b b b

b b bc0

c1

c2

c3

y0

y2

y1

y3
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′

y
′′

y
′

00

10

01

11

00

01

10

11
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−1

i

1

−1

−1

Figure 3.12: Flow graph for the Fast Fourier Transform with n = 4.

0, . . . ,7 in binary and reverse the order of their bits. The subscripts appear in “bit-
reversed order” on the left side of the graph. Even numbers come before odd (numbers
ending in 0 come before numbers ending in 1).

Problem Set 3.5

1. What are F2 and F4 for the 4 by 4 Fourier matrix F?

2. Find a permutation P of the columns of F that produces FP = F (n by n), Combine
with FF = nI to find F2 and F4 for the n by n Fourier matrix.

3. If you form a 3 by 3 submatrix of the 6 by 6 matrix F6, keeping only the entries in
its first, third, and fifth rows and columns, what is that submatrix?

4. Mark all the sixth roots of 1 in the complex plane. What is the primitive root w6?
(Find its real and imaginary part.) Which power of w6 is equal to 1/w6? What is
1+w+w2 +w3 +w4 +w5?

5. Find all solutions to the equation eix =−1, and all solutions to eiθ = i.

6. What are the square and the square root of w128, the primitive 128th root of 1?

7. Solve the 4 by 4 system (6) if the right-hand sides are y0 = 2, y1 = 0, y2 = 2, y3 = 0.
In other words, solve F4c = y.

8. Solve the same system with y = (2,0,−2,0) by knowing F−1
4 and computing c =

F−1
4 y. Verify that c0 +c1eix +c2e2ix +c3e3ix takes the values 2, 0, −2, 0 at the points

x = 0,π/2,π,3π/2.

9. (a) If y = (1,1,1,1), show that c = (1,0,0,0) satisfies F4c = y.

(b) Now suppose y = (1,0,0,0), and find c.
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10. For n = 2, write y0 from the first line of equation (13) and y1 from the second line.
For n = 4, use the first line to find y0 and y1, and the second to find y2 and y3, all in
terms of y′ and y′′.

11. Compute y = F4c by the three steps of the Fast Fourier Transform if c = (1,0,1,0).

12. Compute y = F8c by the three steps of the Fast Fourier Transform if c =(1,0,1,0,1,0,1,0).
Repeat the computation with c = (0,1,0,1,0,1,0,1).

13. For the 4 by 4 matrix, write out the formulas for c0, c1, c2, c3 and verify that if f is
odd then c is odd. The vector f is odd if fn− j = − f j; for n = 4 that means f0 = 0,
f3 =− f1, f2 = 0 as in sin0, sinπ/2, sinπ , sin3π/2. This is copied by c and it leads
to a fast sine transform.

14. Multiply the three matrices in equation (16) and compare with F . in which six entries
do you need to know that i2 =−1?

15. Invert the three factors in equation (14) to find a fast factorization of F−1.

16. F is symmetric. So transpose equation (14) to find a new Fast Fourier Transform!

17. All entries in the factorization of F6 involve powers of w = sixth root of 1:

F6 =

[
I D
I −D

][
F3

F3

][
P

]
.

Write these factors with 1, w, w2 in D and 1, w2, w4 in F3. Multiply!

Problems 18–20 introduce the idea of an eigenvector and eigenvalue, when a matrix
times a vector is a multiple of that vector. This is the theme of Chapter 5.

18. The columns of the Fourier matrix F are the eigenvectors of the cyclic permutation
P. Multiply PF to find the eigenvalues λ0 to λ3:




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0







1 1 1 1
1 i i2 i3

1 i2 i4 i6

1 i3 i6 i9


 =




1 1 1 1
1 i i2 i3

1 i2 i4 i6

1 i3 i6 i9







λ0

λ1

λ2

λ3


 .

This is PF = FΛ or P = FΛF−1.

19. Two eigenvectors of this circulant matrix C are (1,1,1,1) and (1, i, i2, i3). What are
the eigenvalues e0 and e1?




c0 c1 c2 c3

c3 c0 c1 c2

c2 c3 c0c1

c1 c2 c3 c0







1
1
1
1


 = e0




1
1
1
1


 and C




1
i
i2

i3


 = e1




1
i
i2

i3


 .
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20. Find the eigenvalues of the “periodic” −1, 2, −1 matrix C. The −1s in the corners
of C make it periodic (a circulant matrix):

C =




2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2


 has c0 = 2, c1 =−1, c2 = 0, c3 =−1.

21. To multiply C times x, when C = FEF−1, we can multiply F(E(F−1x)) instead. The
direct Cx uses n2 separate multiplications. Knowing E and F , the second way uses
only n log2 n+n multiplications. How many of those come from E, how many from
F , and how many from F−1?

22. How could you quickly compute these four components of Fc starting from c0 + c2,
c0− c2, c1 + c3, c1− c3? You are finding the Fast Fourier Transform!

Fc =




c0 + c1 + c2 + c3

c0 + ic1 + i2c2 + i3c3

c0 + i2c1 + i4c2 + i6c3

c0 + i3c1 + i6c2 + i9c3


 .

Review Exercises

3.1 Find the length of a = (2,−2,1), and write two independent vectors that are per-
pendicular to a.

3.2 Find all vectors that are perpendicular to (1,3,1) and (2,7,2), by making those the
rows of A and solving Ax = 0.

3.3 What is the angle between a = (2,−2,1) and b = (1,2,2)?

3.4 What is the projection p of b = (1,2,2) onto a = (2,−2,1)?

3.5 Find the cosine of the angle between the vectors (3,4) and (4,3),

3.6 Where is the projection of b = (1,1,1) onto the plane spanned by (1,0,0) and
(1,1,0)?

3.7 The system Ax = b has a solution if and only if b is orthogonal to which of the four
fundamental subspaces?

3.8 Which straight line gives the best fit to the following data: b = 0 at t = 0, b = 0 at
t = 1, b = 12 at t = 3?

3.9 Construct the projection matrix P onto the space spanned by (1,1,1) and (0,1,3).
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3.10 Which constant function is closest to y = x4 (in the least-squares sense) over the
interval 0≤ x≤ 1?

3.11 If Q is orthogonal, is the same true of Q3?

3.12 Find all 3 by 3 orthogonal matrices whose entries are zeros and ones.

3.13 What multiple of a1 should be subtracted from a2, to make the result orthogonal to
a1? Sketch a figure.

3.14 Factor [
cosθ sinθ
sinθ 0

]

into QR, recognizing that the first column is already a unit vector.

3.15 If every entry in an orthogonal matrix is either 1
4 or −1

4 , how big is the matrix?

3.16 Suppose the vectors q1, . . . ,qn are orthonormal. If b = c1q1 + · · ·+ cnqn, give a
formula for the first coefficient c1 in terms of b and the q’s.

3.17 What words describe the equation ATAx̂ = ATb, the vector p = Ax̂ = Pb, and the
matrix P = A(ATA)−1AT?

3.18 If the orthonormal vectors q1 = (2
3 ,

2
3 ,−1

3) and q2 = (−1
3 ,

2
3 ,

2
3) are the columns of

Q, what are the matrices QTQ and QQT? Show that QQT is a projection matrix
(onto the plane of q1 and q2).

3.19 If v1, . . . ,vn is an orthonormal basis for Rn, show that v1vT
1 + · · ·+ vnvT

n = I.

3.20 True or false: If the vectors x and y are orthogonal, and P is a projection, then Px
and Py are orthogonal.

3.21 Try to fit a line b =C+Dt through the points b = 0, t = 2, and b = 6, t = 2, and show
that the normal equations break down. Sketch all the optimal lines, minimizing the
sum of squares of the two errors.

3.22 What point on the plane x+ y− z = 0 is closest to b = (2,1,0)?

3.23 Find an orthonormal basis for R3 starting with the vector (1,1,1).

3.24 CT scanners examine the patient from different directions and produce a matrix
giving the densities of bone and tissue at each point. Mathematically, the problem
is to recover a matrix from its projections. in the 2 by 2 case, can you recover the
matrix A if you know the sum along each row and down each column?

3.25 Can you recover a 3 by 3 matrix if you know its row sums and column sums, and
also the sums down the main diagonal and the four other parallel diagonals?
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3.26 Find an orthonormal basis for the plane x− y + z = 0, and find the matrix P that
projects onto the plane. What is the nullspace of P?

3.27 Let A = [3 1 1], and let V be the nullspace of A.

(a) Find a basis for V and a basis for V⊥.

(b) Write an orthonormal basis for V⊥, and find the projection matrix P1 that projects
vectors in R3 onto V⊥.

(c) Find the projection matrix P2 that projects vectors in R3 onto V.

3.28 Use Gram-Schmidt to construct an orthonormal pair q1, q2 from a1 = (4,5,2,2)
and a2 = (1,2,0,0), Express a1 and a2 as combinations of q1 and q2, and find the
triangular R in A = QR.

3.29 For any A, b, x, and y, show that

(a) if Ax = b and yTA = 0, then yTb = 0.

(b) if Ax = 0 and ATy = b, then xTb = 0.

What theorem does this prove about the fundamental subspaces?

3.30 Is there a matrix whose row space contains (1,1,0) and whose nullspace contains
(0,1,1)?

3.31 The distance from a plane aTx = c (in m-dimensional space) to the origin is |c|/‖a‖.
How far is the plane x1 + x2− x3− x4 = 8 from the origin, and what point on it is
nearest?

3.32 In the parallelogram with corners at 0, v, w, and v + w, show that the sum of the
squared lengths of the four sides equals the sum of the squared lengths of the two
diagonals.

3.33 (a) Find an orthonormal basis for the column space of A.

A =




1 −6
3 6
4 8
5 0
7 8




.

(b) Write A as QR, where Q has orthonormal columns and R is upper triangular.

(c) Find the least-squares solution to Ax = b, if b = (−3,7,1,0,4).

3.34 With weighting matrix W =
[

2 1
1 0

]
, what is the W -inner product of (1,0) with (0,1)?
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3.35 To solve a rectangular system Ax = b, we replace A−1 (which doesn’t exist) by
(ATA)−1AT (which exists if A has independent columns). Show that this is a left-
inverse of A but not a right-inverse. On the left of A it gives the identity; on the right
it gives the projection P.

3.36 Find the straight line C + Dt that best fits the measurements b = 0,1,2,5 at times
t = 0,1,3,4.

3.37 Find the curve y = C + D2t which gives the best least-squares fit to the measure-
ments y = 6 at t = 0, y = 4 at t = 1, y = 0 at t = 2. Write the three equations that
are solved if the curve goes through the three points, and find the best C and D.

3.38 If the columns of A are orthogonal to each other what can you say about the form
of ATA? If the columns are orthonormal, what can you say then?

3.39 Under what condition on the columns of A (which may be rectangular) is ATA in-
vertible?



Chapter 4
Determinants

4.1 Introduction

Determinants are much further from the center of linear algebra than they were a hundred
years ago. Mathematics keeps changing direction! After all, a single number can tell
only so much about a matrix. Still, it is amazing how much this number can do.

One viewpoint is this: The determinant provides an explicit “formula” for each entry
of A−1 and A−1b. This formula will not change the way we compute; even the deter-
minant itself is found by elimination. In fact, elimination can be regarded as the most
efficient way to substitute the entries of an n by n matrix into the formula. What the
formula does is to show how A−1 depends on the n2 entries of A, and how it varies when
those entries vary.

We can list four of the main uses of determinants:

1. They test for invertibility. If the determinant of A is zero, then A is singular. If
detA 6= 0, then A is invertible (and A−1 involves 1/detA).

The most important application, and the reason this chapter is essential to the book,
is to the family of matrices A− λ I. The parameter λ is subtracted all along the main
diagonal, and the problem is to find the eigenvalues for which A−λ I is singular. The
test is det(A−λ I) = 0. This polynomial of degree n in λ has exactly n roots. The matrix
has n eigenvalues, This is a fact that follows from the determinant formula, and not from
a computer.

2. The determinant of A equals the volume of a box in n-dimensional space. The edges
of the box come from the rows of A (Figure 4.1). The columns of A would give an
entirely different box with the same volume.

The simplest box is a little cube dV = dxdydz, as in
∫∫∫

f (x,y,z)dV . Suppose we
change to cylindrical coordinates by x = r cosθ , y = r sinθ , z = z. Just as a small inter-
val dx is stretched to (dx/du)du—when u replaces x in a single integral—so the volume
element becomes J dr dθ dz. The Jacobian determinant is the three-dimensional ana-
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x

y

z

(a31, a32, a33)

(a21, a22, a23)

(a11, a12, a13)

Figure 4.1: The box formed from the rows of A: volume = |determinant|.

logue of the stretching factor dx/du:

Jacobian J =

∣∣∣∣∣∣∣

∂x/∂ r ∂x/∂θ ∂x/∂ z
∂y/∂ r ∂y/∂θ ∂y/∂ z
∂ z/∂ r ∂ z/∂θ ∂ z/∂ z

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

cosθ −r sinθ 0
sinθ r cosθ 0

0 0 1

∣∣∣∣∣∣∣
.

The value of this determinant is J = r. It is the r in the cylindrical volume element
r dr dθ dz; this element is our little box. (It looks curved if we try to draw it, but proba-
bly it gets straighter as the edges become infinitesimal.)

3. The determinant gives a formula for each pivot. Theoretically, we could predict
when a pivot entry will be zero, requiring a row exchange. From the formula determi-
nant = ± (product of the pivots), it follows that regardless of the order of elimination,
the product of the pivots remains the same apart from sign.

Years ago, this led to the belief that it was useless to escape a very small pivot by
exchanging rows, since eventually the small pivot would catch up with us. But what
usually happens in practice, if an abnormally small pivot is not avoided, is that it is very
soon followed by an abnormally large one. This brings the product back to normal but
it leaves the numerical solution in ruins.

4. The determinant measures the dependence of A−1b on each element of b. If one
parameter is changed in an experiment, or one observation is corrected, the “influence
coefficient” in A−1 is a ratio of determinants.

There is one more problem about the determinant. It is difficult not only to decide
on its importance, and its proper place in the theory of linear algebra, but also to choose
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the best definition. Obviously, detA will not be some extremely simple function of n2

variables; otherwise A−1 would be much easier to find than it actually is.

The simple things about the determinant are not the explicit formulas, but the prop-
erties it possesses. This suggests the natural place to begin. The determinant can be (and
will be) defined by its three most basic properties: det I = 1, the sign is reversed by a
row exchange, the determinant is linear in each row separately. The problem is then
to show, by systematically using these properties, how the determinant can be computed.
This will bring us back to the product of the pivots.

Section 4.2 explains these three defining properties of the determinant, and their most
important consequences. Section 4.3 gives two more formulas for the determinant—the
“big formula” with n! terms, and a formula “by induction”. In Section 4.4 the determi-
nant is applied to find A−1. Then we compute x = A−1b by Cramer’s rule. And finally, in
an optional remark on permutations, we show that whatever the order in which the prop-
erties are used, the result is always the same—the defining properties are self-consistent.

Here is a light-hearted question about permutations. How many exchanges does it
take to change VISA into AVIS? Is this permutation odd or even?

4.2 Properties of the Determinant

This will be a pretty long list. Fortunately each rule is easy to understand, and even
easier to illustrate, for a 2 by 2 example. Therefore we shall verify that the familiar
definition in the 2 by 2 case,

det

[
a b
c d

]
=

∣∣∣∣∣
a b
c d

∣∣∣∣∣ = ad−bc,

possesses every property in the list. (Notice the two accepted notations for the deter-
minant, detA and |A|.) Properties 4–10 will be deduced from the previous ones. Every
property is a consequence of the first three. We emphasize that the rules apply to
square matrices of any size.

1. The determinant of the identity matrix is 1.

det I = 1

∣∣∣∣∣
1 0
0 1

∣∣∣∣∣ = 1 and

∣∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣∣
= 1 and . . .
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2. The determinant changes sign when two rows are exchanged.

Row exchange

∣∣∣∣∣
c d
a b

∣∣∣∣∣ = cb−ad =−
∣∣∣∣∣
a b
c d

∣∣∣∣∣ .

The determinant of every permutation matrix is detP =±1. By row exchanges, we can
turn P into the identity matrix. Each row exchange switches the sign of the determinant,
until we reach det I = 1. Now come all other matrices!

3. The determinant depends linearly on the first row. Suppose A, B, C are the same
from the second row down—and row 1 of A is a linear combination of the first rows of
B and C. Then the rule says: detA is the same combination of detB and detC.

Linear combinations involve two operations—adding vectors and multiplying by scalars.
Therefore this rule can be split into two parts:

Add vectors in row 1

∣∣∣∣∣
a+a′ b+b′

c d

∣∣∣∣∣ =

∣∣∣∣∣
a b
c d

∣∣∣∣∣+
∣∣∣∣∣
a′ b′

c d

∣∣∣∣∣ .

Multiply by t in row 1

∣∣∣∣∣
ta tb
c d

∣∣∣∣∣ = t

∣∣∣∣∣
a b
c d

∣∣∣∣∣ .

Notice that the first part is not the false statement det(B+C) = detB+detC. You cannot
add all the rows: only one row is allowed to change. Both sides give the answer ad +
a′d−bc−b′c.

The second part is not the false statement det(tA) = t detA. The matrix tA has a factor
t in every row (and the determinant is multiplied by tn). It is like the volume of a box,
when all sides are stretched by 4. In n dimensions the volume and determinant go up by
4n. If only one side is stretched, the volume and determinant go up by 4; that is rule 3.
By rule 2, there is nothing special about the first row.

The determinant is now settled, but that fact is not at all obvious. Therefore we grad-
ually use these rules to find the determinant of any matrix.

4. If two rows of A are equal, then detA = 0.

Equal rows

∣∣∣∣∣
a b
a b

∣∣∣∣∣ = ab−ba = 0.

This follows from rule 2, since if the equal rows are exchanged, the determinant is sup-
posed to change sign. But it also has to stay the same, because the matrix stays the same.
The only number which can do that is zero, so detA = 0. (The reasoning fails if 1 =−1,
which is the case in Boolean algebra. Then rule 4 should replace rule 2 as one of the
defining properties.)
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5. Subtracting a multiple of one row from another row leaves the same determinant.

Row operation

∣∣∣∣∣
a− `c b− `d

c d

∣∣∣∣∣ =

∣∣∣∣∣
a b
c d

∣∣∣∣∣ .

Rule 3 would say that there is a further term−`
∣∣ c d

c d

∣∣, but that term is zero by rule 4. The
usual elimination steps do not affect the determinant!

6. If A has a row of zeros, then detA = 0.

Zero row

∣∣∣∣∣
0 0
c d

∣∣∣∣∣ = 0.

One proof is to add some other row to the zero row. The determinant is unchanged, by
rule 5. Because the matrix will now have two identical rows, detA = 0 by rule 4.

7. If A is triangular then detA is the product a11a22 · · ·ann of the diagonal entries. If
the triangular A has 1s along the diagonal, then detA = 1.

Triangular matrix

∣∣∣∣∣
a b
0 d

∣∣∣∣∣ = ad

∣∣∣∣∣
a 0
c d

∣∣∣∣∣ = ad.

Proof. Suppose the diagonal entries are nonzero. Then elimination can remove all the
off-diagonal entries, without changing the determinant (by rule 5). If A is lower triangu-
lar, the steps are downward as usual. If A is upper triangular, the last column is cleared
out first—using multiples of ann. Either way we reach the diagonal matrix D:

D =




a11
. . .

ann


 has detD = a11a22 · · ·ann det I = a11a22 · · ·ann.

To find detD we patiently apply rule 3. Factoring out a11 and then a22 and finally ann

leaves the identity matrix. At last we have a use for rule 1: det I = 1.

If a diagonal entry is zero then elimination will produce a zero row. By rule 5 these
elimination steps do not change the determinant. By rule 6 the zero row means a zero
determinant. This means: When a triangular matrix is singular (because of a zero on the
main diagonal) its determinant is zero.

This is a key property. All singular matrices have a zero determinant.

8. If A is singular, then detA = 0. If A is invertible, then detA 6= 0.

Singular matrix

[
a b
c d

]
is not invertible if and only if ad−bc = 0.
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If A is singular, elimination leads to a zero row in U . Then detA = detU = 0. If A
is nonsingular, elimination puts the pivots d1, . . . ,dn on the main diagonal. We have a
“product of pivots” formula for detA! The sign depends on whether the number of row
exchanges is even or odd:

Product of pivots detA =±detU =±d1d2 · · ·dn. (1)

The ninth property is the product rule. I would say it is the most surprising.

9. The determinant of AB is the product of detA times detB.

Product rule |A||B|= |AB|
∣∣∣∣∣
a b
c d

∣∣∣∣∣

∣∣∣∣∣
e f
g h

∣∣∣∣∣ =

∣∣∣∣∣
ae+bg a f +bh
ce+dg c f +dh

∣∣∣∣∣ .

A particular case of this rule gives the determinant of A−1. It must be 1/detA:

detA−1 =
1

detA
because (detA)(detA−1) = detAA−1 = det I = 1. (2)

In the 2 by 2 case, the product rule could be patiently checked:

(ad−bc)(eh− f g) = (ae+bg)(c f +dh)− (a f +bh)(ce+dg).

In the n by n case we suggest two possible proofs—since this is the least obvious rule.
Both proofs assume that A and B are nonsingular; otherwise AB is singular, and the
equation detAB = (detA)(detB) is easily verified. By rule 8, it becomes 0 = 0.

(i) We prove that the ratio d(A) = detAB/detB has properties 1–3. Then d(A) must
equal detA. For example, d(I) = detB/detB = 1; rule 1 is satisfied. If two rows
of A are exchanged, so are the same two rows of AB, and the sign of d changes
as required by rule 2. A linear combination in the first row of A gives the same
linear combination in the first row of AB. Then rule 3 for the determinant of AB,
divided by the fixed quantity detB, leads to rule 3 for the ratio d(A). Thus d(A) =
detAB/detB coincides with detA, which is our product formula.

(ii) This second proof is less elegant. For a diagonal matrix, detDB = (detD)(detB)
follows by factoring each di from its row. Reduce a general matrix A to D by
elimination—from A to U as usual, and from U to D by upward elimination. The
determinant does not change, except for a sign reversal when rows are exchanged.
The same steps reduce AB to DB, with precisely the same effect on the determinant.
But for DB it is already confirmed that rule 9 is correct.

10. The transpose of A has the same determinant as A itself: detAT = detA.

Transpose rule
∣∣∣A

∣∣∣ =

∣∣∣∣∣
a b
c d

∣∣∣∣∣ =

∣∣∣∣∣
a c
b d

∣∣∣∣∣ =
∣∣∣AT

∣∣∣ .
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Again the singular case is separate; A is singular if and only if AT is singular, and we
have 0 = 0. If A is nonsingular, then it allows the factorization PA = LDU , and we apply
rule 9 for the determinant of a product:

detPdetA = detLdetDdetU. (3)

Transposing PA = LDU gives ATPT = UTDTLT, and again by rule 9,

detAT detPT = detUT detDT detLT. (4)

This is simpler than it looks, because L, U , LT, and UT are triangular with unit diagonal.
By rule 7, their determinants all equal 1. Also, any diagonal matrix is the same as its
transpose: D = DT. We only have to show that detP = detPT.

Certainly detP is 1 or −1, because P comes from I by row exchanges. Observe also
that PPT = I. (The 1 in the first row of P matches the 1 in the first column of PT, and
misses the 1s in the other columns.) Therefore detPdetPT = det I = 1, and P and PT

must have the same determinant: both 1 or both −1.
We conclude that the products (3) and (4) are the same, and detA = detAT. This

fact practically doubles our list of properties, because every rule that applied to the rows
can now be applied to the columns: The determinant changes sign when two columns
are exchanged, two equal columns (or a column of zeros) produce a zero determinant,
and the determinant depends linearly on each individual column. The proof is just to
transpose the matrix and work with the rows.

I think it is time to stop and call the list complete. It only remains to find a definite
formula for the determinant, and to put that formula to use.

Problem Set 4.2

1. If a 4 by 4 matrix has detA = 1
2 , find det(2A), det(−A), det(A2), and det(A−1).

2. If a 3 by 3 matrix has detA =−1, find det(1
2A), det(−A), det(A2), and det(A−1).

3. Row exchange: Add row 1 of A to row 2, then subtract row 2 from row 1. Then
add row 1 to row 2 and multiply row 1 by −1 to reach B. Which rules show the
following?

detB =

∣∣∣∣∣
c d
a b

∣∣∣∣∣ equals −detA =−
∣∣∣∣∣
a b
c d

∣∣∣∣∣ .

Those rules could replace Rule 2 in the definition of the determinant.
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4. By applying row operations to produce an upper triangular U , compute

det




1 2 −2 0
2 3 −4 1
−1 −2 0 2
0 2 5 3


 and det




2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 −2


 .

Exchange rows 3 and 4 of the second matrix and recompute the pivots and determi-
nant.

Note. Some readers will already know a formula for 3 by 3 determinants. It has six
terms (equation (2) of the next section), three going parallel to the main diagonal and
three others going the opposite way with minus signs. There is a similar formula for
4 by 4 determinants, but it contains 4! = 24 terms (not just eight). You cannot even
be sure that a minus sign goes with the reverse diagonal, as the next exercises show.

5. Count row exchanges to find these determinants:

det




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 =±1 and det




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 =−1.

6. For each n, how many exchanges will put (row n, row n− 1, . . . , row 1) into the
normal order (row 1, . . . , row n− 1, row n)? Find detP for the n by n permutation
with 1s on the reverse diagonal. Problem 5 had n = 4.

7. Find the determinants of:

(a) a rank one matrix

A =




1
4
2




[
2 −1 2

]
.

(b) the upper triangular matrix

U =




4 4 8 8
0 1 2 2
0 0 2 6
0 0 0 2


 .

(c) the lower triangular matrix UT.

(d) the inverse matrix U−1.
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(e) the “reverse-triangular” matrix that results from row exchanges,

M =




0 0 0 2
0 0 2 6
0 1 2 2
4 4 8 8


 .

8. Show how rule 6 (det = 0 if a row is zero) comes directly from rules 2 and 3.

9. Suppose you do two row operations at once, going from
[

a b
c d

]
to

[
a−mc b−md
c− `a d− `b

]
.

Find the determinant of the new matrix, by rule 3 or by direct calculation.

10. If Q is an orthogonal matrix, so that QTQ = I, prove that detQ equals +1 or −1.
What kind of box is formed from the rows (or columns) of Q?

11. Prove again that detQ = 1 or −1 using only the Product rule. If |detQ| > 1 then
detQn blows up. How do you know this can’t happen to Qn?

12. Use row operations to verify that the 3 by 3 “Vandermonde determinant” is

det




1 a a2

1 b b2

1 c c2


 = (b−a)(c−a)(c−b).

13. (a) A skew-symmetric matrix satisfies KT =−K, as in

K =




0 a b
−a 0 c
−b −c 0


 .

In the 3 by 3 case, why is det(−K) = (−1)3 detK? On the other hand detKT =
detK (always). Deduce that the determinant must be zero.

(b) Write down a 4 by 4 skew-symmetric matrix with detK not zero.

14. True or false, with reason if true and counterexample if false:

(a) If A and B are identical except that b11 = 2a11, then detB = 2detA.

(b) The determinant is the product of the pivots.

(c) If A is invertible and B is singular, then A+B is invertible.

(d) If A is invertible and B is singular, then AB is singular.

(e) The determinant of AB−BA is zero.
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15. If every row of A adds to zero, prove that detA = 0. If every row adds to 1, prove
that det(A− I) = 0. Show by example that this does not imply detA = 1.

16. Find these 4 by 4 determinants by Gaussian elimination:

det




11 12 13 14
21 22 23 24
31 32 33 34
41 42 43 44


 and det




1 t t2 t3

t 1 t t2

t2 t 1 t
t3 t2 t 1


 .

17. Find the determinants of

A =

[
4 2
1 3

]
, A−1 =

1
10

[
3 −2
−1 4

]
, A−λ I =

[
4−λ 2

1 3−λ

]
.

For which values of λ is A−λ I a singular matrix?

18. Evaluate detA by reducing the matrix to triangular form (rules 5 and 7).

A =




1 1 3
0 4 6
1 5 8


 , B =




1 1 3
0 4 6
0 0 1


 , C =




1 1 3
0 4 6
1 5 9


 .

What are the determinants of B, C, AB, ATA, and CT?

19. Suppose that CD = −DC, and find the flaw in the following argument: Taking de-
terminants gives (detC)(detD) = −(detD)(detC), so either detC = 0 or detD = 0.
Thus CD =−DC is only possible if C or D is singular.

20. Do these matrices have determinant 0, 1, 2, or 3?

A =




0 0 1
1 0 0
0 1 0


 B =




0 1 1
1 0 1
1 1 0


 C =




1 1 1
1 1 1
1 1 1


 .

21. The inverse of a 2 by 2 matrix seems to have determinant = 1:

detA−1 = det
1

ad−bc

[
d −b
−c a

]
=

ad−bc
ad−bc

= 1.

What is wrong with this calculation? What is the correct detA−1?

Problems 22–28 use the rules to compute specific determinants.

22. Reduce A to U and find detA = product of the pivots:

A =




1 1 1
1 2 2
1 2 3


 and A =




1 2 3
2 2 3
3 3 3


 .
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23. By applying row operations to produce an upper triangular U , compute

det




1 2 3 0
2 6 6 1
−1 0 0 3
0 2 0 7


 and det




2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2


 .

24. Use row operations to simplify and compute these determinants:

det




101 201 301
102 202 302
103 203 303


 and det




1 t t2

t 1 t
t2 t 1


 .

25. Elimination reduces A to U . Then A = LU :

A =




3 3 4
6 8 7
−3 5 −9


 =




1 0 0
2 1 0
−1 4 1







3 3 4
0 2 −1
0 0 −1


 = LU.

Find the determinants of L, U , A, U−1L−1, and U−1L−1A.

26. If ai j is i times j, show that detA = 0. (Exception when A = [1].)

27. If ai j is i+ j, show that detA = 0. (Exception when n = 1 or 2.)

28. Compute the determinants of these matrices by row operations:

A =




0 a 0
0 0 b
c 0 0


 , B =




0 a 0 0
0 0 b 0
0 0 0 c
d 0 0 0


 , and C =




a a a
a b b
a b c


 .

29. What is wrong with this proof that projection matrices have detP = 1?

P = A(ATA)−1AT so |P|= |A| 1
|AT||A| |A

T|= 1.

30. (Calculus question) Show that the partial derivatives of ln(detA) give A−1:

f (a,b,c,d) = ln(ad−bc) leads to

[
∂ f /∂a ∂ f /∂c
∂ f /∂b ∂ f /∂d

]
= A−1.

31. (MATLAB) The Hilbert matrix hilb(n) has i, j entry equal to 1/(i + j− 1). Print
ti determinants of hilb(1),hilb(2), . . . ,hilb(10). Hilbert matrices are hard to work
with! What are the pivots?

32. (MATLAB) What is a typical determinant (experimentally) of rand(n) and randn(n)
for n = 50,100,200,400? (And what does “Inf” mean in MATLAB?)
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33. Using MATLAB, find the largest determinant of a 4 by 4 matrix of 0s and 1s.

34. If you know that detA = 6, what is the determinant of B?

detA =

∣∣∣∣∣∣∣

row 1
row 2
row 3

∣∣∣∣∣∣∣
= 6 detB =

∣∣∣∣∣∣∣

row 1+ row 2
row 2+ row 3
row 3+ row 1

∣∣∣∣∣∣∣
=

35. Suppose the 4 by 4 matrix M has four equal rows all containing a, b, c, d. We know
that det(M) = 0. The problem is to find det(I +M) by any method:

det(I +M) =

∣∣∣∣∣∣∣∣∣

1+a b c d
a 1+b c d
a b 1+ c d
a b c 1+d

∣∣∣∣∣∣∣∣∣
.

Partial credit if you find this determinant when a = b = c = d = 1. Sudden death if
you say that det(I +M) = det I +detM.

4.3 Formulas for the Determinant

The first formula has already appeared. Row operations produce the pivots in D:

4A If A is invertible, then PA = LDU and detP =±1. The product rule gives

detA =±detLdetDdetU =±(product of the pivots). (1)

The sign ±1 depends on whether the number of row exchanges is even or odd.
The triangular factors have detL = detU = 1 and detD = d1 · · ·dn.

In the 2 by 2 case, the standard LDU factorization is
[

a b
c d

]
=

[
1 0

c/a 1

][
a 0
0 (ad−bc)/a

][
1 b/a
0 1

]
.

The product of the pivots is ad− bc. That is the determinant of the diagonal matrix D.
If the first step is a row exchange, the pivots are c and (−detA)/c.

Example 1. The −1,2,−1 second difference matrix has pivots 2/1,3/2, . . . in D:



2 −1
−1 2 −1

−1 2 ·
· · −1

−1 2




= LDU = L




2
3/2

4/3
·

(n+1)/n




U.
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Its determinant is the product of its pivots. The numbers 2, . . . ,n all cancel:

detA = 2
(

3
2

)(
4
3

)
· · ·

(
n+1

n

)
= n+1.

MATLAB computes the determinant from the pivots. But concentrating all information
into the pivots makes it impossible to figure out how a change in one entry would affect
the determinant. We want to find an explicit expression for the determinant in terms of
the n2 entries.

For n = 2, we will be proving that ad− bc is correct. For n = 3, the determinant
formula is again pretty well known (it has six terms):

∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
=

+a11a22a33 +a12a23a31 +a13a21a32

−a11a23a32−a12a21a33−a13a22a31.
(2)

Our goal is to derive these formulas directly from the defining properties 1–3 of detA. If
we can handle n = 2 and n = 3 in an organized way, you will see the pattern.

To start, each row can be broken down into vectors in the coordinate directions:
[
a b

]
=

[
a 0

]
+

[
0 b

]
and

[
c d

]
=

[
c 0

]
+

[
0 d

]
.

Then we apply the property of linearity, first in row 1 and then in row 2:

Separate into
nn = 22 easy
determinants

∣∣∣∣∣
a b
c d

∣∣∣∣∣ =

∣∣∣∣∣
a 0
c d

∣∣∣∣∣+
∣∣∣∣∣
0 b
c d

∣∣∣∣∣

=

∣∣∣∣∣
a 0
c 0

∣∣∣∣∣+
∣∣∣∣∣
a 0
0 d

∣∣∣∣∣+
∣∣∣∣∣
0 b
c 0

∣∣∣∣∣+
∣∣∣∣∣
0 b
0 d

∣∣∣∣∣ .

(3)

Every row splits into n coordinate directions, so this expansion has nn terms. Most of
those terms (all but n! = n factorial) will be automatically zero. When two rows are in
the same coordinate direction, one will be a multiple of the other, and

∣∣∣∣∣
a 0
c 0

∣∣∣∣∣ = 0,

∣∣∣∣∣
0 b
0 d

∣∣∣∣∣ = 0.

We pay attention only when the rows point in different directions. The nonzero terms
have to come in different columns. Suppose the first row has a nonzero term in column
α , the second row is nonzero in column β , and finally the nth row in column v. The
column numbers α,β , . . . ,v are all different. They are a reordering, or permutation, of
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the numbers 1,2, . . . ,n. The 3 by 3 case produces 3! = 6 determinants:
∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

a11

a22

a33

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

a12

a23

a31

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

a13

a21

a32

∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣

a11

a23

a32

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

a12

a21

a33

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

a13

a22

a31

∣∣∣∣∣∣∣
.

(4)

All but these n! determinants are zero, because a column is repeated. (There are
n choices for the first column α , n− 1 remaining choices for β , and finally only one
choice for the last column v. All but one column will be used by that time, when we
“snake” down the rows of the matrix). In other words, there are n! ways to permute the
numbers 1,2, . . . ,n. The column numbers give the permutations:

Column numbers (α,β ,v)= (1,2,3), (2,3,1), (3,1,2), (1,3,2), (2,1,3), (3,2,1).

Those are the 3! = 6 permutations of (1,2,3); the first one is the identity.
The determinant of A is now reduced to six separate and much simpler determinants.

Factoring out the ai j, there is a term for every one of the six permutations:

detA = a11a22a33

∣∣∣∣∣∣∣

1
1

1

∣∣∣∣∣∣∣
+a12a23a31

∣∣∣∣∣∣∣

1
1

1

∣∣∣∣∣∣∣
+a13a21a32

∣∣∣∣∣∣∣

1
1

1

∣∣∣∣∣∣∣

+a11a23a32

∣∣∣∣∣∣∣

1
1

1

∣∣∣∣∣∣∣
+a12a21a33

∣∣∣∣∣∣∣

1
1

1

∣∣∣∣∣∣∣
+a13a22a31

∣∣∣∣∣∣∣

1
1

1

∣∣∣∣∣∣∣
.

(5)

Every term is a product of n = 3 entries ai j, with each row and column represented once.
If the columns come in the order (α, . . . ,v), that term is the product a1α · · ·anv times the
determinant of a permutation matrix P. The determinant of the whole matrix is the sum
of these n! terms, and that sum is the explicit formula we are after:

Big Formula detA = ∑
all P’s

(a1αa2β · · ·anv)detP. (6)

For an n by n matrix, this sum is taken over all n! permutations (α, . . . ,v) of the numbers
(1, . . . ,n). The permutation gives the column numbers as we go down the matrix. The is
appear in P at the same places where the a’s appeared in A.

It remains to find the determinant of P. Row exchanges transform it to the identity
matrix, and each exchange reverses the sign of the determinant:

detP = +1 or −1 for an even or odd number of row exchanges.
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(1,3,2) is odd so

∣∣∣∣∣∣∣

1
1

1

∣∣∣∣∣∣∣
=−1 (3,1,2) is even so

∣∣∣∣∣∣∣

1
1

1

∣∣∣∣∣∣∣
= 1

(1,3,2) requires one exchange and (3,1,2) requires two exchanges to recover (1,2,3).
These are two of the six ± signs. For n = 2, we only have (1,2) and (2,1):

detA = a11a22 det

[
1 0
0 1

]
+a12a21 det

[
0 1
1 0

]
= a11a22−a12a21 (or ad−bc).

No one can claim that the big formula (6) is particularly simple. Nevertheless, it is
possible to see why it has properties 1–3. For A = I, every product of the ai j will be
zero, except for the column sequence (1,2, . . . ,n). This term gives det I = 1. Property 2
will be checked in the next section, because here we are most interested in property 3:
The determinant should depend linearly on the first row a11,a12, . . . ,a1n.

Look at all the terms a1αa2β · · ·anv involving a11. The first column is α = 1. This
leaves some permutation (β , . . . ,v) of the remaining columns (2, . . . ,n). We collect all
these terms together as a11C11, where the coefficient of a11 is a smaller determinant—
with row 1 and column 1 removed:

Cofactor of a11 C11 = ∑(a2β · · ·anv)detP = det(submatrix of A). (7)

Similarly, the entry a12 is multiplied by some smaller determinant C12. Grouping all the
terms that start with the same a1 j, formula (6) becomes

Cofactors along row 1 detA = a11C11 +a12C12 + · · ·+a1nC1n. (8)

This shows that detA depends linearly on the entries a11, . . . ,a1n of the first row.

Example 2. For a 3 by 3 matrix, this way of collecting terms gives

detA = a11(a22a33 −a23a32)+a12(a23a31 −a21a33)+a13(a21a32 −a22a31). (9)

The cofactors C11, C12, C13 are the 2 by 2 determinants in parentheses.

Expansion of detA in Cofactors

We want one more formula for the determinant. If this meant starting again from scratch,
it would be too much, But the formula is already discovered—it is (8), and the only point
is to identify the cofactors C1 j that multiply a1 j.

We know that C1 j depends on rows 2, . . . ,n. Row 1 is already accounted for by
a1 j. Furthermore, a1 j also accounts for the jth column, so its cofactor C1 j must depend
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entirely on the other columns. No row or column can be used twice in the same term.
What we are really doing is splitting the determinant into the following sum:

Cofactor
splitting

∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

a11

a22 a23

a32 a33

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

a12

a21 a23

a31 a33

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣

a13

a21 a22

a31 a32

∣∣∣∣∣∣∣
.

For a determinant of order n, this splitting gives n smaller determinants (minors) of order
n− 1; you see the three 2 by 2 submatrices. The submatrix M1 j is formed by throwing
away row 1 and column j. Its determinant is multiplied by a1 j—and by a plus or minus
sign. These signs alternate as in detM11, −detM12, detM13:

Cofactors of row 1 C1 j = (−1)1+ j detM1 j.

The second cofactor C12 is a23a31−a21a33, which is detM12 times −1. This same tech-
nique works on every n by n matrix. The splitting above confirms that C11 is the deter-
minant of the lower right corner M11.

There is a similar expansion on any other row, say row i. It could be proved by
exchanging row i with row 1. Remember to delete row i and column j of A for Mi j:

4B The determinant of A is a combination of any row i times its cofactors:

detA by cofactors detA = ai1Ci1 +ai2Ci2 + · · ·+ainCin. (10)

The cofactor C1 j is the determinant of Mi j with the correct sign:

delete row i and column j Ci j = (−1)i+ j detMi j. (11)

These formulas express detA as a combination of determinants of order n− 1. We
could have defined the determinant by induction on n. A 1 by 1 matrix has detA = a11,
and then equation (10) defines the determinants of 2 by 2 matrices, 3 by 3 matrices,
and n by n matrices. We preferred to define the determinant by its properties, which
are much simpler to explain. The explicit formula (6) and the cofactor formula (10)
followed directly from these properties.

There is one more consequence of detA = detAT. We can expand in cofactors of a
column of A, which is a row of AT. Down column j of A,

detA = a1 jC1 j +a2 jC2 j + · · ·+an jCn j. (12)

Example 3. The 4 by 4 second difference matrix A4 has only two nonzeros in row 1:

Use cofactors A4 =




2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2


 .
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C11 comes from erasing row 1 and column 1, which leaves the −1, 2, −1 pattern:

C11 = detA3 = det




2 −1 0
−1 2 −1
0 −1 2




For a12 =−1 it is column 2 that gets removed, and we need its cofactor C12:

C12 = (−1)1+2 det



−1 −1 0
0 2 −1
0 −1 2


 = +det

[
2 −1
−1 2

]
= detA2.

This left us with the 2 by 2 determinant. Altogether row 1 has produced 2C11−C12:

detA4 = 2(detA3)−detA2 = 2(4)−3 = 5

The same idea applies to A5 and A6, and every An:

Recursion by cofactors detAn = 2(detAn−1)−detAn−2. (13)

This gives the determinant of increasingly bigger matrices. At every step the determinant
of An is n+1, from the previous determinants n and n−1:

−1, 2, −1 matrix detAn = 2(n)− (n−1) = n+1.

The answer n+1 agrees with the product of pivots at the start of this section.

Problem Set 4.3

1. For these matrices, find the only nonzero term in the big formula (6):

A =




0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0


 and B =




0 0 1 2
0 3 4 5
6 7 8 9
0 0 0 1


 .

There is only one way of choosing four nonzero entries from different rows and
different columns. By deciding even or odd, compute detA and detB.

2. Expand those determinants in cofactors of the first row. Find the cofactors (they
include the signs (−1)i+ j) and the determinants of A and B.

3. True or false?

(a) The determinant of S−1AS equals the determinant of A.

(b) If detA = 0 then at least one of the cofactors must be zero.
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(c) A matrix whose entries are 0s and 1s has determinant 1, 0, or −1.

4. (a) Find the LU factorization, the pivots, and the determinant of the 4 by 4 matrix
whose entries are ai j = smaller of i and j. (Write out the matrix.)

(b) Find the determinant if ai j = smaller of ni and n j, where n1 = 2, n2 = 6, n3 = 8,
n4 = 10. Can you give a general rule for any n1 ≤ n2 ≤ n3 ≤ n4?

5. Let Fn be the determinant of the 1, 1, −1 tridiagonal matrix (n by n):

Fn = det




1 −1
1 1 −1

1 1 −1
· · ·

1 1




.

By expanding in cofactors along row 1, show that Fn = Fn−1 +Fn−2. This yields the
Fibonacci sequence 1,2,3,5,8,13, . . . for the determinants.

6. Suppose An is the n by n tridiagonal matrix with is on the three diagonals:

A1 =
[
1
]
, A2 =

[
1 1
1 1

]
, A3 =




1 1 0
1 1 1
0 1 1


 , . . .

Let Dn be the determinant of An; we want to find it.

(a) Expand in cofactors along the first row to show that Dn = Dn−1−Dn−2.

(b) Starting from D1 = 1 and D2 = 0, find D3,D4, . . . ,D8. By noticing how these
numbers cycle around (with what period?) find D1000.

7. (a) Evaluate this determinant by cofactors of row 1:
∣∣∣∣∣∣∣∣∣

4 4 4 4
1 2 0 1
2 0 1 2
1 1 0 2

∣∣∣∣∣∣∣∣∣
.

(b) Check by subtracting column 1 from the other columns and recomputing.

8. Compute the determinants of A2, A3, A4. Can you predict An?

A2 =

[
0 1
1 0

]
A3 =




0 1 1
1 0 1
1 1 0


 A4 =




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


 .

Use row operations to produce zeros, or use cofactors of row 1.
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9. How many multiplications to find an n by n determinant from

(a) the big formula (6)?
(b) the cofactor formula (10), building from the count for n−1?
(c) the product of pivots formula (including the elimination steps)?

10. In a 5 by 5 matrix, does a + sign or− sign go with a15a24a33a42a51 down the reverse
diagonal? In other words, is P = (5,4,3,2,1) even or odd? The checkerboard pattern
of ± signs for cofactors does not give detP.

11. If A is m by n and B is n by m, explain why

det

[
0 A
−B I

]
= detAB.

(
Hint: Postmultiply by

[
I 0
B I

]
.

)

Do an example with m < n and an example with m > n. Why does your second
example automatically have detAB = 0?

12. Suppose the matrix A is fixed, except that a11 varies from−∞ to +∞. Give examples
in which detA is always zero or never zero. Then show from the cofactor expansion
(8) that otherwise detA = 0 for exactly one value of a11.

Problems 13–23 use the big formula with n! terms: |A|= ∑±a1αa2β · · ·anv.

13. Compute the determinants of A, B, C from six terms. Independent rows?

A =




1 2 3
3 1 2
3 2 1


 B =




1 2 3
4 4 4
5 6 7


 C =




1 1 1
1 1 0
1 0 0


 .

14. Compute the determinants of A, B, C. Are their columns independent?

A =




1 1 0
1 0 1
0 1 1


 B =




1 2 3
4 5 6
7 8 9


 C =

[
A 0
0 B

]
.

15. Show that detA = 0, regardless of the five nonzeros marked by x’s:

A =




x x x
0 0 x
0 0 x


 . (What is the rank of A?)

16. This problem shows in two ways that detA = 0 (the x’s are any numbers):

A =




x x x x x
x x x x x
0 0 0 x x
0 0 0 x x
0 0 0 x x




.

5 by 5 matrix
3 by 3 zero matrix
Always singular
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(a) How do you know that the rows are linearly dependent?

(b) Explain why all 120 terms are zero in the big formula for detA.

17. Find two ways to choose nonzeros from four different rows and columns:

A =




1 0 0 1
0 1 1 1
1 1 0 1
1 0 0 1


 B =




1 0 0 2
0 3 4 5
5 4 0 3
2 0 0 1


 . (B has the same zeros as A.)

Is detA equal to 1+1 or 1−1 or −1−1? What is detB?

18. Place the smallest number of zeros in a 4 by 4 matrix that will guarantee detA = 0.
Place as many zeros as possible while still allowing detA 6= 0.

19. (a) If a11 = a22 = a33 = 0, how many of the six terms in detA will be zero?

(b) If a11 = a22 = a33 = a44 = 0, how many of the 24 products a1 ja2ka3`a4m are sure
to be zero?

20. How many 5 by 5 permutation matrices have detP = +1? Those are even permuta-
tions. Find one that needs four exchanges to reach the identity matrix.

21. If detA 6= 0, at least one of the n! terms in the big formula (6) is not zero. Deduce
that some ordering of the rows of A leaves no zeros on the diagonal. (Don’t use P
from elimination; that PA can have zeros on the diagonal.)

22. Prove that 4 is the largest determinant for a 3 by 3 matrix of 1s and −1s.

23. How many permutations of (1,2,3,4) are even and what are they? Extra credit:
What are all the possible 4 by 4 determinants of I +Peven?

Problems 24–33 use cofactors Ci j = (−1)i+ j detMi j. Delete row i, column j.

24. Find cofactors and then transpose. Multiply CT
A and CT

B by A and B!

A =

[
2 1
3 6

]
B =




1 2 3
4 5 6
7 0 0


 .

25. Find the cofactor matrix C and compare ACT with A−1:

A =




2 −1 0
−1 2 −1
0 −1 2


 A−1 =

1
4




3 2 1
2 4 2
1 2 3


 .
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26. The matrix Bn is the −1, 2, −1 matrix An except that b11 = 1 instead of a11 = 2.
Using cofactors of the last row of B4, show that |B4|= 2|B3|− |B2|= 1:

B4 =




1 −1
−1 2 −1

−1 2 −1
−1 2


 B3 =




1 −1
−1 2 −1

−1 2


 .

The recursion |Bn|= 2|Bn−1|− |Bn−2| is the same as for the A’s. The difference is in
the starting values 1, 1, 1 for n = 1,2,3. What are the pivots?

27. Bn is still the same as An except for b11 = 1. So use linearity in the first row, where
[1 −1 0] equals [2 −1 0] minus [1 0 0]:

|Bn|=

∣∣∣∣∣∣∣∣∣

1 −1 0
−1

An−1

0

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

2 −1 0
−1

An−1

0

∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣

1 0 0
−1

An−1

0

∣∣∣∣∣∣∣∣∣
.

Linearity in row 1 gives |Bn|= |An|− |An−1|= .

28. The n by n determinant Cn has 1s above and below the main diagonal:

C1 =
∣∣∣0

∣∣∣ C2 =

∣∣∣∣∣
0 1
1 0

∣∣∣∣∣ C3 =

∣∣∣∣∣∣∣

0 1 0
1 0 1
0 1 0

∣∣∣∣∣∣∣
C4 =

∣∣∣∣∣∣∣∣∣

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

∣∣∣∣∣∣∣∣∣
.

(a) What are the determinants of C1, C2, C3, C4?

(b) By cofactors find the relation between Cn and Cn−1 and Cn−2. Find C10.

29. Problem 28 has 1s just above and below the main diagonal. Going down the matrix,
which order of columns (if any) gives all 1s? Explain why that permutation is even
for n = 4,8,12, . . . and odd for n = 2,6,10, . . .

Cn = 0 (odd n) Cn = 1 (n = 4,8, . . .) Cn =−1 (n = 2,6, . . .).

30. Explain why this Vandermonde determinant contains x3 but not x4 or x5:

V4 = det




1 a a2 a3

1 b b2 b3

1 c c2 c3

1 x x2 x3


 .

The determinant is zero at x = , , and . The cofactor of x3 is V3 =
(b−a)(c−a)(c−b). Then V4 = (x−a)(x−b)(x− c)V3.



246 Chapter 4 Determinants

31. Compute the determinants S1, S2, S3 of these 1, 3, 1 tridiagonal matrices:

S1

∣∣∣3
∣∣∣ S2 =

∣∣∣∣∣
3 1
1 3

∣∣∣∣∣ S3 =

∣∣∣∣∣∣∣

3 1 0
1 3 1
0 1 3

∣∣∣∣∣∣∣
.

Make a Fibonacci guess for S4 and verify that you are right.

32. Cofactors of those 1, 3, 1 matrices give Sn = 3Sn−1− Sn−2. Challenge: Show that
Sn is the Fibonacci number F2n+2 by proving F2n+2 = 3F2n − F2n−2. Keep using
Fibonacci’s rule Fk = Fk−1 +Fk−2.

33. Change 3 to 2 in the upper left corner of the matrices in Problem 32. Why does
that subtract Sn−1 from the determinant Sn? Show that the determinants become the
Fibonacci numbers 2, 5, 13 (always F2n+1).

Problems 34–36 are about block matrices and block determinants.

34. With 2 by 2 blocks, you cannot always use block determinants!
∣∣∣∣∣
A B
0 D

∣∣∣∣∣ = |A||D| but

∣∣∣∣∣
A B
C D

∣∣∣∣∣ 6= |A||D|− |C||B|.

(a) Why is the first statement true? Somehow B doesn’t enter.

(b) Show by example that equality fails (as shown) when C enters.

(c) Show by example that the answer det(AD−CB) is also wrong.

35. With block multiplication, A = LU has Ak = LkUk in the upper left corner:

A =

[
Ak ∗
∗ ∗

]
=

[
Lk 0
∗ ∗

][
Uk ∗
0 ∗

]
.

(a) Suppose the first three pivots of A are 2, 3, −1. What are the determinants of L1,
L2, L3 (with diagonal 1s), U1, U2, U3, and A1, A2, A3?

(b) If A1, A2, A3 have determinants 5, 6, 7, find the three pivots.

36. Block elimination subtracts CA−1 times the first row [A B] from the second row
[C D]. This leaves the Schur complement D−CA−1B in the corner:

[
I 0

−CA−1 I

][
A B
C D

]
=

[
A B
0 D−CA−1B

]
.

Take determinants of these matrices to prove correct rules for square blocks:
∣∣∣∣∣
A B
C D

∣∣∣∣∣ = |A| ∣∣D−CA−1B
∣∣

if A−1 exists

= |AD−CB|
if AC = CA

.
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37. A 3 by 3 determinant has three products “down to the right” and three “down to the
left” with minus signs. Compute the six terms in the figure to find D. Then explain
without determinants why this matrix is or is not invertible:

38. For A4 in Problem 6, five of the 4! = 24 terms in the big formula (6) are nonzero.
Find those five terms to show that D4 =−1.

39. For the 4 by 4 tridiagonal matrix (entries −1, 2, −1), find the five terms in the big
formula that give detA = 16−4−4−4+1.

40. Find the determinant of this cyclic P by cofactors of row 1. How many exchanges
reorder 4, 1, 2, 3 into 1, 2, 3, 4? Is |P2|= +1 or −1?

P =




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


 P2 =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 =

[
0 I
I 0

]
.

41. A=2∗eye(n)−diag(ones(n−1, 1),1)−diag(ones(n−1, 1),−1) is the −1, 2, −1
matrix. Change A(1,1) to 1 so detA = 1. Predict the entries of A−1 based on n = 3
and test the prediction for n = 4.

42. (MATLAB) The −1, 2, −1 matrices have determinant n + 1. Compute (n + 1)A−1

for n = 3 and 4, and verify your guess for n = 5. (Inverses of tridiagonal matrices
have the rank-1 form uvT above the diagonal.)

43. All Pascal matrices have determinant 1. If I subtract 1 from the n, n entry, why does
the determinant become zero? (Use rule 3 or a cofactor.)

det




1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20


 = 1 (known) det




1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 19


 = 0 (explain).

4.4 Applications of Determinants

This section follows through on four major applications: inverse of A, solving Ax = b,
volumes of boxes, and pivots. They are among the key computations in linear algebra
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(done by elimination). Determinants give formulas for the answers.

1. Computation of A−1. The 2 by 2 case shows how cofactors go into A−1:
[

a b
c d

]−1

=
1

ad−bc

[
d −b
−c a

]
=

1
detA

[
C11 C21

C12 C22

]
.

We are dividing by the determinant, and A is invertible exactly when detA is nonzero.
The number C11 = d is the cofactor of a. The number C12 =−c is the cofactor of b (note
the minus sign). That number C12 goes in row 2, column 1!

The row a, b times the column C11, C12 produces ad−bc. This is the cofactor expan-
sion of detA. That is the clue we need: A−1 divides the cofactors by detA.

Cofactor matrix
C is transposed

A−1 =
CT

detA
means (A−1)i j =

C ji

detA
. (1)

Our goal is to verify this formula for A−1. We have to see why ACT = (detA)I:



a11 · · · a1n
...

...
an1 · · · ann







C11 · · · C1n
...

...
Cn1 · · · Cnn


 =




detA · · · 0
...

...
0 · · · detA


 . (2)

With cofactors C11, . . . ,C1n in the first column and not the first row, they multiply a11, . . . ,a1n

and give the diagonal entry detA. Every row of A multiplies its cofactors (the cofactor
expansion) to give the same answer detA on the diagonal.

The critical question is: Why do we get zeros off the diagonal? If we combine the
entries a1 j from row 1 with the cofactors C2 j for row 2, why is the result zero?

row 1 of A, row 2 of C a11C21 +a12C22 + · · ·+a1nC2n = 0. (3)

The answer is: We are computing the determinant of a new matrix B, with a new row 2.
The first row of A is copied into the second row of B. Then B has two equal rows, and
detB = 0. Equation (3) is the expansion of detB along its row 2, where B has exactly
the same cofactors as A (because the second row is thrown away to find those cofactors).
The remarkable matrix multiplication (2) is correct.

That multiplication ACT = (detA)I immediately gives A−1. Remember that the cofac-
tor from deleting row i and column j of A goes into row j and column i of CT. Dividing
by the number detA (if it is not zero!) gives A−1 = CT/detA.

Example 1. The inverse of a sum matrix is a difference matrix:

A =




1 1 1
0 1 1
0 0 1


 has A−1 =

CT

detA
=




1 −1 0
0 1 −1
0 0 1


 .

The minus signs enter because cofactors always include (−1)i+ j.
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2. The Solution of Ax = b. The multiplication x = A−1b is just CTb divided bydetA.
There is a famous way in which to write the answer (x1, . . . ,xn):

4C Cramer’s rule: The jth component of x = A−1b is the ratio

x j =
detB j

detA
, where B j =




a11 a12 b1 a1n
...

...
...

...
an1 an2 bn ann


 has b in column j. (4)

Proof. Expand detB j in cofactors of its jth column (which is b). Since the cofactors
ignore that column, detB j is exactly the jth component in the product CTb:

detB j = b1C1 j +b2C2 j + · · ·+bnCn j.

Dividing this by detA gives x j. Each component of x is a ratio of two determinants. That
fact might have been recognized from Gaussian elimination, but it never was.

Example 2. The solution of

x1 + 3x2 = 0
2x1 + 4x2 = 6

has 0 and 6 in the first column for x1 and in the second column for x2:

x1 =

∣∣∣∣∣
0 3
6 4

∣∣∣∣∣
∣∣∣∣∣
1 3
2 4

∣∣∣∣∣

=
−18
−2

= 9, x2 =

∣∣∣∣∣
1 0
2 6

∣∣∣∣∣
∣∣∣∣∣
1 3
2 4

∣∣∣∣∣

=
6
−2

=−3.

The denominators are always detA. For 1000 equations Cramer’s Rule would need 1001
determinants. To my dismay I found in a book called Mathematics for the Millions that
Cramer’s Rule was actually recommended (and elimination was thrown aside):

To deal with a set involving the four variables u, v, w, z, we first have to
eliminate one of them in each of three pairs to derive three equations in three
variables and then proceed as for the three-fold left-hand set to derive values
for two of them. The reader who does so as an exercise will begin to realize
how formidably laborious the method of elimination becomes, when we have
to deal with more than three variables. This consideration invites us to explore
the possibility of a speedier method...

3. The Volume of a Box. The connection between the determinant and the volume is
clearest when all angles are right angles—the edges are perpendicular, and the box is
rectangular. Then the volume is the product of the edge lengths: volume = `1`2 · · ·`n.
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We want to obtain the same `1`2 · · ·`n from detA, when the edges of that box are the
rows of A. With right angles, these rows are orthogonal and AAT is diagonal:

Right-angled box
Orthogonal rows

AAT =




row 1
...

row n







r r
o o
w · · · w

1 n


 =



`2

1 0
. . .

0 `2
n


 .

The `i are the lengths of the rows (the edges). and the zeros off the diagonal come
because the rows are orthogonal. Using the product and transposing rules,

Rightangle case `2
1`

2
2 · · ·`2

n = det(AAT) = (detA)(detAT) = (detA)2.

The square root of this equation says that the determinant equals the volume. The sign
of detA will indicate whether the edges form a “right-handed” set of coordinates, as in
the usual x-y-z system, or a left-handed system like y-x-z.

If the angles are not 90°, the volume is not the product of the lengths. In the plane
(Figure 4.2), the “volume” of a parallelogram equals the base ` times the height h, The
vector b− p of length h is the second row b = (a21,a22), minus its projection p onto the
first row. The key point is this: By rule 5, detA is unchanged when a multiple of row 1
is subtracted from row 2. We can change the parallelogram to a rectangle, where it is
already proved that volume = determinant.

In n dimensions, it takes longer to make each box rectangular, but the idea is the
same. The volume and determinant are unchanged if we subtract from each row its pro-
jection onto the space spanned by the preceding rows—leaving a perpendicular “height
vector” like pb. This Gram-Schmidt process produces orthogonal rows, with volume =
determinant. So the same equality must have held for the original rows.

height

h = |b − p|

p

length ` = |a|

b = (a21, a22)

a = (a11, a12)

0

`h = det

[

a

b − p

]

= det

[

a

b

]

Figure 4.2: Volume (area) of the parallelogram = ` times h = |detA|.

This completes the link between volumes and determinants, but it is worth coming
back one more time to the simplest case. We know that

det

[
1 0
0 1

]
= 1, det

[
1 0
c 1

]
= 1.
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These determinants give the volumes—or areas, since we are in two dimensions—drawn
in Figure 4.3. The parallelogram has unit base and unit height; its area is also 1.

1

1

row 1 = (1, 0)

row 2 = (0, 1)
1

1

row 1 = (1, 0)

row 2 = (c, 1)

Figure 4.3: The areas of a unit square and a unit parallelogram are both 1.

4. A Formula for the Pivots. We can finally discover when elimination is possible
without row exchanges. The key observation is that the first k pivots are completely
determined by the submatrix Ak in the upper left corner of A. The remaining rows and
columns of A have no effect on this corner of the problem:

Elimination on A
includes

elimination on A2

A =




a b e
c d f
g h i


→




a b e
0 (ad−bc)/a (a f − ec)/a
g h i


 .

Certainly the first pivot depended only on the first row and column, The second pivot
(ad−bc)/a depends only on the 2 by 2 corner submatrix A2. The rest of A does not enter
until the third pivot. Actually it is not just the pivots, but the entire upper-left corners of
L, D, and U , that are determined by the upper-left corner of A:

A = LDU =




1
c/a 1
∗ ∗ 1







a
(ad−bc)/a

∗







1 b/a ∗
1 ∗

1


 .

What we see in the first two rows and columns is exactly the factorization of the corner
submatrix A2. This is a general rule if there are no row exchanges:

4D If A is factored into LDU , the upper left corners satisfy Ak = LkDkUk. For
every k, the submatrix Ak is going through a Gaussian elimination of its own.

The proof is to see that this corner can be settled first, before even looking at other
eliminations. Or use the laws for block multiplication:

LDU =

[
Lk 0
B C

][
Dk 0
0 E

][
Uk F
0 G

]
=

[
LkDkUk LkDkF

BDkUk BDkF +CEG

]
.

Comparing the last matrix with A, the corner LkDkUk coincides with Ak. Then:

detAk = detLk detDk detUk = detDk = d1d2 · · ·dk.
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The product of the first k pivots is the determinant of Ak. This is the same rule that
we know already for the whole matrix. Since the determinant of Ak−1 will be given by
d1d2 · · ·dk−1, we can isolate each pivot dk as a ratio of determinants:

Formula for pivots
detAk

detAk−1
=

d1d2 · · ·dk

d1d2 · · ·dk−1
= dk. (5)

In our example above, the second pivot was exactly this ratio (ad − bc)/a. It is the
determinant of A2 divided by the determinant of A1. (By convention detA0 = 1, so that
the first pivot is a/1 = a.) Multiplying together all the individual pivots, we recover

d1d2 · · ·dn =
detA1

detA0

detA2

detA1
· · · detAn

detAn−1
=

detAn

detA0
= detA.

From equation (5) we can finally read off the answer to our original question: The
pivot entries are all nonzero whenever the numbers detAk are all nonzero:

4E Elimination can be completed without row exchanges (so P = I and A =
LU), if and only if the leading submatrices A1,A2, . . . ,An are all nonsingular.

That does it for determinants, except for an optional remark on property 2—the sign
reversal on row exchanges. The determinant of a permutation matrix P was the only
questionable point in the big formula. Independent of the particular row exchanges link-
ing P to I, is the number of exchanges always even or always odd? If so, its determinant
is well defined by rule 2 as either +1 or −1.

Starting from (3,2,1), a single exchange of 3 and 1 would achieve the natural order
(1,2,3). So would an exchange of 3 and 2, then 3 and 1, and then 2 and 1. In both
sequences, the number of exchanges is odd. The assertion is that an even number of
exchanges can never produce the natural order beginning with (3,2,1).

Here is a proof. Look at each pair of numbers in the permutation, and let N count
the pairs in which the larger number comes first. Certainly N = 0 for the natural order
(1,2,3). The order (3,2,1) has N = 3 since all pairs (3,2), (3,1), and (2,1) are wrong.
We will show that every exchange alters N by an odd number. Then to arrive at N = 0
(the natural order) takes a number of exchanges having the same evenness or oddness as
N.

When neighbors are exchanged, N changes by +1 or −1. Any exchange can be
achieved by an odd number of exchanges of neighbors. This will complete the proof;
an odd number of odd numbers is odd. To exchange the first and fourth entries below,
which happen to be 2 and 3, we use five exchanges (an odd number) of neighbors:

(2,1,4,3)→ (1,2,4,3)→ (1,4,2,3)→ (1,4,3,2)→ (1,3,4,2)→ (3,1,4,2).

We need `− k exchanges of neighbors to move the entry in place k to place `. Then
`− k− 1 exchanges move the one originally in place ` (and now found in place `− 1)
back down to place k. Since (`− k) + (`− k− 1) is odd, the proof is complete. The
determinant not only has all the properties found earlier, it even exists.
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Problem Set 4.4

1. Find the determinant and all nine cofactors Ci j of this triangular matrix:

A =




1 2 3
0 4 0
0 0 5


 .

Form CT and verify that ACT = (detA)I. What is A−1?

2. Use the cofactor matrix C to invert these symmetric matrices:

A =




2 −1 0
−1 2 −1
0 −1 2


 and B =




1 1 1
1 2 2
1 2 3


 .

3. Find x, y, and z by Cramer’s Rule in equation (4):

ax + by = 1
cx + dy = 0

and
x + 4y − z = 1
x + y + z = 0

2x + 3z = 0.

4. (a) Find the determinant when a vector x replaces column j of the identity (consider
x j = 0 as a separate case):

if M =




1 x1

1 ·
x j

· 1
xn 1




then detM = .

(b) If Ax = b, show that AM is the matrix B j in equation (4), with b in column j.

(c) Derive Cramer’s rule by taking determinants in AM = B j.

5. (a) Draw the triangle with vertices A = (2,2), B = (−1,3), and C = (0,0). By
regarding it as half of a parallelogram, explain why its area equals

area(ABC) =
1
2

det

[
2 2
−1 3

]
.

(b) Move the third vertex to C = (1,−4) and justify the formula

area(ABC) =
1
2

det




x1 y1 1
x2 y2 1
x3 y3 1


 =

1
2

det




2 2 1
−1 3 1
1 −4 1


 .
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Hint: Subtracting the last row from each of the others leaves

det




2 2 1
−1 3 1
1 −4 1


 = det




1 6 0
−2 7 0
1 −4 1


 = det

[
1 6
−2 7

]
.

Sketch A′ = (1,6), B′ = (−2,7), C′ = (0,0) and their relation to A, B, C.

6. Explain in terms of volumes why det3A = 3n detA for an n by n matrix A.

7. Predict in advance, and confirm by elimination, the pivot entries of

A =




2 1 2
4 5 0
2 7 0


 and B =




2 1 2
4 5 3
2 7 0


 .

8. Find all the odd permutations of the numbers {1,2,3,4}. They come from an odd
number of exchanges and lead to detP =−1.

9. Suppose the permutation P takes (1,2,3,4,5) to (5,4,1,2,3).

(a) What does P2 do to (1,2,3,4,5)?

(b) What does P−1 do to (1,2,3,4,5)?

10. If P is an odd permutation, explain why P2 is even but P−1 is odd.

11. Prove that if you keep multiplying A by the same permutation matrix P, the first row
eventually comes back to its original place.

12. If A is a 5 by 5 matrix with all |ai j| ≤ 1, then detA ≤ . Volumes or the big
formula or pivots should give some upper bound on the determinant.

Problems 13–17 are about Cramer’s Rule for x = A−1b.

13. Solve these linear equations by Cramer’s Rule x j = detB j/detA:

(a)
2x1 + 5x2 = 1
x1 + 4x2 = 2.

(b)
2x1 + x2 = 1

x1 + 2x2 + x3 = 70
x2 + 2x3 = 0.

14. Use Cramer’s Rule to solve for y (only). Call the 3 by 3 determinant D:

(a)
ax + by = 1
cx + dy = 0.

(b)
ax + by + cz = 1
dx + ey − f z = 0
gx + hy + iz = 0.
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15. Cramer’s Rule breaks down when detA = 0. Example (a) has no solution, whereas
(b) has infinitely many. What are the ratios x j = detB j/detA?

(a)
2x1 +3x2 = 1

4x1 +6x2 = 1.
(parallel lines) (b)

2x1 +3x2 = 1

4x1 +6x2 = 2.
(same line)

16. Quick proof of Cramer’s rule. The determinant is a linear function of column 1. It is
zero if two columns are equal. When b = Ax = x1a1+x2a2+x3a3 goes into column
1 to produce B1, the determinant is

∣∣∣b a2 a3

∣∣∣ =
∣∣∣x1a1 + x2a2 + x3a3 a2 a3

∣∣∣ = x1

∣∣∣a1 a2 a3

∣∣∣ = x1 detA.

(a) What formula for x1 comes from left side = right side?

(b) What steps lead to the middle equation?

17. If the right side b is the last column of A, solve the 3 by 3 system Ax = b. Explain
how each determinant in Cramer’s Rule leads to your solution x.

Problems 18–26 are about A−1 = CT/detA. Remember to transpose C.

18. Find A−1 from the cofactor formula CT/detA. Use symmetry in part (b):

(a) A =




1 2 0
0 3 0
0 4 1


 . (b) A =




2 −1 0
−1 2 −1
0 −1 2


 .

19. If all the cofactors are zero, how do you know that A has no inverse? If none of the
cofactors are zero, is A sure to be invertible?

20. Find the cofactors of A and multiply ACT to find detA:

A =




1 1 4
1 2 2
1 2 5


 , C =




6 −3 0
· · ·
· · ·


 , and ACT = .

If you change that corner entry from 4 to 100, why is detA unchanged?

21. Suppose detA = 1 and you know all the cofactors. How can you find A?

22. From the formula ACT = (detA)I show that detC = (detA)n−1.

23. (For professors only) If you know all 16 cofactors of a 4 by 4 invertible matrix A,
how would you find A?

24. If all entries of A are integers, and detA = 1 or −1, prove that all entries of A−1 are
integers. Give a 2 by 2 example.
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25. L is lower triangular and S is symmetric. Assume they are invertible:

L =




a 0 0
b c 0
d e f


 S =




a b d
b c e
d e f


 .

(a) Which three cofactors of L are zero? Then L−1 is lower triangular.

(b) Which three pairs of cofactors of S are equal? Then S−1 is symmetric.

26. For n = 5 the matrix C contains cofactors and each 4 by 4 cofactor contains
terms and each term needs multiplications. Compare with 53 = 125 for

the Gauss-Jordan computation of A−1.

Problems 27–36 are about area and volume by determinants.

27. (a) Find the area of the parallelogram with edges v = (3,2) and w = (1,4).

(b) Find the area of the triangle with sides v, w, and v+w. Draw it.

(c) Find the area of the triangle with sides v, w, and w− v. Draw it.

28. A box has edges from (0,0,0) to (3,1,1), (1,3,1), and (1,1,3). Find its volume and
also find the area of each parallelogram face.

29. (a) The corners of a triangle are (2,1), (3,4), and (0,5). What is the area?

(b) A new corner at (−1,0) makes it lopsided (four sides). Find the area.

30. The parallelogram with sides (2,1) and (2,3) has the same area as the parallelogram
with sides (2,2) and (1,3). Find those areas from 2 by 2 determinants and say why
they must be equal. (I can’t see why from a picture. Please write to me if you do.)

31. The Hadamard matrix H has orthogonal rows. The box is a hypercube!

What is detH =

∣∣∣∣∣∣∣∣∣

1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

∣∣∣∣∣∣∣∣∣
= volume of a hypercube in R4?

32. If the columns of a 4 by 4 matrix have lengths L1, L2, L3, L4, what is the largest
possible value for the determinant (based on volume)? If all entries are 1 or −1,
what are those lengths and the maximum determinant?

33. Show by a picture how a rectangle with area x1y2 minus a rectangle with area x2y1

produces the area x1y2− x2y1 of a parallelogram.

34. When the edge vectors a, b, c are perpendicular, the volume of the box is ‖a‖ times
‖b‖ times ‖c‖. The matrix ATA is . Find detATA and detA.
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35. An n-dimensional cube has how many corners? How many edges? How many (n−
1)-dimensional faces? The n-cube whose edges are the rows of 2I has volume .
A hypercube computer has parallel processors at the corners with connections along
the edges.

36. The triangle with corners (0,0), (1,0), (0,1) has area 1
2 . The pyramid with four

corners (0,0,0), (1,0,0), (0,1,0), (0,0,1) has volume . The pyramid in R4

with five corners at (0,0,0,0) and the rows of I has what volume?

Problems 37–40 are about areas dA and volumes dV in calculus.

37. Polar coordinates satisfy x = r cosθ and y = r sinθ . Polar area J dr dθ includes J:

J =

∣∣∣∣∣
∂x/∂ r ∂x/∂θ
∂y/∂ r ∂y/∂θ

∣∣∣∣∣ =

∣∣∣∣∣
cosθ −r sinθ
sinθ r cosθ

∣∣∣∣∣ .

The two columns are orthogonal. Their lengths are . Thus J = .

38. Spherical coordinates ρ , φ , θ give x = ρ sinφ cosθ , y = ρ sinφ sinθ , z = ρ cosφ .
Find the Jacobian matrix of 9 partial derivatives: ∂x/∂ρ , ∂x/∂φ , ∂x/∂θ are in row
1. Simplify its determinant to J = ρ2 sinφ . Then dV = ρ2 sinφ dρ dφ dθ .

39. The matrix that connects r, θ to x, y is in Problem 37. Invert that matrix:

J−1 =

∣∣∣∣∣
∂ r/∂x ∂ r/∂y
∂θ/∂x ∂θ/∂y

∣∣∣∣∣ =

∣∣∣∣∣
cosθ ?

? ?

∣∣∣∣∣ =?

It is surprising that ∂ r/∂x = ∂x/∂ r. The product JJ−1 = I gives the chain rule

∂x
∂x

=
∂x
∂ r

∂ r
∂x

+
∂x
∂θ

∂θ
∂x

= 1.

40. The triangle with corners (0,0), (6,0), and (1,4) has area . When you rotate it
by θ = 60° the area is . The rotation matrix has

determinant =

∣∣∣∣∣
cosθ −sinθ
sinθ cosθ

∣∣∣∣∣ =

∣∣∣∣∣
1
2 ?
? ?

∣∣∣∣∣ =?

41. Let P = (1,0,−1), Q = (1,1,1), and R = (2,2,1). Choose S so that PQRS is a
parallelogram, and compute its area. Choose T , U , V so that OPQRSTUV is a tilted
box, and compute its volume.

42. Suppose (x,y,z), (1,1,0), and (1,2,1) lie on a plane through the origin. What deter-
minant is zero? What equation does this give for the plane?

43. Suppose (x,y,z) is a linear combination of (2,3,1) and (1,2,3). What determinant
is zero? What equation does this give for the plane of all combinations?
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44. If Ax = (1,0, . . . ,0) show how Cramer’s Rule gives x = first column of A−1.

45. (VISA to AVIS) This takes an odd number of exchanges (IVSA, AVSI, AVIS). Count
the pairs of letters in VISA and AVIS that are reversed from alphabetical order. The
difference should be odd.

Review Exercises

4.1 Find the determinants of



1 1 1 1
1 1 1 2
1 1 3 1
1 4 1 1


 and




2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2


 .

4.2 If B = M−1AM, why is detB = detA? Show also that detA−1B = 1.

4.3 Starting with A, multiply its first row by 3 to produce B, and subtract the first row
of B from the second to produce C. How is detC related to detA?

4.4 Solve 3u+2v = 7, 4u+3v = 11 by Cramer’s rule.

4.5 If the entries of A and A−1 are all integers, how do you know that both determinants
are 1 or −1? Hint: What is detA times detA−1?

4.6 Find all the cofactors, and the inverse or the nullspace, of
[

3 5
6 9

]
,

[
cosθ −sinθ
sinθ cosθ

]
, and

[
a b
a b

]
.

4.7 What is the volume of the parallelepiped with four of its vertices at (0,0,0), (−1,2,2),
(2,−1,2), and (2,2,−1)? Where are the other four vertices?

4.8 How many terms are in the expansion of a 5 by 5 determinant, and how many are
sure to be zero if a21 = 0?

4.9 If P1 is an even permutation matrix and P2 is odd, deduce from P1 + P2 = P1(PT
1 +

PT
2 )P2 that det(P1 +P2) = 0.

4.10 If detA > 0, show that A can be connected to I by a continuous chain of matrices
A(t) all with positive determinants. (The straight path A(t) = A + t(I−A) does go
from A(0) = A to A(1) = I, but in between A(t) might be singular. The problem is
not so easy, and solutions are welcomed by the author.)
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4.11 Explain why the point (x,y) is on the line through (2,8) and (4,7) if

det




x y 1
2 8 1
4 7 1


 = 0, or x+2y−18 = 0.

4.12 In analogy with the previous exercise, what is the equation for (x,y,z) to be on the
plane through (2,0,0), (0,2,0), and (0,0,4)? It involves a 4 by 4 determinant.

4.13 If the points (x,y,z), (2,1,0), and (1,1,1) lie on a plane through the origin, what
determinant is zero? Are the vectors (1,0,−1), (2,1,0), (1,1,1) independent?

4.14 If every row of A has either a single +1, or a single −1, or one of each (and is
otherwise zero), show that detA = 1 or −1 or 0.

4.15 If C =
[

a b
c d

]
and D = [ u v

w z ], then CD =−DC yields 4 equations Ax = 0:

CD+DC = 0 is




2a c b 0
b a+d 0 b
c 0 a+d c
0 c b 2d







u
v
w
z


 =




0
0
0
0


 .

(a) Show that detA = 0 if a+d = 0. Solve for u, v, w, z, the entries of D.

(b) Show that detA = 0 if ad = bc (so C is singular).

In all other cases, CD =−DC is only possible with D = zero matrix.

4.16 The circular shift permutes (1,2, . . . ,n) into (2,3, . . . ,1). What is the corresponding
permutation matrix P, and (depending on n) what is its determinant?

4.17 Find the determinant of A = eye(5) + ones(5) and if possible eye(n) + ones(n).



Chapter 5
Eigenvalues and Eigenvectors

5.1 Introduction

This chapter begins the “second half” of linear algebra. The first half was about Ax =
b. The new problem Ax = λx will still be solved by simplifying a matrix—making it
diagonal if possible. The basic step is no longer to subtract a multiple of one row from
another: Elimination changes the eigenvalues, which we don’t want.

Determinants give a transition from Ax = b to Ax = λx. In both cases the determinant
leads to a “formal solution”: to Cramer’s rule for x = A−1b, and to the polynomial
det(A− λ I), whose roots will be the eigenvalues. (All matrices are now square; the
eigenvalues of a rectangular matrix make no more sense than its determinant.) The
determinant can actually be used if n = 2 or 3. For large n, computing λ is more difficult
than solving Ax = b.

The first step is to understand how eigenvalues can be useful, One of their applications
is to ordinary differential equations. We shall not assume that the reader is an expert on
differential equations! If you can differentiate xn, sinx, and ex, you know enough. As a
specific example, consider the coupled pair of equations

dv
dt

= 4v−5w, v = 8 at t = 0,

dw
dt

= 2v−3w, w = 5 at t = 0.

(1)

This is an initial-value problem. The unknown is specified at time t = 0 by the given
initial values 8 and 5. The problem is to find v(t) and w(t) for later times t > 0.

It is easy to write the system in matrix form. Let the unknown vector be u(t), with
initial value u(0). The coefficient matrix is A:

Vector unknown u(t) =

[
v(t)
w(t)

]
, u(0) =

[
8
5

]
, A =

[
4 −5
2 −3

]
.

The two coupled equations become the vector equation we want:

Matrix form
du
dt

= Au with u = u(0) at t = 0. (2)
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This is the basic statement of the problem. Note that it is a first-order equation—no
higher derivatives appear—and it is linear in the unknowns, It also has constant coeffi-
cients; the matrix A is independent of time.

How do we find u(t)? If there were only one unknown instead of two, that question
would be easy to answer. We would have a scalar instead of a vector equation:

Single equation
du
dt

= au with u = u(0) at t = 0. (3)

The solution to this equation is the one thing you need to know:

Pure exponential u(t) = eatu(0). (4)

At the initial time t = 0, u equals u(0) because e0 = 1. The derivative of eat has the
required factor a, so that du/dt = au. Thus the initial condition and the equation are
both satisfied.

Notice the behavior of u for large times. The equation is unstable if a > 0, neutrally
stable if a = 0, or stable if a < 0; the factor eat approaches infinity, remains bounded,
or goes to zero. If a were a complex number, a = α + iβ , then the same tests would be
applied to the real part α . The complex part produces oscillations eiβ t = cosβ t + isinβ t.
Decay or growth is governed by the factor eαt .

So much for a single equation. We shall take a direct approach to systems, and look
for solutions with the same exponential dependence on t just found in the scalar case:

v(t) = eλ ty

w(t) = eλ tz
(5)

or in vector notation
u(t) = eλ tx. (6)

This is the whole key to differential equations du/dt = Au: Look for pure exponential
solutions. Substituting v = eλ ty and w = eλ tz into the equation, we find

λeλ ty = 4eλ ty−5eλ tz

λeλ tz = 2eλ ty−3eλ tz.

The factor eλ t is common to every term, and can be removed. This cancellation is the
reason for assuming the same exponent λ for both unknowns; it leaves

Eigenvalue problem
4y−5z = λy
2y−3z = λ z.

(7)

That is the eigenvalue equation. In matrix form it is Ax = λx. You can see it again if we
use u = eλ tx—a number eλ t that grows or decays times a fixed vector x. Substituting
into du/dt = Au gives λeλ tx = Aeλ tx. The cancellation of eλ t produces

Eigenvalue equation Ax = λx. (8)
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Now we have the fundamental equation of this chapter. It involves two unknowns
λ and x. It is an algebra problem, and differential equations can be forgotten! The
number λ (lambda) is an eigenvalue of the matrix A, and the vector x is the associated
eigenvector. Our goal is to find the eigenvalues and eigenvectors, λ ’s and x’s, and to use
them.

The Solution of Ax = λx

Notice that Ax = λx is a nonlinear equation; λ multiplies x. If we could discover λ , then
the equation for x would be linear. In fact we could write λ Ix in place of λx, and bring
this term over to the left side:

(A−λ I)x = 0. (9)

The identity matrix keeps matrices and vectors straight; the equation (A− λ )x = 0 is
shorter, but mixed up. This is the key to the problem:

The vector x is in the nullspace of A−λ I.
The number λ is chosen so that A−λ I has a nullspace.

Of course every matrix has a nullspace. It was ridiculous to suggest otherwise, but you
see the point. We want a nonzero eigenvector x, The vector x = 0 always satisfies
Ax = λx, but it is useless in solving differential equations. The goal is to build u(t) out
of exponentials eλ tx, and we are interested only in those particular values λ for which
there is a nonzero eigenvector x. To be of any use, the nullspace of A−λ I must contain
vectors other than zero. In short, A−λ I must be singular.

For this, the determinant gives a conclusive test.

5A The number λ is an eigenvalue of A if and only if A−λ I is singular:

det(A−λ I) = 0. (10)

This is the characteristic equation. Each λ is associated with eigenvectors x:

(A−λ I)x = 0 or Ax = λx. (11)

In our example, we shift A by λ I to make it singular:

Subtract λ I A−λ I =

[
4−λ −5

2 −3−λ

]
.

Note that λ is subtracted only from the main diagonal (because it multiplies I).

Determinant |A−λ I|= (4−λ )(−3−λ )+10 or λ 2−λ −2.

This is the characteristic polynomial. Its roots, where the determinant is zero, are the
eigenvalues. They come from the general formula for the roots of a quadratic, or from
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factoring into λ 2− λ − 2 = (λ + 1)(λ − 2). That is zero if λ = −1 or λ = 2, as the
general formula confirms:

Eigenvalues λ =
−b±

√
b2−4ac

2a
=

1±√9
2

=−1 and 2.

There are two eigenvalues, because a quadratic has two roots. Every 2 by 2 matrix
A−λ I has λ 2 (and no higher power of λ ) in its determinant.

The values λ =−1 and λ = 2 lead to a solution of Ax = λx or (A−λ I)x = 0. A matrix
with zero determinant is singular, so there must be nonzero vectors x in its nullspace. In
fact the nullspace contains a whole line of eigenvectors; it is a subspace!

λ1 =−1 : (A−λ1I)x =

[
5 −5
2 −2

][
y
z

]
=

[
0
0

]
.

The solution (the first eigenvector) is any nonzero multiple of x1:

Eigenvector for λ1 x1 =

[
1
1

]
.

The computation for λ2 is done separately:

λ2 = 2 : (A−λ2I)x =

[
2 −5
2 −5

][
y
z

]
=

[
0
0

]
.

The second eigenvector is any nonzero multiple of x2:

Eigenvector for λ2 x2 =

[
5
2

]
.

You might notice that the columns of A−λ1I give x2, and the columns of A−λ2I are
multiples of x1. This is special (and useful) for 2 by 2 matrices.

In the 3 by 3 case, I often set a component of x equal to 1 and solve (A−λ I)x = 0 for
the other components. Of course if x is an eigenvector then so is 7x and so is −x. All
vectors in the nullspace of A−λ I (which we call the eigenspace) will satisfy Ax = λx.
In our example the eigenspaces are the lines through x1 = (1,1) and x2 = (5,2).

Before going back to the application (the differential equation), we emphasize the
steps in solving Ax = λx:

1. Compute the determinant of A− λ I. With λ subtracted along the diagonal, this
determinant is a polynomial of degree n. It starts with (−λ )n.

2. Find the roots of this polynomial. The n roots are the eigenvalues of A.

3. For each eigenvalue solve the equation (A−λ I)x = 0. Since the determinant is
zero, there are solutions other than x = 0. Those are the eigenvectors.
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In the differential equation, this produces the special solutions u = eλ tx. They are the
pure exponential solutions to du/dt = Au. Notice e−t and e2t :

u(t) = eλ1tx1 = e−t

[
1
1

]
and u(t) = eλ2tx2 = e2t

[
5
2

]
.

These two special solutions give the complete solution. They can be multiplied by any
numbers c1 and c2, and they can be added together. When u1 and u2 satisfy the linear
equation du/dt = Au, so does their sum u1 +u2:

Complete solution u(t) = c1eλ1tx1 + c2eλ2tx2 (12)

This is superposition, and it applies to differential equations (homogeneous and linear)
just as it applied to matrix equations Ax = 0. The nullspace is always a subspace, and
combinations of solutions are still solutions.

Now we have two free parameters c1 and c2, and it is reasonable to hope that they can
be chosen to satisfy the initial condition u = u(0) at t = 0:

Initial condition c1x1 + c2x2 = u(0) or

[
1 5
1 2

][
c1

c2

]
=

[
8
5

]
. (13)

The constants are c1 = 3 and c2 = 1, and the solution to the original equation is

u(t) = 3e−t

[
1
1

]
+ e2t

[
5
2

]
. (14)

Writing the two components separately, we have v(0) = 8 and w(0) = 5:

Solution v(t) = 3e−t +5e2t , w(t) = 3e−t +2e2t .

The key was in the eigenvalues λ and eigenvectors x. Eigenvalues are important in
themselves, and not just part of a trick for finding u. Probably the homeliest example
is that of soldiers going over a bridge.1 Traditionally, they stop marching and just walk
across. If they happen to march at a frequency equal to one of the eigenvalues of the
bridge, it would begin to oscillate. (Just as a child’s swing does; you soon notice the
natural frequency of a swing, and by matching it you make the swing go higher.) An
engineer tries to keep the natural frequencies of his bridge or rocket away from those of
the wind or the sloshing of fuel. And at the other extreme, a stockbroker spends his life
trying to get in line with the natural frequencies of the market. The eigenvalues are the
most important feature of practically any dynamical system.

Summary and Examples

To summarize, this introduction has shown how λ and x appear naturally and auto-
matically when solving du/dt = Au. Such an equation has pure exponential solutions

1One which I never really believed—but a bridge did crash this way in 1831.
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u = eλ tx; the eigenvalue gives the rate of growth or decay, and the eigenvector x develops
at this rate. The other solutions will be mixtures of these pure solutions, and the mixture
is adjusted to fit the initial conditions.

The key equation was Ax = λx. Most vectors x will not satisfy such an equation.
They change direction when multiplied by A, so that Ax is not a multiple of x. This
means that only certain special numbers are eigenvalues, and only certain special
vectors x are eigenvectors. We can watch the behavior of each eigenvector, and then
combine these “normal modes” to find the solution. To say the same thing in another
way, the underlying matrix can be diagonalized.

The diagonalization in Section 5.2 will be applied to difference equations, Fibonacci
numbers, and Markov processes, and also to differential equations. In every example,
we start by computing the eigenvalues and eigenvectors; there is no shortcut to avoid
that. Symmetric matrices are especially easy. “Defective matrices” lack a full set of
eigenvectors, so they are not diagonalizable. Certainly they have to be discussed, but we
will not allow them to take over the book.

We start with examples of particularly good matrices.

Example 1. Everything is clear when A is a diagonal matrix:

A =

[
3 0
0 2

]
has λ1 = 3 with x1 =

[
1
0

]
, λ2 = 2 with x2 =

[
0
1

]
.

On each eigenvector A acts like a multiple of the identity: Ax1 = 3x1 and Ax2 = 2x2.
Other vectors like x = (1,5) are mixtures x1 +5x2 of the two eigenvectors, and when A
multiplies x1 and x2 it produces the eigenvalues λ1 = 3 and λ2 = 2:

A times x1 +5x2 is 3x1 +10x2 =

[
3
10

]
.

This is Ax for a typical vector x—not an eigenvector. But the action of A is determined
by its eigenvectors and eigenvalues.

Example 2. The eigenvalues of a projection matrix are 1 or 0!

P =

[
1
2

1
2

1
2

1
2

]
has λ1 = 1 with x1 =

[
1
1

]
, λ2 = 0 with x2 =

[
1
−1

]
.

We have λ = 1 when x projects to itself, and λ = 0 when x projects to the zero vector.
The column space of P is filled with eigenvectors, and so is the nullspace. If those spaces
have dimension r and n− r, then λ = 1 is repeated r times and λ = 0 is repeated n− r
times (always n λ ’s):

Four eigenvalues
allowing repeats

P =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 has λ = 1,1,0,0.
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There is nothing exceptional about λ = 0. Like every other number, zero might be
an eigenvalue and it might not. If it is, then its eigenvectors satisfy Ax = 0x. Thus x is
in the nullspace of A. A zero eigenvalue signals that A is singular (not invertible); its
determinant is zero. Invertible matrices have all λ 6= 0.

Example 3. The eigenvalues are on the main diagonal when A is triangular:

det(A−λ I) =

∣∣∣∣∣∣∣

1−λ 4 5
0 3

4 −λ 6
0 0 1

2 −λ

∣∣∣∣∣∣∣
= (1−λ )(3

4 −λ )(1
2 −λ ).

The determinant is just the product of the diagonal entries. It is zero if λ = 1, λ = 3
4 , or

λ = 1
2 ; the eigenvalues were already sitting along the main diagonal.

This example, in which the eigenvalues can be found by inspection, points to one
main theme of the chapter: To transform A into a diagonal or triangular matrix without
changing its eigenvalues. We emphasize once more that the Gaussian factorization A =
LU is not suited to this purpose. The eigenvalues of U may be visible on the diagonal,
but they are not the eigenvalues of A.

For most matrices, there is no doubt that the eigenvalue problem is computationally
more difficult than Ax = b. With linear systems, a finite number of elimination steps
produced the exact answer in a finite time. (Or equivalently, Cramer’s rule gave an exact
formula for the solution.) No such formula can give the eigenvalues, or Galois would
turn in his grave. For a 5 by 5 matrix, det(A−λ I) involves λ 5. Galois and Abel proved
that there can be no algebraic formula for the roots of a fifth-degree polynomial.

All they will allow is a few simple checks on the eigenvalues, after they have been
computed, and we mention two good ones: sum and product.

5B The sum of the n eigenvalues equals the sum of the n diagonal entries:

Trace of A = λ1 + · · ·+λn = a11 + · · ·+ann. (15)

Furthermore, the product of the n eigenvalues equals the determinant of A.

The projection matrix P had diagonal entries 1
2 , 1

2 and eigenvalues 1, 0. Then 1
2 + 1

2
agrees with 1 + 0 as it should. So does the determinant, which is 0 · 1 = 0. A singular
matrix, with zero determinant, has one or more of its eigenvalues equal to zero.

There should be no confusion between the diagonal entries and the eigenvalues. For
a triangular matrix they are the same—but that is exceptional. Normally the pivots,
diagonal entries, and eigenvalues are completely different, And for a 2 by 2 matrix, the
trace and determinant tell us everything:

[
a b
c d

]
has trace a+d, and determinant ad−bc



5.1 Introduction 267

det(A−λ I) = det

∣∣∣∣∣
a−λ b

c d−λ

∣∣∣∣∣ = λ 2− (trace)λ +determinant

The eigenvalues are λ =
trace± [

(trace)2−4det
]1/2

2
.

Those two λ ’s add up to the trace; Exercise 9 gives ∑λi = trace for all matrices.

Eigshow

There is a MATLAB demo (just type eigshow), displaying the eigenvalue problem for a
2 by 2 matrix. It starts with the unit vector x = (1,0). The mouse makes this vector move
around the unit circle. At the same time the screen shows Ax, in color and also moving.
Possibly Ax is ahead of x. Possibly Ax is behind x. Sometimes Ax is parallel to x. At that
parallel moment, Ax = λx (twice in the second figure).

y = (0, 1)

x = (1, 0)

Ay = (0.3, 0.7)

Ax = (0.8, 0.2)

A =

[

0.8 0.3

0.2 0.7

]

Ax1 = x1

x2

Ax2 = 0.5x2

ellipse of Ax’s

circle of x’s

The eigenvalue λ is the length of Ax, when the unit eigenvector x is parallel. The
built-in choices for A illustrate three possibilities: 0, 1, or 2 real eigenvectors.

1. There are no real eigenvectors. Ax stays behind or ahead of x. This means the
eigenvalues and eigenvectors are complex, as they are for the rotation Q.

2. There is only one line of eigenvectors (unusual). The moving directions Ax and x
meet but don’t cross. This happens for the last 2 by 2 matrix below.

3. There are eigenvectors in two independent directions. This is typical! Ax crosses x
at the first eigenvector x1, and it crosses back at the second eigenvector x2.

Suppose A is singular (rank 1). Its column space is a line. The vector Ax has to stay on
that line while x circles around. One eigenvector x is along the line. Another eigenvector
appears when Ax2 = 0. Zero is an eigenvalue of a singular matrix.

You can mentally follow x and Ax for these six matrices. How many eigenvectors and
where? When does Ax go clockwise, instead of counterclockwise with x?

A =

[
2 0
0 1

] [
2 0
0 −1

] [
0 1
1 0

] [
0 1
−1 0

] [
1 1
1 1

] [
1 1
0 1

]
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Problem Set 5.1

1. Find the eigenvalues and eigenvectors of the matrix A =
[

1 −1
2 4

]
. Verify that the trace

equals the sum of the eigenvalues, and the determinant equals their product.

2. With the same matrix A, solve the differential equation du/dt = Au, u(0) =
[

0
6

]
.

What are the two pure exponential solutions?

3. If we shift to A− 7I, what are the eigenvalues and eigenvectors and how are they
related to those of A?

B = A−7I =

[
−6 −1
2 −3

]
.

4. Solve du/dt = Pu, when P is a projection:

du
dt

=

[
1
2

1
2

1
2

1
2

]
u with u(0) =

[
5
3

]
.

Part of u(0) increases exponentially while the nullspace part stays fixed.

5. Find the eigenvalues and eigenvectors of

A =




3 4 2
0 1 2
0 0 0


 and B =




0 0 2
0 2 0
2 0 0


 .

Check that λ1 +λ2 +λ3 equals the trace and λ1λ2λ3 equals the determinant.

6. Give an example to show that the eigenvalues can be changed when a multiple of one
row is subtracted from another. Why is a zero eigenvalue not changed by the steps
of elimination?

7. Suppose that λ is an eigenvalue of A, and x is its eigenvector: Ax = λx.

(a) Show that this same x is an eigenvector of B = A− 7I, and find the eigenvalue.
This should confirm Exercise 3.

(b) Assuming λ 6= 0, show that x is also an eigenvector of A−1—and find the eigen-
value.

8. Show that the determinant equals the product of the eigenvalues by imagining that
the characteristic polynomial is factored into

det(A−λ I) = (λ1−λ )(λ2−λ ) · · ·(λn−λ ), (16)

and making a clever choice of λ .
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9. Show that the trace equals the sum of the eigenvalues, in two steps. First, find the
coefficient of (−λ )n−1 on the right side of equation (16). Next, find all the terms in

det(A−λ I) = det




a11−λ a12 · · · a1n

a21 a22−λ · · · a2n
...

...
...

an1 an2 · · · ann−λ




that involve (−λ )n−1. They all come from the main diagonal! Find that coefficient
of (−λ )n−1 and compare.

10. (a) Construct 2 by 2 matrices such that the eigenvalues of AB are not the products of
the eigenvalues of A and B, and the eigenvalues of A+B are not the sums of the
individual eigenvalues.

(b) Verify, however, that the sum of the eigenvalues of A + B equals the sum of all
the individual eigenvalues of A and B, and similarly for products. Why is this
true?

11. The eigenvalues of A equal the eigenvalues of AT. This is because det(A− λ I)
equals det(AT−λ I). That is true because . Show by an example that the eigen-
vectors of A and AT are not the same.

12. Find the eigenvalues and eigenvectors of

A =

[
3 4
4 −3

]
and A =

[
a b
b a

]
.

13. If B has eigenvalues 1, 2, 3, C has eigenvalues 4, 5, 6, and D has eigenvalues 7, 8, 9,
what are the eigenvalues of the 6 by 6 matrix A =

[
B C
0 D

]
?

14. Find the rank and all four eigenvalues for both the matrix of ones and the checker
board matrix:

A =




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 and C =




0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


 .

Which eigenvectors correspond to nonzero eigenvalues?

15. What are the rank and eigenvalues when A and C in the previous exercise are n by n?
Remember that the eigenvalue λ = 0 is repeated n− r times.

16. If A is the 4 by 4 matrix of ones, find the eigenvalues and the determinant of A− I.
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17. Choose the third row of the “companion matrix”

A =




0 1 0
0 0 1
· · ·




so that its characteristic polynomial |A−λ I| is −λ 3 +4λ 2 +5λ +6.

18. Suppose A has eigenvalues 0, 3, 5 with independent eigenvectors u, v, w.

(a) Give a basis for the nullspace and a basis for the column space.

(b) Find a particular solution to Ax = v+w. Find all solutions.

(c) Show that Ax = u has no solution. (If it had a solution, then would be in
the column space.)

19. The powers Ak of this matrix A approaches a limit as k → ∞:

A =

[
.8 .3
.2 .7

]
, A2 =

[
.70 .45
.30 .55

]
, and A∞ =

[
.6 .6
.4 .4

]
.

The matrix A2 is halfway between A and A∞. Explain why A2 = 1
2(A+A∞) from the

eigenvalues and eigenvectors of these three matrices.

20. Find the eigenvalues and the eigenvectors of these two matrices:

A =

[
1 4
2 3

]
and A+ I =

[
2 4
2 4

]
.

A+ I has the eigenvectors as A. Its eigenvalues are by 1.

21. Compute the eigenvalues and eigenvectors of A and A−1:

A =

[
0 2
2 3

]
and A−1 =

[
−3/4 1/2
1/2 0

]
.

A−1 has the eigenvectors as A. When A has eigenvalues λ1 and λ2, its inverse
has eigenvalues .

22. Compute the eigenvalues and eigenvectors of A and A2:

A =

[
−1 3
2 0

]
and A2 =

[
7 −3
−2 6

]
.

A2 has the same as A. When A has eigenvalues λ1 and λ2, A2 has eigenvalues
.

23. (a) If you know x is an eigenvector, the way to find λ is to .
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(b) If you know λ is an eigenvalue, the way to find x is to .

24. What do you do to Ax = λx, in order to prove (a), (b), and (c)?

(a) λ 2 is an eigenvalue of A2, as in Problem 22.

(b) λ−1 is an eigenvalue of A−1, as in Problem 21.

(c) λ +1 is an eigenvalue of A+ I, as in Problem 20.

25. From the unit vector u =
(1

6 ,
1
6 ,

3
6 ,

5
6

)
, construct the rank-1 projection matrix P = uuT.

(a) Show that Pu = u. Then u is an eigenvector with λ = 1.

(b) If v is perpendicular to u show that Pv = zero vector. Then λ = 0.

(c) Find three independent eigenvectors of P all with eigenvalue λ = 0.

26. Solve det(Q−λ I) = 0 by the quadratic formula, to reach λ = cosθ ± isinθ :

Q =

[
cosθ −sinθ
sinθ cosθ

]
rotates the xy-plane by the angle θ .

Find the eigenvectors of Q by solving (Q−λ I)x = 0. Use i2 =−1.

27. Every permutation matrix leaves x = (1,1, . . . ,1) unchanged. Then λ = 1. Find two
more λ ’s for these permutations:

P =




0 1 0
0 0 1
1 0 0


 and P =




0 0 1
0 1 0
1 0 0


 .

28. If A has λ1 = 4 and λ2 = 5, then det(A−λ I) = (λ −4)(λ −5) = λ 2−9λ +20. Find
three matrices that have trace a+d = 9, determinant 20, and λ = 4,5.

29. A 3 by 3 matrix B is known to have eigenvalues 0, 1, 2, This information is enough
to find three of these:

(a) the rank of B,

(b) the determinant of BTB,

(c) the eigenvalues of BTB, and

(d) the eigenvalues of (B+ I)−1.

30. Choose the second row of A = [0 1∗ ∗ ] so that A has eigenvalues 4 and 7.

31. Choose a, b, c, so that det(A−λ I) = 9λ −λ 3. Then the eigenvalues are −3, 0, 3:

A =




0 1 0
0 0 1
a b c


 .
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32. Construct any 3 by 3 Markov matrix M: positive entries down each column add to
1. If e = (1,1,1), verify that MTe = e. By Problem 11, λ = 1 is also an eigenvalue
of M. Challenge: A 3 by 3 singular Markov matrix with trace 1

2 has eigenvalues
λ = .

33. Find three 2 by 2 matrices that have λ1 = λ2 = 0. The trace is zero and the determi-
nant is zero. The matrix A might not be 0 but check that A2 = 0.

34. This matrix is singular with rank 1. Find three λ ’s and three eigenvectors:

A =




1
2
1




[
2 1 2

]
=




2 1 2
4 2 4
2 1 2


 .

35. Suppose A and B have the same eigenvalues λ1, . . . ,λn with the same independent
eigenvectors x1, . . . ,xn. Then A = B. Reason: Any vector x is a combination c1x1 +
· · ·+ cnxn. What is Ax? What is Bx?

36. (Review) Find the eigenvalues of A, B, and C:

A =




1 2 3
0 4 5
0 0 6


 , B =




0 0 1
0 2 0
3 0 0


 , and C =




2 2 2
2 2 2
2 2 2


 .

37. When a+b = c+d, show that (1,1) is an eigenvector and find both eigenvalues:

A =

[
a b
c d

]
.

38. When P exchanges rows 1 and 2 and columns 1 and 2, the eigenvalues don’t change.
Find eigenvectors of A and PAP for λ = 11:

A =




1 2 1
3 6 3
4 8 4


 and PAP =




6 3 3
2 1 1
8 4 4


 .

39. Challenge problem: Is there a real 2 by 2 matrix (other than I) with A3 = I? Its
eigenvalues must satisfy λ 3 = I. They can be e2πi/3 and e−2πi/3. What trace and
determinant would this give? Construct A.

40. There are six 3 by 3 permutation matrices P. What numbers can be the determinants
of P? What numbers can be pivots? What numbers can be the trace of P? What four
numbers can be eigenvalues of P?
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5.2 Diagonalization of a Matrix

We start right off with the one essential computation. It is perfectly simple and will be
used in every section of this chapter. The eigenvectors diagonalize a matrix:

5C Suppose the n by n matrix A has n linearly independent eigenvectors.
If these eigenvectors are the columns of a matrix S, then S−1AS is a diagonal
matrix Λ. The eigenvalues of A are on the diagonal of Λ:

Diagonalization S−1AS = Λ =




λ1

λ2
. . .

λn


 . (1)

We call S the “eigenvector matrix” and Λ the “eigenvalue matrix”—using a capital
lambda because of the small lambdas for the eigenvalues on its diagonal.

Proof. Put the eigenvectors xi in the columns of S, and compute AS by columns:

AS = A



| | |

x1 x2 · · · xn

| | |


 =




| | |
λ1x1 λ2x2 · · · λnxn

| | |


 .

Then the trick is to split this last matrix into a quite different product SΛ:


λ1x1 λ2x2 · · · λnxn


 =


x1 x2 · · · xn







λ1

λ2
. . .

λn


 .

It is crucial to keep these matrices in the right order. If Λ came before S (instead of
after), then λ1 would multiply the entries in the first row. We want λ1 to appear in the
first column. As it is, SΛ is correct. Therefore,

AS = SΛ, or S−1AS = Λ, or A = SΛS−1. (2)

S is invertible, because its columns (the eigenvectors) were assumed to be independent.
We add four remarks before giving any examples or applications.

Remark 1. If the matrix A has no repeated eigenvalues—the numbers λ1, . . . ,λn are
distinct—then its n eigenvectors are automatically independent (see 5D below). There-
fore any matrix with distinct eigenvalues can be diagonalized.

Remark 2. The diagonalizing matrix S is not unique. An eigenvector x can be multiplied
by a constant, and remains an eigenvector. We can multiply the columns of S by any
nonzero constants, and produce a new diagonalizing S. Repeated eigenvalues leave even
more freedom in S. For the trivial example A = I, any invertible S will do: S−1IS is is
always diagonal (Λ is just I). All vectors are eigenvectors of the identity.
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Remark 3. Other matrices S will not produce a diagonal Λ. Suppose the first column
of S is y. Then the first column of SΛ is λ1y. If this is to agree with the first column of
AS, which by matrix multiplication is Ay, then y must be an eigenvector: Ay = λ1y. The
order of the eigenvectors in S and the eigenvalues in Λ is automatically the same.

Remark 4. Not all matrices possess n linearly independent eigenvectors, so not all ma-
trices are diagonalizable. The standard example of a “defective matrix” is

A =

[
0 1
0 0

]
.

Its eigenvalues are λ1 = λ2 = 0, since it is triangular with zeros on the diagonal:

det(A−λ I) = det

[
−λ 1
0 −λ

]
= λ 2.

All eigenvectors of this A are multiples of the vector (1,0):
[

0 1
0 0

]
x =

[
0
0

]
, or x =

[
c
0

]
.

λ = 0 is a double eigenvalue—its algebraic multiplicity is 2. But the geometric multi-
plicity is 1—there is only one independent eigenvector. We can’t construct S.

Here is a more direct proof that this A is not diagonalizable. Since λ1 = λ2 = 0, Λ
would have to be the zero matrix, But if Λ = S−1AS = 0, then we premultiply by S and
postmultiply by S−1, to deduce falsely that A = 0. There is no invertible S.

That failure of diagonalization was not a result of λ = 0. It came from λ1 = λ2:

Repeated eigenvalues A =

[
3 1
0 3

]
and A =

[
2 −1
1 0

]
.

Their eigenvalues are 3, 3 and 1, 1. They are not singular! The problem is the shortage
of eigenvectors—which are needed for S. That needs to be emphasized:

Diagonalizability of A depends on enough eigenvectors.
Invertibility of A depends on nonzero eigenvalues.

There is no connection between diagonalizability (n independent eigenvector) and in-
vertibility (no zero eigenvalues). The only indication given by the eigenvalues is this:
Diagonalization can fail only if there are repeated eigenvalues. Even then, it does not
always fail. A = I has repeated eigenvalues 1,1, . . . ,1 but it is already diagonal! There
is no shortage of eigenvectors in that case.

The test is to check, for an eigenvalue that is repeated p times, whether there are p
independent eigenvectors—in other words, whether A−λ I has rank n− p. To complete
that circle of ideas, we have to show that distinct eigenvalues present no problem.
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5D If eigenvectors x1, . . . ,xk correspond to different eigenvalues λ1, . . . ,λk,
then those eigenvectors are linearly independent.

Suppose first that k = 2, and that some combination of x1 and x2 produces zero:
c1x1 + c2x2 = 0. Multiplying by A, we find c1λ1x1 + c2λ2x2 = 0. Subtracting λ2 times
the previous equation, the vector x2 disappears:

c1(λ1−λ2)x1 = 0.

Since λ1 6= λ2 and x1 6= 0, we are forced into c1 = 0. Similarly c2 = 0, and the two
vectors are independent; only the trivial combination gives zero.

This same argument extends to any number of eigenvectors: If some combination pro-
duces zero, multiply by A, subtract λk times the original combination, and xk disappears—
leaving a combination of x1, . . . ,xk−1, which produces zero. By repeating the same steps
(this is really mathematical induction) we end up with a multiple of x1 that produces
zero. This forces c1 = 0, and ultimately every ci = 0. Therefore eigenvectors that come
from distinct eigenvalues are automatically independent.

A matrix with n distinct eigenvalues can be diagonalized. This is the typical case.

Examples of Diagonalization

The main point of this section is S−1AS = A. The eigenvector matrix S converts A into
its eigenvalue matrix Λ (diagonal). We see this for projections and rotations.

Example 1. The projection A =
[

1
2

1
2

1
2

1
2

]
has eigenvalue matrix Λ =

[
1 0
0 0

]
. The eigen-

vectors go into the columns of S:

S =

[
1 1
1 −1

]
and AS = SΛ =

[
1 0
1 0

]
.

That last equation can be verified at a glance. Therefore S−1AS = Λ.

Example 2. The eigenvalues themselves are not so clear for a rotation:

90° rotation K =

[
0 −1
1 0

]
has det(K−λ I) = λ 2 +1.

How can a vector be rotated and still have its direction unchanged? Apparently it
can’t—except for the zero vector, which is useless. But there must be eigenvalues, and
we must be able to solve du/dt = Ku. The characteristic polynomial λ 2 +1 should still
have two roots—but those roots are not real.

You see the way out. The eigenvalues of K are imaginary numbers, λ1 = i and λ2 =
−i. The eigenvectors are also not real. Somehow, in turning through 90°, they are
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multiplied by i or −i:

(K−λ1I)x1 =

[
−i −1
1 −i

][
y
z

]
=

[
0
0

]
and x1 =

[
1
−i

]

(K−λ2I)x2 =

[
i −1
1 i

][
y
z

]
=

[
0
0

]
and x2 =

[
1
i

]
.

The eigenvalues are distinct, even if imaginary, and the eigenvectors are independent.
They go into the columns of S:

S =

[
1 1
−i i

]
and S−1KS =

[
i 0
0 −i

]
.

We are faced with an inescapable fact, that complex numbers are needed even for
real matrices. If there are too few real eigenvalues, there are always n complex eigen-
values. (Complex includes real, when the imaginary part is zero.) If there are too few
eigenvectors in the real world R3, or in Rn, we look in C3 or Cn. The space Cn contains
all column vectors with complex components, and it has new definitions of length and
inner product and orthogonality. But it is not more difficult than Rn, and in Section 5.5
we make an easy conversion to the complex case.

Powers and Products: Ak and AB

There is one more situation in which the calculations are easy. The eigenvalue of A2 are
exactly λ 2

1 , . . . ,λ 2
n , and every eigenvector of A is also an eigenvector of A2. We start

from Ax = λx, and multiply again by A:

A2x = Aλx = λAx = λ 2x. (3)

Thus λ 2 is an eigenvalue of A2, with the same eigenvector x. If the first multiplication
by A leaves the direction of x unchanged, then so does the second.

The same result comes from diagonalization, by squaring S−1AS = Λ:

Eigenvalues of A2 (S−1AS)(S−1AS) = Λ2 or S−1A2S = Λ2.

The matrix A2 is diagonalized by the same S, so the eigenvectors are unchanged. The
eigenvalues are squared. This continues to hold for any power of A:

5E The eigenvalues of Ak are λ k
1 , . . . ,λ k

n , and each eigenvector of A is still an
eigenvector of Ak. When S diagonalizes A, it also diagonalizes Ak:

Λk = (S−1AS)(S−1AS) · · ·(S−1AS) = S−1AkS. (4)

Each S−1 cancels an S, except for the first S−1 and the last S.
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If A is invertible this rule also applies to its inverse (the power k = −1). The eigen-
values of A−1 are 1/λi. That can be seen even without diagonalizing:

if Ax = λx then x = λA−1x and
1
λ

x = A−1x.

Example 3. If K is rotation through 90°, then K2 is rotation through 180° (which means
−I) and K−1 is rotation through −90°:

K =

[
0 −1
1 0

]
, K2 =

[
−1 0
0 −1

]
, and K−1 =

[
0 1
−1 0

]
.

The eigenvalues of K are i and −i; their squares are −1 and −1; their reciprocals are
1/i =−i and 1/(−i) = i. Then K4 is a complete rotation through 360°:

K4 =

[
1 0
0 1

]
and also Λ4 =

[
i4 0
0 (−i)4

]
=

[
1 0
0 1

]
.

For a product of two matrices, we can ask about the eigenvalues of AB—but we won’t
get a good answer. It is very tempting to try the same reasoning, hoping to prove what
is not in general true. If λ is an eigenvalue of A and µ is an eigenvalue of B, here is the
false proof that AB has the eigenvalue µλ :

False proof ABx = Aµx = µAx = µλx.

The mistake lies in assuming that A and B share the same eigenvector x. In general, they
do not, We could have two matrices with zero eigenvalues, while AB has λ = 1:

AB =

[
0 1
0 0

][
0 0
1 0

]
=

[
1 0
0 0

]
.

The eigenvectors of this A and B are completely different, which is typical. For the same
reason, the eigenvalues of A+B generally have nothing to do with λ + µ .

This false proof does suggest what is true. If the eigenvector is the same for A and
B, then the eigenvalues multiply and AB has the eigenvalue µλ . But there is something
more important. There is an easy way to recognize when A and B share a full set of
eigenvectors, and that is a key question in quantum mechanics:

5F Diagonalizable matrices share the same eigenvector matrix S if and only
if AB = BA.

Proof. If the same S diagonalizes both A = SΛ1S−1 and B = SΛ2S−1, we can multiply
in either order:

AB = SΛ1S−1SΛ2S−1 = SΛ1Λ2S−1 and BA = SΛ2S−1SΛ1S−1 = SΛ2Λ1S−1.

Since Λ1Λ2 = Λ2Λ1 (diagonal matrices always commute) we have AB = BA.
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In the opposite direction, suppose AB = BA. Starting from Ax = λx, we have

ABx = BAx = Bλx = λBx.

Thus x and Bx are both eigenvectors of A, sharing the same λ (or else Bx = 0). If we
assume for convenience that the eigenvalues of A are distinct—the eigenspaces are all
one-dimensional—then Bx must be a multiple of x. in other words x is an eigenvector of
B as well as A. The proof with repeated eigenvalues is a little longer.

Heisenberg’s uncertainty principle comes from noncommuting matrices, like posi-
tion P and momentum Q. Position is symmetric, momentum is skew-symmetric, and
together they satisfy QP−PQ = I. The uncertainty principle follows directly from the
Schwarz inequality (Qx)T(Px)≤ ‖Qx‖‖Px‖ of Section 3.2:

‖x‖2 = xTx = xT(QP−PQ)x≤ 2‖Qx‖‖Px‖.
The product of ‖Qx‖/‖x‖ and ‖Px‖/‖x‖—momentum and position errors, when the
wave function is x—is at least 1

2 . It is impossible to get both errors small, because when
you try to measure the position of a particle you change its momentum.

At the end we come back to A = SΛS−1. That factorization is particularly suited to
take powers of A, and the simplest case A2 makes the point. The LU factorization is
hopeless when squared, but SΛS−1 is perfect. The square is SΛ2S−1, and the eigenvec-
tors are unchanged. By following those eigenvectors we will solve difference equations
and differential equations.

Problem Set 5.2

1. Factor the following matrices into SΛS−1:

A =

[
1 1
1 1

]
and A =

[
2 1
0 0

]
.

2. Find the matrix A whose eigenvalues are 1 and 4, and whose eigenvectors are
[

3
1

]
and

[
2
1

]
, respectively. (Hint: A = SΛS−1.)

3. Find all the eigenvalues and eigenvectors of

A =




1 1 1
1 1 1
1 1 1




and write two different diagonalizing matrices S.

4. If a 3 by 3 upper triangular matrix has diagonal entries 1, 2, 7, how do you know it
can be diagonalized? What is Λ?



5.2 Diagonalization of a Matrix 279

5. Which of these matrices cannot be diagonalized?

A1 =

[
2 −2
2 −2

]
A2 =

[
2 0
2 −2

]
A3 =

[
2 0
2 2

]
.

6. (a) If A2 = I, what are the possible eigenvalues of A?

(b) If this A is 2 by 2, and not I or −I, find its trace and determinant.

(c) If the first row is (3,−1), what is the second row?

7. If A =
[

4 3
1 2

]
, find A100 by diagonalizing A.

8. Suppose A = uvT is a column times a row (a rank-1 matrix).

(a) By multiplying A times u, show that u is an eigenvector. What is λ?

(b) What are the other eigenvalues of A (and why)?

(c) Compute trace(A) from the sum on the diagonal and the sum of λ ’s.

9. Show by direct calculation that AB and BA have the same trace when

A =

[
a b
c d

]
and B =

[
q r
s t

]
.

Deduce that AB−BA = I is impossible (except in infinite dimensions).

10. Suppose A has eigenvalues 1, 2, 4. What is the trace of A2? What is the determinant
of (A−1)T?

11. If the eigenvalues of A are 1, 1, 2, which of the following are certain to be true? Give
a reason if true or a counterexample if false:

(a) A is invertible.

(b) A is diagonalizable.

(c) A is not diagonalizable.

12. Suppose the only eigenvectors of A are multiples of x = (1,0,0). True or false:

(a) A is not invertible.

(b) A has a repeated eigenvalue.

(c) A is not diagonalizable.

13. Diagonalize the matrix A =
[

5 4
4 5

]
and find one of its square roots—a matrix such that

R2 = A. How many square roots will there be?

14. Suppose the eigenvector matrix S has ST = S−1. Show that A = SΛS−1 is symmetric
and has orthogonal eigenvectors.

Problems 15–24 are about the eigenvalue and eigenvector matrices.
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15. Factor these two matrices into A = SΛS−1:

A =

[
1 2
0 3

]
and A =

[
1 1
2 2

]
.

16. If A = SΛS−1 then A3 = ( )( )( ) and A−1 = ( )( )( ).

17. If A has λ1 = 2 with eigenvector x1 =
[

1
0

]
and λ2 = 5 with x2 =

[
1
1

]
, use SΛS−1 to

find A. No other matrix has the same λ ’s and x’s.

18. Suppose A = SΛS−1. What is the eigenvalue matrix for A + 2I? What is the eigen-
vector matrix? Check that A+2I = ( )( )( )−1.

19. True or false: If the n columns of S (eigenvectors of A) are independent, then

(a) A is invertible.

(b) A is diagonalizable.

(c) S is invertible.

(d) S is diagonalizable.

20. If the eigenvectors of A are the columns of I, then A is a matrix. If the eigen-
vector matrix S is triangular, then S−1 is triangular and A is triangular.

21. Describe all matrices S that diagonalize this matrix A:

A =

[
4 0
1 2

]
.

Then describe all matrices that diagonalize A−1.

22. Write the most general matrix that has eigenvectors
[

1
1

]
and

[
1
−1

]
.

23. Find the eigenvalues of A and B and A+B:

A =

[
1 0
1 1

]
, B =

[
1 1
0 1

]
, A+B =

[
2 1
1 2

]
.

Eigenvalues of A+B (are equal to)(are not equal to) eigenvalues of A plus eigenval-
ues of B.

24. Find the eigenvalues of A, B, AB, and BA:

A =

[
1 0
1 1

]
, B =

[
1 1
0 1

]
, AB =

[
1 1
1 2

]
, and BA =

[
2 1
1 1

]
.

Eigenvalues of AB (are equal to)(are not equal to) eigenvalues of A times eigenvalues
of B. Eigenvalues of AB (are)(are not) equal to eigenvalues of BA.
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Problems 25–28 are about the diagonalizability of A.

25. True or false: If the eigenvalues of A are 2, 2, 5, then the matrix is certainly

(a) invertible.

(b) diagonalizable.

(c) not diagonalizable.

26. If the eigenvalues of A are 1 and 0, write everything you know about the matrices A
and A2.

27. Complete these matrices so that detA = 25. Then trace = 10, and λ = 5 is repeated!
Find an eigcnvector with Ax = 5x. These matrices will nothe diagonalizabie because
there is no second line of eigenvectors.

A =

[
8

2

]
, A =

[
9 4

1

]
, and A =

[
10 5
−5

]
.

28. The matrix A =
[

3 1
0 3

]
is not diagonalizable because the rank of A− 3I is .

Change one entry to make A diagonalizable. Which entries could you change?

Problems 29–33 are about powers of matrices.

29. Ak = SΛkS−1 approaches the zero matrix as k→∞ if and only if every λ has absolute
value less than . Does Ak → 0 or Bk → 0?

A =

[
.6 .4
.4 .6

]
and B =

[
.6 .9
.1 .6

]
.

30. (Recommended) Find Λ and S to diagonalize A in Problem 29. What is the limit of
Λk as k → ∞? What is the limit of SΛkS−1? In the columns of this limiting matrix
you see the .

31. Find Λ and S to diagonalize B in Problem 29. What is B10u0 for these u0?

u0 =

[
3
1

]
, u0 =

[
3
−1

]
, and u0 =

[
6
0

]
.

32. Diagonalize A and compute SΛkS−1 to prove this formula for Ak:

A =

[
2 1
1 2

]
has Ak =

1
2

[
3k +1 3k−1
3k−1 3k +1

]
.

33. Diagonalize B and compute SΛkS−1 to prove this formula for Bk:

B =

[
3 1
0 2

]
has Bk =

[
3k 3k−2k

0 2k

]
.
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Problems 34–44 are new applications of A = SΛS−1.

34. Suppose that A = SΛS−1. Take determinants to prove that detA = λ1λ2 · · ·λn = prod-
uct of λ ’s. This quick proof only works when A is .

35. The trace of S times ΛS−1 equals the trace of ΛS−1 times S. So the trace of a diago-
nalizable A equals the trace of Λ, which is .

36. If A = SΛS−1, diagonalize the block matrix B =
[

A 0
0 2A

]
. Find its eigenvalue and

eigenvector matrices.

37. Consider all 4 by 4 matrices A that are diagonalized by the same fixed eigenvector
matrix S. Show that the A’s form a subspace (cA and A1 + A2 have this same S).
What is this subspace when S = I? What is its dimension?

38. Suppose A2 = A. On the left side A multiplies each column of A. Which of our four
subspaces contains eigenvectors with λ = 1? Which subspace contains eigenvectors
with λ = 0? From the dimensions of those subspaces, A has a full set of independent
eigenvectors and can be diagonalized.

39. Suppose Ax = λx. If λ = 0, then x is in the nullspace. If λ 6= 0, then x is in the
column space. Those spaces have dimensions (n− r)+ r = n. So why doesn’t every
square matrix have n linearly independent eigenvectors?

40. Substitute A = SΛS−1 into the product (A−λ1I)(A−λ2I) · · ·(A−λnI) and explain
why this produces the zero matrix. We are substituting the matrix A for the number
λ in the polynomial p(λ ) = det(A−λ I). The Cayley-Hamilton Theorem says that
this product is always p(A) = zero matrix, even if A is not diagonalizable.

41. Test the Cayley-Hamilton Theorem on Fibonacci’s matrix A =
[

1 1
1 0

]
. The theorem

predicts that A2−A− I = 0, since det(A−λ I) is λ 2−λ −1.

42. If A =
[

a b
c d

]
, then det(A−λ I) is (λ −a)(λ −d). Check the Cayley-Hamilton state-

ment that (A−aI)(A−dI) = zero matrix.

43. If A =
[

1 0
0 2

]
and AB = BA, show that B =

[
a b
c d

]
is also diagonal. B has the same

eigen as A, but different eigen . These diagonal matrices B form a two-
dimensional subspace of matrix space. AB−BA = 0 gives four equations for the
unknowns a, b, c, d—find the rank of the 4 by 4 matrix.

44. If A is 5 by 5. then AB−BA = zero matrix gives 25 equations for the 25 entries in B.
Show that the 25 by 25 matrix is singular by noticing a simple nonzero solution B.

45. Find the eigenvalues and eigenvectors for both of these Markov matrices A and A∞.
Explain why A100 is close to A∞:

A =

[
.6 .2
.4 .8

]
and A∞ =

[
1/3 1/3
2/3 2/3

]
.
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5.3 Difference Equations and Powers Ak

Difference equations uk+1 = Auk move forward in a finite number of finite steps. A
differential equation takes an infinite number of infinitesimal steps, but the two theories
stay absolutely in parallel. It is the same analogy between the discrete and the continuous
that appears over and over in mathematics. A good illustration is compound interest,
when the time step gets shorter.

Suppose you invest $1000 at 6% interest. Compounded once a year, the principal P
is multiplied by 1.06. This is a difference equation Pk+1 = APk = 1.06Pk with a time step
of one year. After 5 years, the original P0 = 1000 has been multiplied 5 times:

Yearly P5 = (1.06)5P0 which is (1.06)51000 = $1338.

Now suppose the time step is reduced to a month. The new difference equation is pk+1 =
(1+ .06/12)pk. After 5 years, or 60 months, you have $11 more:

Monthly p60 =
(

1+
.06
12

)60

p0 which is (1.005)601000 = $1349.

The next step is to compound every day, on 5(365) days. This only helps a little:

Daily compounding
(

1+
.06
365

)5·365

1000 = $1349.83.

Finally, to keep their employees really moving, banks offer continuous compounding.
The interest is added on at every instant, and the difference equation breaks down. You
can hope that the treasurer does not know calculus (which is all about limits as ∆t → 0).
The bank could compound the interest N times a year, so ∆t = 1/N:

Continuously
(

1+
.06
N

)5N

1000→ e.301000 = $1349.87.

Or the bank can switch to a differential equation—the limit of the difference equation
pk+1 = (1+ .06∆t)pk. Moving pk to the left side and dividing by ∆t,

Discrete to
continuous

pk+1− pk

∆t
= .06pk approaches

d p
dt

= .06p. (1)

The solution is p(t) = e.06t p0. After t = 5 years, this again amounts to $1349.87. The
principal stays finite, even when it is compounded every instant—and the improvement
over compounding every day is only four cents.

Fibonacci Numbers

The main object of this section is to solve uk+1 = Auk. That leads us to Ak and powers
of matrices. Our second example is the famous Fibonacci sequence:

Fibonacci numbers 0,1,1,2,3,5,8,13, . . . .
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You see the pattern: Every Fibonacci number is the sum of the two previous F’s:

Fibonacci equation Fk+2 = Fk+1 +Fk. (2)

That is the difference equation. It turns up in a most fantastic variety of applications,
and deserves a book of its own. Leaves grow in a spiral pattern, and on the apple or oak
you find five growths for every two turns around the stem. The pear tree has eight for
every three turns, and the willow is 13:5. The champion seems to be a sunflower whose
seeds chose an almost unbelievable ratio of F12/F13 = 144/233.2

How could we find the 1000th Fibonacci number, without starting at F0 = 0 and
F1 = 1, and working all the way out to F1000? The goal is to solve the difference equation
Fk+2 = Fk+1 +Fk. This can be reduced to a one-step equation uk+1 = Auk. Every step
multiplies uk = (Fk+1,Fk) by a matrix A:

Fk+2 = Fk+1 +Fk

Fk+1 = Fk+1
becomes uk+1 =

[
1 1
1 0

][
Fk+1

Fk

]
= Auk. (3)

The one-step system uk+1 = Auk is easy to solve, It starts from u0. After one step it
produces u1 = Au0. Then u2 is Au1, which is A2u0. Every step brings a multiplication
by A, and after k steps there are k multiplications:

The solution to a difference equation uk+1 = Auk is uk = Aku0.

The real problem is to find some quick way to compute the powers Ak, and thereby find
the 1000th Fibonacci number. The key lies in the eigenvalues and eigenvectors:

5G If A can be diagonalized, A = SΛS−1, then Ak comes from Λk:

uk = Aku0 = (SΛS−1)(SΛS−1) · · ·(SΛS−1)u0 = SΛkS−1u0. (4)

The columns of S are the eigenvectors of A. Writing S−1u0 = c, the solution
becomes

uk = SΛkc =


x1 · · · xn







λ k
1

. . .
λ k

n







c1
...

cn


 = c1λ k

1 x1 + · · ·+ cnλ k
n xn.

(5)

After k steps, uk is a combination of the n “pure solutions” λ kx.
These formulas give two different approaches to the same solution uk = SΛkS−1u0.

The first formula recognized that Ak is identical with SΛkS−1, and we could stop there.
2For these botanical applications, see D’Arcy Thompson’s book On Growth and Form (Cambridge University

Press, 1942) or Peter Stevens’s beautiful Patterns in Nature (Little, Brown, 1974). Hundreds of other properties
of the Fn have been published in the Fibonacci Quarterly. Apparently Fibonacci brought Arabic numerals into
Europe, about 1200 A.D.
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But the second approach brings out the analogy with a differential equation: The pure
exponential solutions eλitxi are now the pure powers λ k

i xi. The eigenvectors xi are
amplified by the eigenvalues λi. By combining these special solutions to match u0—that
is where c came from—we recover the correct solution uk = SΛkS−1u0.

In any specific example like Fibonacci’s, the first step is to find the eigenvalues:

A−λ I =

[
1−λ 1

1 −λ

]
has det(A−λ I) = λ 2−λ −1

Two eigenvalues λ1 =
1+

√
5

2
and λ2 =

1−√5
2

.

The second row of A−λ I is (1,−λ ). To get (A−λ I)x = 0, the eigenvector is x = (λ ,1),
The first Fibonacci numbers F0 = 0 and F1 = 1 go into u0, and S−1u0 = c:

S−1u0 =

[
λ1 λ2

1 1

]−1 [
1
0

]
gives c =

[
1/(λ1−λ2)
−1/(λ1−λ2)

]
=

1√
5

[
1
−1

]
.

Those are the constants in uk = c1λ k
1 x1 + c2λ k

2 x2. Both eigenvectors x1 and x2 have
second component 1. That leaves Fk = c1λ k

1 + c2λ k
2 in the second component of uk:

Fibonacci
numbers

Fk =
1√
5




(
1+

√
5

2

)k

−
(

1−√5
2

)k

 .

This is the answer we wanted. The fractions and square roots look surprising because
Fibonacci’s rule Fk+2 = Fk+1 +Fk must produce whole numbers, Somehow that formula
for Fk must give an integer. In fact, since the second term [(1−√5)/2]k/

√
5 is always

less than 1
2 , it must just move the first term to the nearest integer:

F1000 = nearest integer to
1√
5

(
1+

√
5

2

)1000

.

This is an enormous number, and F1001 will be even bigger. The fractions are becoming
insignificant, and the ratio F1001/F1000 must be very close to (1+

√
5)/2≈ 1.618. Since

λ k
2 is insignificant compared to λ k

1 , the ratio Fk+1/Fk approaches λ1.
That is a typical difference equation, leading to the powers of A =

[
1 1
1 0

]
. it involved√

5 because the eigenvalues did. If we choose a matrix with λ1 = 1 and λ2 = 6. we can
focus on the simplicity of the computation—after A has been diagonalized:

A =

[
−4 −5
10 11

]
has λ = 1 and 6, with x1 =

[
1
−1

]
and x2 =

[
−1
2

]

Ak = SΛkS−1 is

[
1 −1
−1 2

][
1k 0
0 6k

][
2 1
1 1

]
=

[
2−6k 1−6k

−2+2 ·6k −1+2 ·6k

]
.
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The powers 6k and 1k appear in that last matrix Ak, mixed in by the eigenvectors.
For the difference equation uk+1 = Auk, we emphasize the main point. Every eigen-

vector x produces a “pure solution” with powers of λ :

One solution is u0 = x, u1 = λx, u2 = λ 2x, . . .

When the initial u0 is an eigenvector x, this is the solution: uk = λ kx. In general u0

is not an eigenvector. But if u0 is a combination of eigenvectors, the solution uk is the
same combination of these special solutions.

5H If u0 = c1x1 + · · ·+ cnxn, then after k steps uk = c1λ k
1 x1 + · · ·+ cnλ k

n xn.
Choose the c’s to match the starting vector u0:

u0 =


x1 · · · xn







c1
...

cn


 = Sc and c = S−1u0. (6)

Markov Matrices

There was an exercise in Chapter 1, about moving in and out of California, that is worth
another look. These were the rules:

Each year 1
10 of the people outside California move in, and 2

10 of the people
inside California move out. We start with y0 people outside and z0 inside.

At the end of the first year the numbers outside and inside are y1 and z1:

Difference
equation

y1 = .9y0 + .2z0

z1 = .1y0 + .8z0
or

[
y1

z1

]
=

[
.9 .2
.1 .8

][
y0

z0

]
.

This problem and its matrix have the two essential properties of a Markov process:

1. The total number of people stays fixed: Each column of the Markov matrix adds
up to 1. Nobody is gained or lost.

2. The numbers outside and inside can never become negative: The matrix has no
negative entries. The powers Ak are all nonnegative.3

We solve this Markov difference equation using uk = SΛkS−1u0. Then we show that
the population approaches a “steady state.” First A has to be diagonalized:

A−λ I =

[
.9−λ .2

.1 .8−λ

]
has det(A−λ I) = λ 2−1.7λ + .7

3Furthermore, history is completely disregarded; each new uk+1 depends only on the current uk. Perhaps even
our lives are examples of Markov processes, but I hope not.
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λ1 and λ2 = .7 : A = SΛS−1 =

[
2
3

1
3

1
3 −1

3

][
1

.7

][
1 1
1 −2

]
.

To find Ak, and the distribution after k years, change SΛS−1 to SΛkS−1:
[

yk

zk

]
= Ak

[
y0

z0

]
=

[
2
3

1
3

1
3 −1

3

][
1k

.7k

][
1 1
1 −2

][
y0

z0

]

= (y0 + z0)

[
2
3
1
3

]
+(y0−2z0)(.7)k

[
1
3
−1

3

]
.

Those two terms are c1λ k
1 x1 + c2λ k

2 x2. The factor λ k
1 = 1 is hidden in the first term. In

the long run, the other factor (.7)k becomes extremely small. The solution approaches
a limiting state u∞ = (y∞,z∞):

Steady state

[
y∞

z∞

]
= (y0 + z0)

[
2
3
1
3

]
.

The total population is still y0 + z0, but in the limit 2
3 of this population is outside Cali-

fornia and 1
3 is inside. This is true no matter what the initial distribution may have been!

If the year starts with 2
3 outside and 1

3 inside, then it ends the same way:
[
.9 .2
.1 .8

][
2
3
1
3

]
=

[
2
3
1
3

]
. or Au∞ = u∞.

The steady state is the eigenvector of A corresponding to λ = 1. Multiplication by A,
from one time step to the next, leaves u∞ unchanged.

The theory of Markov processes is illustrated by that California example:

5I A Markov matrix A has all ai j ≥ 0, with each column adding to 1.

(a) λ1 = 1 is an eigenvalue of A.

(b) Its eigenvector x1 is nonnegative—and it is a steady state, since Ax1 = x1.

(c) The other eigenvalues satisfy ‖λi‖ ≤ 1.

(d) If A or any power of A has all positive entries, these other |λi| are below 1.
The solution Aku0 approaches a multiple of x1—which is the steady state
u∞.

To find the right multiple of x1, use the fact that the total population stays the same. If
California started with all 90 million people out, it ended with 60 million out and 30
million in. It ends the same way if all 90 million were originally inside.

We note that many authors transpose the matrix so its rows add to 1.

Remark. Our description of a Markov process was deterministic: populations moved in
fixed proportions. But if we look at a single individual, the fractions that move become
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probabilities. With probability 1
10 , an individual outside California moves in. If inside,

the probability of moving out is 2
10 . The movement becomes a random process, and A is

called a transition matrix.
The components of uk = Aku0 specify the probability that the individual is outside

or inside the state. These probabilities are never negative and add to 1—everybody has
to be somewhere. That brings us back to the two fundamental properties of a Markov
matrix: Each column adds to 1, and no entry is negative.

Why is λ = 1 always an eigenvalue? Each column of A− I adds up to 1− 1 = 0.
Therefore the rows of A− I add up to the zero row, they are linearly dependent, and
det(A− I) = 0.

Except for very special cases, uk will approach the corresponding eigenvector4. In
the formula uk = c1λ k

1 x1 + · · ·+ cnλ k
n xn, no eigenvalue can be larger than 1. (Otherwise

the probabilities uk would blow up.) If all other eigenvalues are strictly smaller than
λ1 = 1, then the first term in the formula will be dominant. The other λ k

i go to zero, and
uk → c1x1 = u∞ = steady state.

This is an example of one of the central themes of this chapter: Given information
about A, find information about its eigenvalues. Here we found λmax = 1.

Stability of uk+1 = Auk

There is an obvious difference between Fibonacci numbers and Markov processes. The
numbers Fk become larger and larger, while by definition any “probability” is between 0
and 1. The Fibonacci equation is unstable. So is the compound interest equation Pk+1 =
1.06Pk; the principal keeps growing forever. If the Markov probabilities decreased to
zero, that equation would be stable; but they do not, since at every stage they must add
to 1. Therefore a Markov process is neutrally stable.

We want to study the behavior of uk+1 = Auk as k → ∞. Assuming that A can be
diagonalized, uk will be a combination of pure solutions:

Solution at time k uk = SΛkS−1u0 = c1λ k
1 x1 + · · ·+ cnλ k

n xn.

The growth of uk is governed by the λ k
i . Stability depends on the eigenvalues:

5J The difference equation uk+1 = Auk is

stable if all eigenvalues satisfy |λi|< 1;
neutrally stable if some |λi|= 1 and all the other |λi|< 1; and
unstable if at least one eigenvalue has |λi|> 1.

In the stable case, the powers Ak approach zero and so does uk = Aku0.
4If everybody outside moves in and everybody inside moves out, then the populations are reversed every year

and there is no steady state. The transition matrix is A =
[

0 1
1 0

]
and −1 is an eigenvalue as well as +1—which

cannot happen if all ai j > 0.
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Example 1. This matrix A is certainly stable:

A =

[
0 4
0 1

2

]
has eigenvalues 0 and

1
2
.

The λ ’s are on the main diagonal because A is triangular. Starting from any u0, and
following the rule uk+1 = Auk, the solution must eventually approach zero:

u0 =

[
0
1

]
, u1 =

[
4
1
2

]
, u2 =

[
2
1
4

]
, u3 =

[
1
1
8

]
, u4 =

[
1
2
1
16

]
, · · ·

The larger eigenvalue λ = 1
2 governs the decay; after the first step every uk is 1

2uk−1. The
real effect of the first step is to split u0 into the two eigenvectors of A:

u0 =

[
8
1

]
+

[
−8
0

]
and then uk =

(
1
2

)k
[

8
1

]
+(0)k

[
−8
0

]
.

Positive Matrices and Applications in Economics

By developing the Markov ideas we can find a small gold mine (entirely optional) of
matrix applications in economics.

Example 2 (Leontief’s input-output matrix).
This is one of the first great successes of mathematical economics. To illustrate it, we
construct a consumption matrix—in which ai j, gives the amount of product j that is
needed to create one unit of product i:

A =




.4 0 .1
0 .1 .8
.5 .7 .1


 .

(steel)
(food)
(labor)

The first question is: Can we produce y1 units of steel, y2 units of food, and y3 units of
labor? We must start with larger amounts p1, p2, p3, because some part is consumed
by the production itself. The amount consumed is Ap, and it leaves a net production of
p−Ap.

Problem To find a vector p such that p−Ap = y, or p = (I−A)−1y.

On the surface, we are only asking if I−A is invertible. But there is a nonnegative twist
to the problem. Demand and production, y and p, are nonnegative. Since p is (1−A)−1y,
the real question is about the matrix that multiplies y:

When is (I−A)−1 a nonnegative matrix?

Roughly speaking, A cannot be too large. If production consumes too much, nothing is
left as output. The key is in the largest eigenvalue λ1 of A, which must be below 1:
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If λ1 > 1, (I−A)−1 fails to be nonnegative.
If λ1 = 1, (I−A)−1 fails to exist.
If λ1 < 1, (I−A)−1 is a converging sum of nonnegative matrices:

Geometric series (I−A)−1 = I +A+A2 +A3 + · · · . (7)

The 3 by 3 example has λ1 = .9, and output exceeds input. Production can go on.
Those are easy to prove, once we know the main fact about a nonnegative matrix like

A: Not only is the largest eigenvalue λ1 positive, but so is the eigenvector x1. Then
(I−A)−1 has the same eigenvector, with eigenvalue 1/(1−λ1).

If λ1 exceeds 1, that last number is negative. The matrix (I − A)−1 will take the
positive vector x1 to a negative vector x1/(1−λ1). In that case (I−A)−1 is definitely
not nonnegative. If λ1 = 1, then I−A is singular. The productive case is λ1 < 1, when
the powers of A go to zero (stability) and the infinite series I + A + A2 + · · · converges.
Multiplying this series by I−A leaves the identity matrix—all higher powers cancel—so
(I−A)−1 is a sum of nonnegative matrices, We give two examples:

A =

[
0 2
2 0

]
has λ1 = 2 and the economy is lost

A =

[
.5 2
0 .5

]
has λ1 =

1
2

and we can produce anything.

The matrices (I−A)−1 in those two cases are −1
3

[
1 2
2 1

]
and

[
2 8
0 2

]
.

Leontief’s inspiration was to find a model that uses genuine data from the real econ-
omy. The table for 1958 contained 83 industries in the United States, with a “trans-
actions table” of consumption and production for each one. The theory also reaches
beyond (I−A)−1, to decide natural prices and questions of optimization. Normally la-
bor is in limited supply and ought to be minimized. And, of course, the economy is not
always linear.

Example 3 (The prices in a closed input-output model ).
The model is called “closed” when everything produced is also consumed. Nothing goes
outside the system. In that case A goes back to a Markov matrix. The columns add up
to 1. We might be talking about the value of steel and food and labor, instead of the
number of units, The vector p represents prices instead of production levels.

Suppose p0 is a vector of prices. Then Ap0 multiplies prices by amounts to give the
value of each product. That is a new set of prices which the system uses for the next
set of values A2 p0. The question is whether the prices approach equilibrium. Are there
prices such that p = Ap, and does the system take us there?

You recognize p as the (nonnegative) eigenvector of the Markov matrix A, with λ = 1.
It is the steady state p∞, and it is approached from any starting point p0. By repeating a
transaction over and over, the price tends to equilibrium.
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The “Perron-Frobenius theorem” gives the key properties of a positive matrix—not
to be confused with a positive definite matrix, which is symmetric and has all its eigen-
values positive. Here all the entries ai j are positive.

5K If A is a positive matrix, so is its largest eigenvalue: λ1 > all other |λi|.
Every component of the corresponding eigenvector x1 is also positive.

Proof. Suppose A > 0. The key idea is to look at all numbers t such that Ax ≥ tx for
some nonnegative vector x (other than x = 0). We are allowing inequality in Ax ≥ tx in
order to have many positive candidates t. For the largest value tmax (which is attained),
we will show that equality holds: Ax = tmaxx.

Otherwise, if Ax≥ tmaxx is not an equality, multiply by A. Because A is positive, that
produces a strict inequality A2x > tmaxAx. Therefore the positive vector y = Ax satisfies
Ay > tmaxy, and tmax could have been larger. This contradiction forces the equality Ax =
tmaxx, and we have an eigenvalue. Its eigenvector x is positive (not just nonnegative)
because on the left-hand side of that equality Ax is sure to be positive.

To see that no eigenvalue can be larger than tmax, suppose Az = λ z. Since λ and z
may involve negative or complex numbers, we take absolute values: |λ ||z|= |Az| ≤ A|z|
by the “triangle inequality.” This |z| is a nonnegative vector, so |λ | is one of the possible
candidates t. Therefore |λ | cannot exceed λ1, which was tmax.

Example 4 (Von Neumann’s model of an expanding economy ).
We go back to the 3 by 3 matrix A that gave the consumption of steel, food, and labor.
If the outputs are s1, f1, `1, then the required inputs are

u0 =



.4 0 .1
0 .1 .8
.5 .7 .1







s1

f1

`1


 = Au1.

In economics the difference equation is backward! Instead of u1 = Au0 we have u0 =
Au1. If A is small (as it is), then production does not consume everything—and the
economy can grow. The eigenvalues of A−1 will govern this growth. But again there is
a nonnegative twist, since steel, food, and labor cannot come in negative amounts. Von
Neumann asked for the maximum rate t at which the economy can expand and still stay
nonnegative, meaning that u1 ≥ tu0 ≥ 0.

Thus the problem requires u1 ≥ tAu1. It is like the Perron-Frobenius theorem, with A
on the other side. As before, equality holds when t reaches tmax—which is the eigenvalue
associated with the positive eigenvector of A−1. In this example the expansion factor is
10
9 :

x =




1
5
5


 and Ax =




.4 0 .1
0 .1 .8
.5 .7 .1







1
5
5


 =




0.9
4.5
4.5


 =

9
10

x.

With steel-food-labor in the ratio 1-5-5, the economy grows as quickly as possible: The
maximum growth rate is 1/λ1.
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Problem Set 5.3

1. Prove that every third Fibonacci number in 0,1,1.2,3, . . . is even.

2. Bernadelli studied a beetle “which lives three years only. and propagates in as third
year.” They survive the first year with probability 1

2 , and the second with probability
1
3 , and then produce six females on the way out:

Beetle matrix A =




0 0 6
1
2 0 0
0 1

3 0


 .

Show that A3 = I, and follow the distribution of 3000 beetles for six years.

3. For the Fibonacci matrix A =
[

1 1
1 0

]
, compute A2, A3, and A4. Then use the text and

a calculator to find F20.

4. Suppose each “Gibonacci” number Gk+2 is the average of the two previous numbers
Gk+1 and Gk. Then Gk+2 = 1

2(Gk+1 +Gk):

Gk+2 = 1
2Gk+1 + 1

2Gk

Gk+1 = Gk+1
is

[
Gk+2

Gk+1

]
=

[
A
][

Gk+1

Gk

]
.

(a) Find the eigenvalues and eigenvectors of A.

(b) Find the limit as n→ ∞ of the matrices An = SΛnS−1.

(c) If G0 = 0 and G1 = 1, show that the Gibonacci numbers approach 2
3 .

5. Diagonalize the Fibonacci matrix by completing S−1:
[

1 1
1 0

]
=

[
λ1 λ2

1 1

][
λ1 0
0 λ2

][ ]
.

Do the multiplication SΛkS−1
[

1
0

]
to find its second component. This is the kth Fi-

bonacci number Fk = (λ k
1 łλ k

2 )/(λ1łλ2).

6. The numbers λ k
1 and λ k

2 satisfy the Fibonacci rule Fk+2 = Fk+1 +Fk:

λ k+2
1 = λ k+1

1 +λ k
1 and λ k+2

2 = λ k+1
2 +λ k

2 .

Prove this by using the original equation for the λ ’s (multiply it by λ k). Then any
combination of λ k

1 and λ k
2 satisfies the rule. The combination Fk = (λ k

1 −λ k
2 )/(λ1−

λ2) gives the right start of F0 = 0 and F1 = 1.
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7. Lucas started with L0 = 2 and L1 = 1. The rule Lk+2 = Lk+1 + Lk is the same, so A
is still Fibonacci’s matrix. Add its eigenvectors x1 + x2:

[
λ1

1

]
+

[
λ2

1

]
=

[
1
2(1+

√
5)

1

]
+

[
1
2(1−

√
5)

1

]
=

[
1
2

]
=

[
L1

L0

]
.

Multiplying by Ak, the second component is Lk = λ k
1 + λ k

2 . Compute the Lucas
number L10 slowly by Lk+2 = Lk+1 +Lk, and compute approximately by λ 10

1 .

8. Suppose there is an epidemic in which every month half of those who are well be-
come sick, and a quarter of those who are sick become dead. Find the steady state
for the corresponding Markov process




dk+1

sk+1

wk+1


 =




1 1
4 0

0 3
4

1
2

0 0 1
2







dk

sk

wk


 .

9. Write the 3 by 3 transition matrix for a chemistry course that is taught in two sections,
if every week 1

4 of those in Section A and 1
3 of those in Section B drop the course,

and 1
6 of each section transfer to the other section.

10. Find the limiting values of yk and k (k → ∞) if

yk+1 = .8yk + .3zk y0 = 0
zk+1 = .2yk + .7zk z0 = 5.

Also find formulas for yk and zk from Ak = SΛkS−1.

11. (a) From the fact that column 1 + column 2 = 2(column 3), so the columns are
linearly dependent find one eigenvalue and one eigenvector of A:

A =



.2 .4 .3
.4 .2 .3
.4 .4 .4


 .

(b) Find the other eigenvalues of A (it is Markov).

(c) If u0 = (0,10,0), find the limit of Aku0 as k → ∞.

12. Suppose there are three major centers for Move-It-Yourself trucks. Every month half
of those in Boston and in Los Angeles go to Chicago, the other half stay here they
are, and the trucks in Chicago are split equally between Boston and Los Angeles Set
up the 3 by 3 transition matrix A, and find the steady state u∞ corresponding to the
eigenvalue λ = 1.

13. (a) In what range of a and b is the following equation a Markov process?

uk+1 = Auk =

[
a b

1−a 1−b

]
uk, u0 =

[
1
1

]
.
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(b) Compute uk = SΛkS−1u0 for any a and b.

(c) Under what condition on a and b does uk approach a finite limit as k → ∞, and
what is the limit? Does A have to be a Markov matrix?

14. Multinational companies in the Americas, Asia, and Europe have assets of $4 trillion.
At the start, $2 trillion are in the Americas and $2 trillion in Europe. Each year 1

2 the
American money stays home, and 1

4 goes to each of Asia and Europe. For Asia and
Europe, 1

2 stays home and 1
2 is sent to the Americas.

(a) Find the matrix that gives



Americas
Asia

Europe




year k+1

= A




Americas
Asia

Europe




year k

.

(b) Find the eigenvalues and eigenvectors of A.

(c) Find the limiting distribution of the $4 trillion as the world ends.

(d) Find the distribution of the $4 trillion at year k.

15. If A is a Markov matrix, show that the sum of the components of Ax equals the sum
of the components of x. Deduce that if Ax = λx with λ 6= 1, the components of the
eigenvector add to zero.

16. The solution to du/dt = Au =
[

0 −1
1 0

]
u (eigenvalues i and−i) goes around in a circle:

u = (cos t,sin t). Suppose we approximate du/dt by forward, backward, and centered
differences F, B, C:

(F) un+1−un = Aun or un+1 = (I +A)un (this is Euler’s method).

(B) un+1−un = Aun+1 or un+1 = (I−A)−1un (backward Euler).

(C) un+1−un = 1
2A(un+1 +un) or un+1 = (I− 1

2A)−1(I + 1
2A)un.

Find the eigenvalues of I +A, (IłA)−1, and (I− 1
2A)−1(I + 1

2A). For which difference
equation does the solution un stay on a circle?

17. What values of α produce instability in vn+1 = α(vn +wn), wn+1 = α(vn +wn)?

18. Find the largest a, b, c for which these matrices are stable or neutrally stable:
[

a −.8
.8 .2

]
,

[
b .8
0 .2

]
,

[
c .8
.2 c

]
.

19. Multiplying term by term, check that (IłA)(I + A + A2 + · · ·) = I. This series rep-
resents (IłA)−1. It is nonnegative when A is nonnegative, provided it has a finite
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sum; the condition for that is λmax < 1. Add up the infinite series, and confirm that
it equals (IłA)−1, for the consumption matrix

A =




0 1 1
0 0 1
0 0 0


 which has λmax = 0.

20. For A =
[

0 .2
0 .5

]
, find the powers Ak (including A0) and show explicitly that their sum

agrees with (I−A)−1.

21. Explain by mathematics or economics why increasing the “consumption matrix” A
must increase tmax = λ1 (and slow down the expansion).

22. What are the limits as k → ∞ (the steady states) of the following?

[
.4 .2.6 .8

]k
[

1
0

]
,

[
.4 .2.6 .8

]k
[

0
1

]
,

[
.4 .2.6 .8

]k
.

Problems 23–29 are about A = SΛS−1 and Ak = SΛkS−1

23. Diagonalize A and compute SΛkS−1 to prove this formula for Ak:

A =

[
3 2
2 3

]
has Ak =

1
2

[
5k +1 5k−1
5k−1 5k +1

]
.

24. Diagonalize B and compute SΛkS−1 to prove this formula for Bk:

B =

[
3 1
0 2

]
has Bk =

[
3k 3k−2k

0 2k

]
.

25. The eigenvalues of A are 1 and 9, the eigenvalues of B are ł1 and 9:

A =

[
5 4
4 5

]
and B =

[
4 5
5 4

]
.

Find a matrix square root of A from R = S
√

ΛS−1, Why is there no real matrix square
root of B?

26. If A and B have the same λ ’s with the same full set of independent eigenvectors, their
factorizations into are the same. So A = B.

27. Suppose A and B have the same full set of eigenvectors, so that A = SΛ1S−1 and
B = SΛ2S−1. Prove that AB = BA.

28. (a) When do the eigenvectors for λ = 0 span the nullspace N(A)?

(b) When do all the eigenvectors for λ 6= 0 span the column space C(A)?
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29. The powers Ak approach zero if all |λi| < 1, and they blow up if any |λi| > 1. Peter
Lax gives four striking examples in his book Linear Algebra.

A =

[
3 2
1 4

]
B =

[
3 2
−5 −3

]
C =

[
5 7
−3 −4

]
D =

[
5 6.9
−3 −4

]

‖A1024‖> 10700 B1024 = I C1024 =−C ‖D1024‖< 10−78

Find the eigenvalues λ = eiθ of B and C to show that B4 = I and C3 =−I.

5.4 Differential Equations and eAt

Wherever you find a system of equations, rather than a single equation, matrix theory
has a part to play. For difference equations, the solution uk = Aku0 depended on the owen
of A. For differential equations, the solution u(t) = eAtu(0) depends on the exponential
of A. To define this exponential. and to understand it, we turn right away to an example:

Differential equation
du
dt

= Au =

[
−2 1
1 −2

]
u. (1)

The first step is always to find the eigenvalues (ł1 and −3) and the eigenvectors:

A

[
1
1

]
= (−1)

[
1
1

]
and A

[
1
−1

]
= (−3)

[
1
−1

]
.

Then several approaches lead to u(t). Probably the best is to match the general solution
to the initial vector u(0) at t = 0.

The general solution is a combination of pure exponential solutions. These are so-
lutions of the special form ceλ tx, where λ is an eigenvalue of A and x is its eigenvec-
tor. These pure solutions satisfy the differential equation, since d/dt(ceλ tx) = A(ceλ tx).
(They were our introduction to eigenvalues at the start of the chapter.) In this 2 by 2
example, there are two pure exponentials to be combined:

Solution u(t) = c1eλ1tx1 + c2eλ2tx2 or u =

[
1 1
1 −1

][
e−t

e−3t

][
c1

c2

]
. (2)

At time zero, when the exponentials are e0 = 1, u(0) determines c1 and c2:

Initial condition u(0) = c1x1 + c2x2 =

[
1 1
1 −1

][
c1

c2

]
= Sc.

You recognize S, the matrix of eigenvectors. The constants c = S−1u(0) are the same as
they were for difference equations. Substituting them back into equation (2), the solution
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is

u(t) =

[
1 1
1 −1

][
e−t

e−3t

][
c1

c2

]
= S

[
e−t

e−3t

]
S−1u(0). (3)

Here is the fundamental formula of this section: SeΛtS−1u(0) solves the differential
equation, just as SΛkS−1u0 solved the difference equation:

u(t) = SeΛtS−1u(0) with Λ =

[
−1

−3

]
and eΛt =

[
e−t

e−3t

]
. (4)

There are two more things to be done with this example. One is to complete the
mathematics, by giving a direct definition of the exponential of a matrix. The other
is to give a physical interpretation of the equation and its solution. It is the kind of
differential equation that has useful applications.

The exponential of a diagonal matrix Λ is easy; eΛt just has the n numbers eλ t on
the diagonal. For a general matrix A, the natural idea is to imitate the power series
ex = 1+ x + x2/2!+ x3/3!+ · · · . If we replace x by At and 1 by I, this sum is an n by n
matrix:

Matrix exponential eAt = I +At +
(At)2

2!
+

(At)3

3!
+ · · · . (5)

The series always converges, and its sum eAt has the right properties:

(eAs)(eAt) = (eA(s+t)), (eAt)(e−At) = I, and
d
dt

(eAt) = AeAt . (6)

From the last one, u(t) = eAtu(0) solves the differential equation. This solution must
be the same as the form SeΛtS−1u(0) used for computation. To prove directly that those
solutions agree, remember that each power (SΛS−1)k telescopes into Ak = SΛkS−1 (be-
cause S−1 cancels S). The whole exponential is diagonalized by S:

eAt = I +SΛS−1t +
SΛ2S−1t2

2!
+

SΛ3S−1t3

3!
+ · · ·

= S
(

I +Λt +
(Λt)2

2!
+

(Λt)3

3!
+ · · ·

)
S−1 = SeΛtS−1.

Example 1. In equation (1), the exponential of A =
[−2 1

1 −2

]
has Λ =

[
1
−3

]
:

eAt = SeΛtS−1 =

[
1 1
1 −1

][
e−t

e−3t

][
1 1
1 −1

]−1

=
1
2

[
e−t + e−3t e−t − e−3t

e−t − e−3t e−t + e−3t

]
.

At t = 0 we get e0 = I. The infinite series eAt gives the answer for all t, but a series can be
hard to compute. The form SeΛtS−1 gives the same answer when A can be diagonalized;
it requires n independent eigenvectors in S. This simpler form leads to a combination of
n exponentials eλ tx—which is the best solution of all:
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5L If A can be diagonalized, A = SΛS−1, then du/dt = Au has the solution

u(t) = eAtu(0) = SeΛtS−1u(0). (7)

The columns of S are the eigenvectors x1, . . . ,xn of A. Multiplying gives

u(t) =


x1 · · · xn







eλ1t

. . .
eλnt


S−1u(0)

= c1eλ1tx1 + · · ·+ cneλntxn = combination of eλ tx.

(8)

The constants ci that match the initial conditions u(0) are c = S−1u(0).
This gives a complete analogy with difference equations and SΛS−1u0. In both cases

we assumed that A could be diagonalized. since otherwise it has fewer than n eigenvec-
tors and we have not found enough special solutions. The missing Solutions do exist,
but they are more complicated than pure exponentials eλ tx. They involve “generalized
eigenvectors” and factors like teλ t . (To compute this defective case we can use the Jor-
dan form in Appendix B, and find eJt .) The formula u(t) = eAtu(0) remains completely
correct.

The matrix eAt is never singular. One proof is to look at its eigenvalues; if λ is an
eigenvalue of A, then eλ t is the corresponding eigenvalue of eAt—and eλ t can never be
zero. Another approach is to compute the determinant of the exponential:

deteAt = eλ1teλ2t · · ·eλnt = etrace(At). (9)

Quick proof that eAt is invertible: Just recognize e−At as its inverse.
This invertibility is fundamental for differential equations. If n solutions are linearly

independent at t = 0, they remain linearly independent forever. If the initial vectors are
v1, . . . ,vn, we can put the solutions eAtv into a matrix:

[
eAtv1 · · · eAtvn

]
= eAt

[
v1 · · · vn

]
.

The determinant of the left-hand side is the Wronskian. It never becomes zero, because
it is the product of two nonzero determinants. Both matrices on the right-hand side are
invertible.

Remark. Not all differential equations come to us as a first-order system du/dt = Au.
We may start from a single equation of higher order, like y′′′−3y′′+2y′ = 0. To convert
to a 3 by 3 system, introduce v = y′ and w = v′ as additional unknowns along with y
itself. Then these two equations combine with the original one to give u′ = Au:

y′ = v
v′ = w
w′ = 3w−2v

or u′ =




0 1 0
0 0 1
0 −2 3







y
v
w


 = Au.
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0 v w 0

S0 S1 S2 S3

concentration

Figure 5.1: A model of diffusion between four segments.

We are back to a first-order system. The problem can be solved two ways. In a course
on differential equations, you would substitute y = eλ t into y′′′−3y′′+2y′ = 0:

(λ 3−3λ 2 +2λ )eλ t = 0 or λ (λ −1)(λ −2)eλ t = 0. (10)

The three pure exponential solutions are y = e0t , y = et , and y = e2t . No eigenvectors are
involved. In a linear algebra course, we find the eigenvalues of A:

det(A−λ I) =



−λ 1 0
0 −λ I
0 −2 3−λ


 =−λ 3 +3λ 2−2λ = 0. (11)

Equations (10) and (11) are the same! The same three exponents appear: λ = 0, λ = 1,
and λ = 2. This is a general rule which makes the two methods consistent; the growth
rates of the solutions stay fixed when the equations change form. It seems to us that
solving the third-order equation is quicker.

The physical significance of du/dt =
[−2 1

1 −2

]
u is easy to explain and at the same

time genuinely important. This differential equation describes a process of diffusion.
Divide an infinite pipe into four segments (Figure 5.1). At time t = 0, the middle seg-
ments contain concentrations v(0) and w(0) of a chemical. At each time t, the diffusion
rate between two adjacent segments is the difference in concentrations. Within each
segment, the concentration remains uniform (zero in the infinite segments). The process
is continuous in time but discrete in space; the unknowns are v(t) and w(t) in the two
inner segments S1 and S2.

The concentration v(t) in S1 is changing in two ways. There is diffusion into S0, and
into or out of S2. The net rate of change is dv/dt, and dw/dt is similar:

Flow rate into S1
dv
dt

= (w− v)+(0− v)

Flow rate into S2
dw
dt

= (0−w)+(v−w).

This law of diffusion exactly matches our example du/dt = Au:

u =

[
v
w

]
and

du
dt

=

[
−2v+w
v−2w

]
=

[
−2 1
1 −2

]
u.

The eigenvalues −1 and −3 will govern the solution. They give the rate at which the
concentrations decay, and λ1 is the more important because only an exceptional set of
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starting conditions can lead to “superdecay” at the rate e−3t , In fact, those conditions
must come from the eigenvector (1,−1). If the experiment admits only nonnegative
concentrations, superdecay is impossible and the limiting rate must be e−t . The solution
that decays at this slower rate corresponds to the eigenvector (1,1). Therefore the two
concentrations will become nearly equal (typical for diffusion) as t → ∞.

One more comment on this example: It is a discrete approximation, with only two
unknowns, to the continuous diffusion described by this partial differential equation:

Heat equation
∂u
∂ t

=
∂ 2u
∂x2 .

That heat equation is approached by dividing the pipe into smaller and smaller segments,
of length 1/N. The discrete system with N unknowns is governed by

d
dt




u1

·
·

uN


 =




−2 1
1 −2 ·

· · 1
1 −2







u1

·
·

uN


 = Au. (12)

This is the finite difference matrix with the 1,−2, 1 pattern. The right side Au approaches
the second derivative d2u/dx2, after a scaling factor N2 comes from the flow problem.
In the limit as N → ∞, we reach the heat equation ∂u/∂ t = ∂ 2u/∂x2. Its solutions
are still combinations of pure exponentials, but now there are infinitely many. Instead
of eigenvectors from Ax = λx, we have eigenfunctions from d2u/dx2 = λu. Those are
u(x) = sinnπx with λ =−n2π2. Then the solution to the heat equation is

u(t) =
∞

∑
n=1

cne−n2π2t sinnπx.

The constants cn are determined by the initial condition. The novelty is that the eigen-
vectors are functions u(x), because the problem is continuous and not discrete.

stability of differential equations

Just as for difference equations. the eigenvalues decide how u(t) behaves as t → ∞.
As long as A can be diagonalized, there will be n pure exponential solutions to the
differential equation, and any specific solution u(t) is some combination

u(t) = SeΛtS−1u0 = c1egl1tx1 + · · ·+ cneglntxn.

Stability is governed by those factors eglit . If they all approach zero, then u(t) approaches
zero: if they all stay bounded, then u(t) stays bounded; if one of them blows up, then
except for very special starting conditions the solution will blow up. Furthermore, the
size of eλ t depends only on the real part of λ . It is only the real parts of the eigenvalues
that govern stability: If λ = a+ ib, then

eλ t = eateibt = eat(cosbt + isinbt) and the magnitude is |eλ t |= eat .
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This decays for a < 0, it is constant for a = 0, and it explodes for a > 0. The imaginary
part is producing oscillations, but the amplitude comes from the real part.

5M The differential equation du/dt = Au is

stable and eAt → 0 whenever all Reλi < 0,

neutrally stable when all Reλi ≤ 0 and Reλ1 = 0, and

unstable and eAt is unbounded if any eigenvalue has Reλi > 0.

In some texts the condition Reλ < 0 is called asymptotic stability, because it guarantees
decay for large times t. Our argument depended on having n pure exponential solutions,
but even if A is not diagonalizable (and there are terms like teλ t) the result is still true:
All solutions approach zero if and only if all eigenvalues have Reλ < 0.

Stability is especially easy to decide for a 2 by 2 system (which is very common in
applications). The equation is

du
dt

=

[
a b
c d

]
u.

and we need to know when both eigenvalues of that matrix have negative real parts.
(Note again that the eigenvalues can be complex numbers.) The stability tests are

Reλ1 < 0 The trace a+d must be negative.
Reλ2 < 0 The determinant ad−bc must be positive.

When the eigenvalues are real, those tests guarantee them to be negative. Their product
is the determinant; it is positive when the eigenvalues have the same sign. Their sum is
the trace; it is negative when both eigenvalues are negative.

When the eigenvalues are a complex pair x± iy, the tests still succeed. The trace
is their sum 2x (which is < 0) and the determinant is (x + iy)(x− iy) = x2 + y2 > 0.
Figure 5.2 shows the one stable quadrant, trace < 0 and determinant > 0. It also shows
the parabolic boundary line between real and complex eigenvalues. The reason for the
parabola is in the quadratic equation for the eigenvalues:

det

[
a−λ b

c d−λ

]
= λ 2− (trace)λ +(det) = 0. (13)

The quadratic formula for λ leads to the parabola (trace)2 = 4(det):

λ1 and λ2 =
1
2

[
trace±

√
(trace)2−4(det)

]
. (14)

Above the parabola, the number under the square root is negative—so λ is not real. On
the parabola, the square root is zero and λ is repeated. Below the parabola the square
roots are real. Every symmetric matrix has real eigenvalues, since if b = c, then

(trace)2−4(det) = (a+d)2−4(ad−b2) = (a−d)2 +4b2 ≥ 0.
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trace T

λ1 = λ2 and
both Reλ > 0 T 2 = 4D

unstable

both λ > 0

real and unstable

both Reλ < 0

stable

both λ < 0

real and stable

complex eigenvalues

determinant D

det < 0 gives λ1 < 0 and λ2 > 0: real and unstable

Figure 5.2: Stability and instability regions for a 2 by 2 matrix.

For complex eigenvalues, b and c have opposite signs and are sufficiently large.

Example 2. One from each quadrant: only #2 is stable:
[

1 0
0 2

] [
−1 0
0 −2

] [
1 0
0 −2

] [
−1 0
0 2

]

On the boundaries of the second quadrant, the equation is neutrally stable. On the hori-
zontal axis, one eigenvalue is zero (because the determinant is λ1λ2 = 0). On the vertical
axis above the origin, both eigenvalues are purely imaginary (because the trace is Zero).
Crossing those axes are the two ways that stability is lost.

The n by n case is more difficult. A test for Reλi < 0 came from Routh and Hurwitz,
who found a series of inequalities on the entries ai j. I do not think this approach is
much good for a large matrix; the computer can probably find the eigenvalues with more
certainty than it can test these inequalities. Lyapunov’s idea was to find a weighting
matrix W so that the weighted length ‖Wu(t)‖ is always decreasing. If there exists
such a W , then ‖Wu‖ will decrease steadily to zero, and after a few ups and downs u
must get there too (stability). The real value of Lyapunov’s method is for a nonlinear
equation—then stability can be proved without knowing a formula for u(t).

Example 3. du/dt =
[

0 −1
1 0

]
u sends u(t) around a circle, starting from u(0) = (1,0).

Since trace = 0 and det = 1, we have purely imaginary eigenvalues:
[
−λ −1
1 −λ

]
= λ 2 +1 = 0 so λ = +i and − i.

The eigenvectors are (1,−i) and (1, i). and the solution is

u(t) =
1
2

eit

[
1
−i

]
+

1
2

e−it

[
1
i

]
.
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That is correct but not beautiful. By substituting cos t± isin t for eit and e−it , real num-
bers will reappear: The circling solution is u(t) = (cos t,sin t).

Starting from a different u(0) = (a,b), the solution u(t) ends up as

u(t) =

[
acos t−bsin t
bcos t +asin t

]
=

[
cos t −sin t
sin t cos t

][
a
b

]
. (15)

There we have something important! The last matrix is multiplying u(0), so it must be
the exponential eAt . (Remember that u(t) = eAtu(0).) That matrix of cosines and sines
is our leading example of an orthogonal matrix. The columns have length 1, their inner
product is zero, and we have a confirmation of a wonderful fact:

If A is skew-symmetric (AT =−A) then eAt is an orthogonal matrix.

AT =−A gives a conservative system. No energy is lost in damping or diffusion:

AT =−A, (eAt)T = e−At , and ‖eAtu(0)‖= ‖u(0)‖.
That last equation expresses an essential property of orthogonal matrices. When they
multiply a vector, the length is not changed. The vector u(0) is just rotated, and that
describes the solution to du/dt = Au: It goes around in a circle.

In this very unusual case, eAt can also be recognized directly from the infinite series.
Note that A =

[
0 −1
1 0

]
has A2 =−I, and use this in the series for eAt :

I +At +
(At)2

2
+

(At)3

6
+ · · ·=




(
1− t2

2 + · · ·
) (

−t + t3

6 −·· ·
)

(
t− t3

6 + · · ·
) (

1− t2

2 + · · ·
)




=

[
cos t −sin t
sin t cos t

]

Example 4. The diffusion equation is stable: A =

[
−2 1
1 −2

]
has λ =−1 and λ =−3.

Example 5. If we close off the infinite segments, nothing can escape:

du
dt

=

[
−1 1
1 −1

]
u or

dv/dt = w− v
dw/dt = v−w.

This is a continuous Markov process. Instead of moving every year, the particles move
every instant. Their total number v + w is constant. That comes from adding the two
equations on the right-hand side: the derivative of v+w is zero.

A discrete Markov matrix has its column sums equal to λmax = 1. A continuous
Markov matrix, for differential equations, has its column sums equal to λmax = 0. A is
a discrete Markov matrix if and only if B = A− I is a continuous Markov matrix. The
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Figure 5.3: The slow and fast modes of oscillation.

steady state for both is the eigenvector for λmax. It is multiplied by 1k = 1 in difference
equations and by e0t = 1 in differential equations, and it doesn’t move.

In the example, the steady state has v = w.

Example 6. In nuclear engineering, a reactor is called critical when it is neutrally
stable; the fission balances the decay. Slower fission makes it stable, or subcritical, and
eventually it runs down. Unstable fission is a bomb.

Second-Order Equations

The laws of diffusion led to a first-order system du/dt = Au. So do a lot of other appli-
cations, in chemistry, in biology, and elsewhere, but the most important law of physics
does not. It is Newton’s law F = ma, and the acceleration a is a second derivative. In-
ertial terms produce second-order equations (we have to solve d2u/dt2 = Au instead of
du/dt = Au), and the goal is to understand how this switch to second derivatives alters
the solution5. It is optional in linear algebra, but not in physics.

The comparison will be perfect if we keep the same A:

d2u
dt2 = Au =

[
−2 1
1 −2

]
u. (16)

Two initial conditions get the system started—the “displacement” u(0) and the “veloc-
ity” u′(0). To match these conditions, there will be 2n pure exponential solutions.

Suppose we use ω rather than λ , and write these special solutions as u = eiωtx. Sub-
stituting this exponential into the differential equation, it must satisfy

d2

dt2 (eiωtx) = A(eiωtx), or −ω2x = Ax. (17)

The vector x must be an eigenvector of A, exactly as before. The corresponding eigen-
value is now −ω2, so the frequency ω is connected to the decay rate λ by the law

5Fourth derivatives are also possible, in the bending of beams, but nature seems to resist going higher than four.
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−ω2 = λ . Every special solution eλ tx of the first-order equation leads to two special
solutions eiωtx of the second-order equation. and the two exponents are ω = ±√−λ .
This breaks down only when λ = 0, which has just one square root; if the eigenvector is
x, the two special solutions are x and tx.

For a genuine diffusion matrix, the eigenvalues λ are all negative and the frequencies
ω are all real: Pure diffusion is converted into pure oscillation. The factors eiωt produce
neutral stability, the solution neither grows or decays, and the total energy stays precisely
constant. It just keeps passing around the system. The general solution to d2u/dt2 = Au,
if A has negative eigenvalues λ1, . . . ,λn and if ω j =

√−λ j, is

u(t) =
(
c1eiω1t +d1e−ω1t)x1 + cdots+

(
cneiωnt +dne−ωnt)xn. (18)

As always, the constants are found from the initial conditions. This is easier to do (at the
expense of one extra formula) by switching from oscillating exponentials to the more
familiar sine and cosine:

u(t) = (a1 cosω1t +b1 sinω1t)x1 + · · ·+(an cosωnt +bn sinωnt)xn. (19)

The initial displacement u(0) is easy to keep separate: t = 0 means that sinωt = 0 and
cosωt = 1, leaving only

u(0) = a1x1 + · · ·+anxn, or u(0) = Sa, or a = S−1u(0).

Then differentiating u(t) and setting t = 0. the b’s are determined by the initial velocity:
u′(0) = b1ω1x1 + · · ·+bnωnxn. Substituting the a’s and b’s into the formula for u(t), the
equation is solved.

The matrix A =
[−2 1

1 −2

]
has λ1 =−1 and λ2 =−3. The frequencies are ω1 = 1 and

ω2 =
√

3. If the system starts from rest, u′(0) = 0, the terms in bsinωt will disappear:

Solution from u(0) =

[
1
0

]
u(t) =

1
2

cos t

[
1
1

]
+

1
2

cos
√

3t

[
1
−1

]
.

Physically, two masses are connected to each other and to stationary wails by three
identical springs (Figure 5.3). The first mass is held at v(0) = 1, the second mass is held
at w(0) = 0, and at t = 0 we let go. Their motion u(t) becomes an average of two pure
oscillations, corresponding to the two eigenvectors. In the first mode x1 = (1,1), the
masses move together and the spring in the middle is never stretched (Figure 5.3a). The
frequency ω1 = 1 is the same as for a single spring and a single mass. In the faster mode
x2 = (1,−1) with frequency

√
3, the masses move oppositely but with equal speeds. The

general solution is a combination of these two normal modes. Our particular solution is
half of each.

As time goes on, the motion is “almost periodic.” If the ratio ω1/ω2 had been a
fraction like 2/3, the masses would eventually return to u(0) = (1,0) and begin again.
A combination of sin2t and sin3t would have a period of 2π . But

√
3 is irrational. The
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best we can say is that the masses will come arbitrarily close to (1,0) and also (0,1).
Like a billiard ball bouncing forever on a perfectly smooth table, the total energy is fixed.
Sooner or later the masses come near any state with this energy.

Again we cannot leave the problem without drawing a parallel to the continuous case.
As the discrete masses and springs merge into a solid rod, the “second differences” given
by the 1, −2, 1 matrix A turn into second derivatives. This limit is described by the
celebrated wave equation ∂ 2u/∂ t2 = ∂ 2u/∂x2.

Problem Set 5.4

1. Following the first example in this section, find the eigenvalues and eigenvectors,
and the exponential eAt , for

A =

[
−1 1
1 −1

]
.

2. For the previous matrix, write the general solution to du/dt = Au, and the specific
solution that matches u(0) = (3,1). What is the steady state as t → ∞? (This is a
continuous Markov process; λ = 0 in a differential equation corresponds to λ = 1 in
a difference equation, since e0t = 1.)

3. Suppose the time direction is reversed to give the matrix −A:

du
dt

=

[
1 −1
−1 1

]
u with u0 =

[
3
1

]
.

Find u(t) and show that it blows up instead of decaying as t → ∞. (Diffusion is
irreversible, and the heat equation cannot run backward.)

4. If P is a projection matrix, show from the infinite series that

eP ≈ I +1.718P.

5. A diagonal matrix like Λ =
[

1 0
0 2

]
satisfies the usual rule eΛ(t+T ) = eΛteΛT , because

the rule holds for each diagonal entry.

(a) Explain why eA(t+T ) = eAteAT , using the formula eAt = SeΛtS−1.

(b) Show that eA+B = eAeB is not true for matrices, from the example

A =

[
0 0
1 0

]
B =

[
0 −1
0 0

]
(use series for eA and eB).
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6. The higher order equation y′′+ y = 0 can be written as a first-order system by intro-
ducing the velocity y′ as another unknown:

d
dt

[
y
y′

]
=

[
y′

y′′

]
=

[
y′

−y

]
.

If this is du/dt = Au, what is the 2 by 2 matrix A? Find its eigenvalues and eigen-
vectors, and compute the solution that starts from y(0) = 2, y′(0) = 0.

7. Convert y′′ = 0 to a first-order system du/dt = Au:

d
dt

[
y
y′

]
=

[
y′

0

]
=

[
0 1
0 0

][
y
y′

]
.

This 2 by 2 matrix A has only one eigenvector and cannot be diagonalized. Compute
eAt from the series I +At + · · · and write the solution eAtu(0) starting from y(0) = 3,
y′(0) = 4. Check that your (y,y′) satisfies y′′ = 0.

8. Suppose the rabbit population r and the wolf population w are governed by

dr
dt

= 4r−2w

dw
dt

= r +w.

(a) Is this system stable, neutrally stable, or unstable?

(b) If initially r = 300 and w = 200, what are the populations at time t?

(c) After a long time, what is the proportion of rabbits to wolves?

9. Decide the stability of u′ = Au for the following matrices:

(a) A =

[
2 3
4 5

]
. (b) A =

[
1 2
3 −1

]
.

(c) A =

[
1 1
1 −2

]
. (d) A =

[
−1 −1
−1 −1

]
.

10. Decide on the stability or instability of dv/dt = w, dw/dt = v. Is there a solution
that decays?

11. From their trace and determinant, at what time t do the following matrices change
between stable with real eigenvalues, stable with complex eigenvalues, and unstable?

A1 =

[
1 −1
t −1

]
, A2 =

[
0 4− t
1 −2

]
, A3 =

[
t −1
1 t

]
.
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12. Find the eigenvalues and eigenvectors for

du
dt

= Au =




0 3 0
−3 0 4
0 −4 0


u.

Why do you know, without computing, that eAt will be an orthogonal matrix and
‖u(t)‖2 = u2

1 +u2
2 +u2

3 will be constant?

13. For the skew-symmetric equation

du
dt

= Au =




0 c −b
−c 0 a
b −a 0







u1

u2

u3


 ,

(a) write out u′1, u′2, u′3 and confirm that u′1u1 +u′2u2 +u′3u3 = 0.
(b) deduce that the length u2

1 +u2
2 +u2

3 is a constant.
(c) find the eigenvalues of A.

The solution will rotate around the axis w = (a,b,c), because Au is the “cross prod-
uct” u×w—which is perpendicular to u and w.

14. What are the eigenvalues λ and frequencies ω , and the general solution, of the fol-
lowing equation?

d2u
dt2 =

[
−5 4
4 −5

]
u.

15. Solve the second-order equation

d2u
dt2 =

[
−5 −1
−1 −5

]
u with u(0) =

[
1
0

]
and u′(0) =

[
0
0

]
.

16. In most applications the second-order equation looks like Mu′′+Ku = 0, with a mass
matrix multiplying the second derivatives. Substitute the pure exponential u = eiωtx
and find the “generalized eigenvalue problem” that must be solved for the frequency
ω and the vector x.

17. With a friction matrix F in the equation u′′+ Fu′−Au = 0, substitute a pure expo-
nential u = eλ tx and find a quadratic eigenvalue problem for λ .

18. For equation (16) in the text, with ω = 1 and
√

3, find the motion if the first mass is
hit at t = 0; u(0) = (0,0) and u′(0) = (1,0).

19. Every 2 by 2 matrix with trace zero can be written as

A =

[
a b+ c

b− c −a

]
.

Show that its eigenvalues are real exactly when a2 +b2 ≥ c2.
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20. By back-substitution or by computing eigenvectors, solve

du
dt

=




1 2 1
0 3 6
0 0 4


u with u(0) =




1
0
1


 .

21. Find λ ’s and x’s so that u = eλ tx solves

du
dt

=

[
4 3
0 1

]
u.

What combination u = c1eλ1tx1 + c2eλ2tx2 starts from u(0) = (5,−2)?

22. Solve Problem 21 for u(t) = (y(t),z(t)) by back-substitution:

First solve
dz
dt

= z, starting from z(0) =−2.

Then solve
dy
dt

= 4y+3z, starting from y(0) = 5.

The solution for y will be a combination of e4t and et .

23. Find A to change y′′ = 5y′+4y into a vector equation for u(t) = (y(t),y′(t)):

du
dt

=

[
y′

y′′

]
=

[ ][
y
y′

]
= Au.

What are the eigenvalues of A? Find them also by substituting y = eλ t into the scalar
equation y′′ = 5y′+4y.

24. A door is opened between rooms that hold v(0) = 30 people and w(0) = 10 people.
The movement between rooms is proportional to the difference v−w:

dv
dt

= w− v and
dw
dt

= v−w.

Show that the total v+w is constant (40 people). Find the matrix in du/dt = Au, and
its eigenvalues and eigenvectors.

What are v and w at t = 1?

25. Reverse the diffusion of people in Problem 24 to du/dt =−Au:

dv
dt

= v−w and
dw
dt

= w− v.

The total v+w still remains constant. How are the λ ’s changed now that A is changed
to −A? But show that v(t)

grows to infinity from v(0) = 30.
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26. The solution to y′′ = 0 is a straight line y = C +Dt. Convert to a matrix equation:

d
dt

[
y
y′

]
=

[
0 1
0 0

][
y
y′

]
has the solution

[
y
y′

]
= eAt

[
y(0)
y′(0)

]
.

This matrix A cannot be diagonalized. Find A2 and compute eAt = I +At + 1
2A2t2 +

· · · . Multiply your eAt times (y(0),y′(0)) to check the straight line y(t) = y(0) +
y′(0)t.

27. Substitute y = eλ t into y′′ = 6y′− 9y to show that λ = 3 is a repeated root. This is
trouble; we need a second solution after e3t . The matrix equation is

d
dt

[
y
y′

]
=

[
0 1
−9 6

][
y
y′

]
.

Show that this matrix has λ = 3,3 and only one line of eigenvectors. Trouble here
too. Show that the second solution is y = te3t .

28. Figure out how to write my′′+by′+ ky = 0 as a vector equation Mu′ = Au.

29. (a) Find two familiar functions that solve the equation d2y/dt2 = −y. Which one
starts with y(0) = 1 and y′(0) = 0?

(b) This second-order equation y′′ =−y produces a vector equation u′ = Au:

u =

[
y
y′

]
du
dt

=

[
y′

y′′

]
=

[
0 1
−1 0

][
y
y′

]
= Au.

Put y(t) from part (a) into u(t) = (y,y′). This solves Problem 6 again.

30. A particular solution to du/dt = Au−b is up = A−1b, if A is invertible. The solutions
to du/dt = Au give un. Find the complete solution up +un to

(a)
du
dt

= 2u−8. (b)
du
dt

=

[
2 0
0 3

]
u−

[
8
6

]
.

31. If c is not an eigenvalue of A, substitute u = ectv and find v to solve du/dt = Au−
ectb. This u = ectv is a particular solution. How does it break down when c is an
eigenvalue?

32. Find a matrix A to illustrate each of the unstable regions in Figure 5.2:

(a) λ1 < 0 and λ2 > 0.

(b) λ1 > 0 and λ2 > 0.

(c) Complex λ ’s with real part a > 0.

Problems 33–41 are about the matrix exponential eAt .
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33. Write five terms of the infinite series for eAt . Take the t derivative of each term. Show
that you have four terms of AeAt . Conclusion: eAtu(0) solves u′ = Au.

34. The matrix B =
[

0 −1
0 0

]
has B2 = 0. Find eBt from a (short) infinite series. Check that

the derivative of eBt is BeBt .

35. Starting from u(0), the solution at time T is eAT u(0). Go an additional time t to reach
eAt(eAT u(0)). This solution at time t + T can also be written as . Conclusion:
eAt times eAT equals .

36. Write A =
[

1 1
0 0

]
in the form SΛS−1. Find eAt from SeΛtS−1.

37. If A2 = A, show that the infinite series produces eAt = I +(et−1)A. For A =
[

1 1
0 0

]
in

Problem 36, this gives eAt =

38. Generally eAeB is different from eBeA. They are both different from eA+B. Check this
using Problems 36–37 and 34:

A =

[
1 1
0 0

]
B =

[
0 −1
0 0

]
A+B =

[
1 0
0 0

]
.

39. Write A =
[

1 1
0 3

]
as SΛS−1. Multiply SeΛtS−1 to find the matrix exponential eAt .

Check eAt = I when t = 0.

40. Put A =
[

1 3
0 0

]
into the infinite series to find eAt . First compute A2:

eAt =

[
1 0
0 1

]
+

[
t 3t
0 0

]
+

1
2

[ ]
+ · · ·=

[
et

0

]
.

41. Give two reasons why the matrix exponential eAt is never singular:

(a) Write its inverse.

(b) Write its eigenvalues. If Ax = λx then eAtx = x.

42. Find a solution x(t), y(t) of the first system that gets large as t → ∞. To avoid this
instability a scientist thought of exchanging the two equations!

dx/dt = 0x − 4y
dy/dt = −2x + 2y

becomes
dy/dt = −2x + 2y
dx/dt = 0x − 4y.

Now the matrix
[−2 2

0 −4

]
is stable. It has λ < 0. Comment on this craziness.

43. From this general solution to du/dt = Au, find the matrix A:

u(t) = c1e2t

[
2
1

]
+ c2e5t

[
1
1

]
.



312 Chapter 5 Eigenvalues and Eigenvectors

5.5 Complex Matrices

It is no longer possible to work only with real vectors and real matrices In the first half of
this book, when the basic problem was Ax−b, the solution was real when A and b were
real. Complex numbers could have been permitted. but would have contributed nothing
new. Now we cannot avoid them. A real matrix has real coefficients in det(A−λ I), but
the eigenvalues (as in rotations) may be complex.

We now introduce the space Cn of vectors with n complex components. Addition and
matrix multiplication follow the same rules as before. Length is computed differently.
The old way, the vector in C2 with components (1, i) would have zero length: 12 + i2 = 0,
not good. The correct length squared is 12 + |i|2 = 2.

This change to ‖x‖2 = |x1|2 + · · ·+ |xn|2 forces a whole series of other changes. The
inner product, the transpose, the definitions of symmetric and orthogonal matrices, all
need to be modified for complex numbers. The new definitions coincide with the old
when the vectors and matrices are real. We have listed these changes in a table at the
end of the section. and we explain them as we go.

That table virtually amounts to a dictionary for translating real into complex. We
hope it will be useful to the reader. We particularly want to find out about symmetric
matrices and Hermitian matrices: Where are their eigenvalues, and what is special
about their eigenvectors? For practical purposes, those are the most important questions
in the theory of eigenvalues. We call attention in advance to the answers:

1. Every symmetric matrix (and Hermitian matrix) has real eigenvalues.

2. Its eigenvectors can be chosen to be orthonormal.

Strangely, to prove that the eigenvalues are real we begin with the opposite possibility—
and that takes us to complex numbers, complex vectors, and complex matrices.

Complex Numbers and Their Conjugates

Probably the reader has already met complex numbers; a review is easy to give. The
important ideas are the complex conjugate x̄ and the absolute value |x|. Everyone knows
that whatever i is, it satisfies the equation i2 = −1. It is a pure imaginary number, and
so are its multiples ib; b is real. The sum a+ ib is a complex number, and it is plotted in
a natural way on the complex plane (Figure 5.4).

The real numbers a and the imaginary numbers ib are special cases of complex num-
bers; they lie on the axes. Two complex numbers are easy to add:

Complex addition (a+ ib)+(c+ id) = (a+ c)+ i(b+d).
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a

a + ib = reiθ

a − ib = a + ib = re−iθ

complex conjugate

imaginary axis

real axis

b

b

b

−b

r = |a + ib|

r2 = a2 + b2

θ
−θ

r

r

Figure 5.4: The complex plane, with a+ ib = reiθ and its conjugate a− ib = re−iθ .

Multiplying a+ ib times c+ id uses the rule that i2 =−1:

Multiplication (a+ ib)(c+ id) = ac+ ibc+ iad + i2bd

= (ac−bd)+ i(bc+ad).

The complex conjugate of a + ib is the number a− ib. The sign of the imaginary
part is reversed. It is the mirror image across the real axis; any real number is its own
conjugate, since b = 0. The conjugate is denoted by a bar or a star: (a+ ib)∗ = a+ ib =
a− ib. It has three important properties:

1. The conjugate of a product equals the product of the conjugates:

(a+ ib)(c+ id) = (ac−bd)− i(bc+ad) = (a+ ib)(c+ id). (1)

2. The conjugate of a sum equals the sum of the conjugates:

(a+ c)+ i(b+d) = (a+ c)− i(b+d) = (a+ ib)+(c+ id).

3. Multiplying any a+ ib by its conjugate a− ib produces a real number a2 +b2:

Absolute value (a+ ib)(a− ib) = a2 +b2 = r2. (2)

This distance r is the absolute value |a+ ib|=
√

a2 +b2.

Finally, trigonometry connects the sides a and b to the hypotenuse r by a = r cosθ
and b = r sinθ . Combining these two equations moves us into polar coordinates:

Polar form a+ ib = r(cosθ + isinθ) = reiθ . (3)
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The most important special case is when r = 1. Then a + ib is eiθ = cosθ + isinθ . It
falls on the unit circle in the complex plane. As θ varies from 0 to 2π , this number eiθ

circles around zero at the constant radial distance |eiθ |=
√

cos2 θ + sin2 θ = 1.

Example 1. x = 3+4i times its conjugate x = 3−4i is the absolute value squared:

xx = (3+4i)(3−4i) = 25 = |x|2 so r = |x|= 5.

To divide by 3+4i, multiply numerator and denominator by its conjugate 3−4i:

2+ i
3+4i

=
2+ i

3+4i
3−4i
3−4i

=
10−5i

25
.

In polar coordinates, multiplication and division are easy:

reiθ times Reiα has absolute value rR and angle θ +α .

reiθ divided by Reiα has absolute value r/R and angle θ −α .

Lengths and Transposes in the Complex Case

We return to linear algebra, and make the conversion from real to complex. By definition,
the complex vector space Cn contains all vectors x with n complex components:

Complex vector x =




x1

x2
...

xn


 with components x j = a j + ib j.

Vectors x and y are still added component by component. Scalar multiplication cx is
now done with complex numbers c. The vectors v1, . . . ,vk are linearly dependent if
some nontrivial combination gives c1v1 + . . .+ ckvk = 0; the c j may now be complex.
The unit coordinate vectors are still in Cn; they are still independent; and they still form
a basis. Therefore Cn is a complex vector space of dimension n.

In the new definition of length, each x2
j is replaced by its modulus |x j|2:

Length squared ‖x‖2 = |x1|2 + · · ·+ |xn|2. (4)

Example 2. x =

[
1
i

]
and ‖x‖2 = 2; y =

[
2+ i

2−4i

]
and ‖y‖2 = 25.

For real vectors there was a close connection between the length and the inner product:
‖x‖2 = xTx. This connection we want to preserve. The inner product must be modified
to match the new definition of length, and we conjugate the first vector in the inner
product. Replacing x by x, the inner product becomes

Inner product xTy = x1y1 + · · ·+ xnyn. (5)
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If we take the inner product of x = (1+3i,3i) with itself, we are back to ‖x‖2:

Length squared xTx = (1+ i)(1+ i)+(3i)(3i) = 2+9 and ‖x‖2 = 11.

Note that yTx is different from xTy; we have to watch the order of the vectors.

This leaves only one more change in notation, condensing two symbols into one.
Instead of a bar for the conjugate and a T for the transpose, those are combined into the
conjugate transpose. For vectors and matrices, a superscript H (or a star) combines both
operations. This matrix AT = AH = A∗ is called “A Hermitian”:

“A Hermitian” AH = AT has entries (AH)i j = A ji. (6)

You have to listen closely to distinguish that name from the phrase “A is Hermitian,”
which means that A equals AH. If A is an m by n matrix, then AH is n by m:

Conjugate
transpose




2+ i 3i
4− i 5

0 0




H

=

[
2− i 4+ i 0
−3i 5 0

]
.

This symbol AH gives official recognition to the fact that, with complex entries, it is
very seldom that we want only the transpose of A. It is the conjugate transpose AH that
becomes appropriate, and xH is the row vector [x1 · · · xn].

5N

1. The inner product of x and y is xHy. Orthogonal vectors have xHy = 0.
2. The squared length of x is ‖x‖2 = xHx = |x1|2 + · · ·+ |xn|2.
3. Conjugating (AB)T = BTAT produces (AB)H = BHAH.

Hermitian Matrices

We spoke in earlier chapters about symmetric matrices: A = AT. With complex entries,
this idea of symmetry has to be extended. The right generalization is not to matrices that
equal their transpose, but to matrices that equal their conjugate transpose. These are
the Hermitian matrices, and a typical example is A:

Hermitian matrix A =

[
2 3−3i

3+3i 5

]
= AH. (7)

The diagonal entries must be real; they are unchanged by conjugation. Each off-diagonal
entry is matched with its mirror image across the main diagonal, and 3−3i is the conju-
gate of 3+3i. In every case, ai j = a ji.

Our main goal is to establish three basic properties of Hermitian matrices. These
properties apply equally well to symmetric matrices. A real symmetric matrix is cer-
tainly Hermitian. (For real matrices there is no difference between AT and AH.) The
eigenvalues of A are real—as we now prove.
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Property 1 If A = AH, then for all complex vectors x, the number xHAx is real.

Every entry of A contributes to xHAx. Try the 2 by 2 case with x = (u,v):

xHAx =
[
u v

][
2 3−3i

3+3i 5

][
u
v

]

= 2uu+5vv+(3−3i)uv+(3+3i)uv

= real+ real+(sum of complex conjugates).

For a proof in general. (xHAx)H is the conjugate of the 1 by 1 matrix xHAx, but we
actually get the same number back again: (xHAx)H = xHAHxHH = xHAx. So that number
must be real.

Property 2 If A = AH, every eigenvalue is real.

Proof. Suppose Ax = λx. The trick is to multiply by xH: xHAx = λxHx. The left-hand
side is real by Property 1, and the right-hand side xHx = ‖x‖2 is real and positive, because
x 6= 0. Therefore λ = xHAx/xHx must be real. Our example has λ = 8 and λ =−1:

|A−λ I|=
∣∣∣∣∣
2−λ 3−3i
3+3i 5−λ

∣∣∣∣∣ = λ 2−7λ +10−|3−3i|2

= λ 2−7λ −8 = (λ −8)(λ +1).

(8)

Note. This proof of real eigenvalues looks correct for any real matrix:

False proof Ax = λx gives xTAx = λxTx, so λ =
xTAx
xTx

is real.

There must be a catch: The eigenvector x might be complex. It is when A = AT that
we can be sure λ and x stay real. More than that, the eigenvectors are perpendicular:
xTy = 0 in the real symmetric case and xHy = 0 in the complex Hermitian case.

Property 3 Two eigenvectors of a real symmetric matrix or a Hermitian ma-
trix, if they come from different eigenvalues, are orthogonal to one another.

The proof starts with Ax = λ1x, Ay = λ1y, and A = AH:

(λ1x)Hy = (Ax)Hy = xHAy = xH(λ2y). (9)

The outside numbers are λ1xHy = λ2xHy, since the λ ’s are real. Now wc use the assump-
tion λ1 6= λ2, which forces the conclusion that xHy = 0. In our example,

(A−8I)x =

[
−6 3− i

3+3i −3

][
x1

x2

]
=

[
0
0

]
, x =

[
1

1+ i

]

(A+ I)y =

[
3 3−3i

3+3i 6

][
y1

y2

]
=

[
0
0

]
, y =

[
1− i
−1

]
.
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These two eigenvectors are orthogonal:

xHy =
[
1 1− i

][
1− i
−1

]
= 0.

Of course any multiples x/α and y/β are equally good as eigenvectors. MATLAB
picks α = ‖x‖ and β = ‖y‖, so that x/α and y/β are unit vectors; the eigenvectors
are normalized to have length 1. They are now orthonormal. If these eigenvectors are
chosen to be the columns of S, then we have S−1AS = Λ as always. The diagonalizing
matrix can be chosen with orthonormal columns when A = AH.

In case A is real and symmetric, its eigenvalues are real by Property 2. Its unit
eigenvectors are orthogonal by Property 3. Those eigenvectors are also real; they solve
(A−λ I)x = 0. These orthonormal eigenvectors go into an orthogonal matrix Q, with
QTQ = I and QT = Q−1. Then S−1AS = Λ becomes special—it is Q−1AQ = Λ or
A = QΛQ−1 = QΛQT. We can state one of the great theorems of linear algebra:

5O A real symmetric matrix can be factored into A = QΛQT. Its orthonormal
eigenvectors are in the orthogonal matrix Q and its eigenvalues are in Λ.

In geometry or mechanics, this is the principal axis theorem. It gives the right choice
of axes for an ellipse. Those axes are perpendicular, and they point along the eigen-
vectors of the corresponding matrix. (Section 6.2 connects symmetric matrices to n-
dimensional ellipses.) In mechanics the eigenvectors give the principal directions, along
which there is pure compression or pure tension—with no shear.

In mathematics the formula A = QΛQT is known as the spectral theorem. If we
multiply columns by rows, the matrix A becomes a combination of one-dimensional
projections—which are the special matrices xxT of rank 1, multiplied by λ :

A = QΛQT =



| |

x1 · · · xn

| |







λ1
. . .

λn







— xT
1 —
...

— xT
n —




= λ1x1xT
1 +λ2x2xT

2 + · · ·+λnxnxT
n .

(10)

Our 2 by 2 example has eigenvalues 3 and 1:

Example 3. A =

[
2 −1
−1 2

]
= 3

[
1
2 −1

2
−1

2
1
2

]
+

[
1
2

1
2

1
2

1
2

]
= combination of two projections.

The eigenvectors, with length scaled to 1, are

x1 =
1√
2

[
1
−1

]
and x2 =

1√
2

[
1
1

]
.

Then the matrices on the right-hand side are x1xT
1 and x2xT

2 —columns times rows—and
they are projections onto the line through x1 and the line through x2.

All symmetric matrices are combinations of one-dimensional projections—which are
symmetric matrices of rank 1.
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Remark. If A is real and its eigenvalues happen to be real, then its eigenvectors are also
real. They solve (A−λ I)x = 0 and can be computed by elimination. But they will not
be orthogonal unless A is symmetric: A = QΛQT leads to AT = A.

If A is real, all complex eigenvalues come in conjugate pairs: Ax = λx and Ax = λx.
If a+ ib is an eigenvalue of a real matrix, so is a− ib. (If A = AT then b = 0.)

Strictly speaking, the spectral theorem A = QΛQT has been proved only when the
eigenvalues of A are distinct. Then there are certainly n independent eigenvectors, and
A can be safely diagonalized. Nevertheless it is true (see Section 5.6) that even with
repeated eigenvalues, a symmetric matrix still has a complete set of orthonormal eigen-
vectors. The extreme case is the identity matrix, which has λ = 1 repeated n times—and
no shortage of eigenvectors.

To finish the complex case we need the analogue of a real orthogonal matrix—and you
can guess what happens to the requirement QTQ = I. The transpose will be replaced by
the conjugate transpose. The condition will become UHU = I. The new letter U reflects
the new name: A complex matrix with orthonormal columns is called a unitary matrix.

Unitary Matrices

May we propose two analogies? A Hermitian (or symmetric) matrix can be compared
to a real number. A unitary (or orthogonal) matrix can be compared to a number on
the unit circle—a complex number of absolute value 1. The λ ’s are real if AH = A, and
they are on the unit circle if UHU = I. The eigenvectors can be scaled to unit length and
made orthonormal.6

Those statements are not yet proved for unitary (including orthogonal) matrices.
Therefore we go directly to the three properties of U that correspond to the earlier Prop-
erties 1–3 of A. Remember that U has orthonormal columns:

Unitary matrix UHU = I, UUH = I, and UH = U−1.

This leads directly to Property 1′, that multiplication by U has no effect on inner prod-
ucts, angles, or lengths. The proof is on one line, just as it was for Q:

Property 1′ (Ux)H(Uy) = xHUHUy = xHy and lengths are preserved by U :

Length unchanged ‖Ux‖2 = xHUHUx = ‖x‖2. (11)

Property 2′ Every eigenvalue of U has absolute value |λ |= 1.

This follows directly from Ux = λx, by comparing the lengths of the two sides:
‖Ux‖= ‖x‖ by Property 1′, and always ‖λx‖= |λ |‖x‖. Therefore |λ |= 1.

6Later we compare “skew-Hermitian” matrices with pure imaginary numbers, and “normal” matrices with all
complex numbers a + ib. A nonnormal matrix without orthogonal eigenvectors belongs to none of these classes,
and is outside the whole analogy.
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Property 3′ Eigenvectors corresponding to different eigenvalues are orthonor-
mal.

Start with Ux = λ1x and Uy = λ2y, and take inner products by Property 1′:

xHy = (Ux)H(Uy) = (λ1x)H(λ2y) = λ 1λ2xHy.

Comparing the left to the right, λ 1λ2 = 1 or xHy = 0. But Property 2′ is λ 1λ1 = 1, so we
cannot also have λ 1λ2 = 1. Thus xHy = 0 and the eigenvectors are orthogonal.

Example 4. U =

[
cos t −sin t
sin t cos t

]
has eigenvalues eit and e−it .

The orthogonal eigenvectors are x = (1,−i) and y = (1, i). (Remember to take conjugates
in xHy = 1+ i2 = 0.) After division by

√
2 they are orthonormal.

Here is the most important unitary matrix by far.

Example 5. U =
1√
n




1 1 · 1
1 w · wn−1

· · · ·
1 wn−1 · w(n−1)2


 =

Fourier matrix√
n

.

The complex number w is on the unit circle at the angle θ = 2π/n. It equals e2πi/n. Its
powers are spaced evenly around the circle. That spacing assures that the sum of all n
powers of w—all the nth roots of 1—is zero. Algebraically, the sum 1+w+ · · ·+wn−1

is (wn−1)/(w−1). And wn−1 is zero!

row 1 of UH times column 2 of U is
1
n
(1+w+w2 + · · ·+wn−1) =

wn−1
w−1

= 0.

row i of UH times column j of U is
1
n
(1+W +W 2 + · · ·+W n−1) =

W n−1
W −1

= 0.

In the second case, W = w j−i. Every entry of the original F has absolute value 1. The
factor

√
n shrinks the columns of U into unit vectors. The fundamental identity of the

finite Fourier transform is UHU = I.
Thus U is a unitary matrix. Its inverse looks the same except that w is replaced by

w−1 = e−iθ = w. Since U is unitary, its inverse is found by transposing (which changes
nothing) and conjugating (which changes w to w). The inverse of this U is U . Ux can be
computed quickly by the Fast Fourier Transform as found in Section 3.5.

By Property 1′ of unitary matrices, the length of a vector x is the same as the length
of Ux. The energy in state space equals the energy in transform space. The energy is
the sum of |x j|2, and it is also the sum of the energies in the separate frequencies. The
vector x = (1,0, . . . ,0) contains equal amounts of every frequency component, and its
Discrete Fourier Transform Ux = (1,1, . . . ,1)/

√
n also has length 1.
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Example 6.

P =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 .

This is an orthogonal matrix, so by Property 3′ it must have orthogonal eigenvectors.
They are the columns of the Fourier matrix! Its eigenvalues must have absolute value 1.
They are the numbers 1,w, . . . ,wn−1 (or 1, i, i2, i3 in this 4 by 4 ease). It is a real matrix,
but its eigenvalues and eigenvectors are complex.

One final note, Skew-Hermitian matrices satisfy KH = −K, just as skew-symmetric
matrices satisfy KT =−K. Their properties follow immediately from their close link to
Hermitian matrices:

If A is Hermitian then K = iA is skew-Hermitian.

The eigenvalues of K are purely imaginary instead of purely real; we multiply i. The
eigenvectors are not changed. The Hermitian example on the previous pages would lead
to

K = iA =

[
2i 3+3i

−3+3i 5i

]
=−KH.

The diagonal entries are multiples of i (allowing zero). The eigenvalues are 8i and −i.
The eigenvectors are still orthogonal, and we still have K = UΛUH—with a unitary U
instead of a real orthogonal Q, and with 8i and −i on the diagonal of Λ.

This section is summarized by a table of parallels between real and complex.

Real versus Complex
Rn (n real components) ↔ Cn (n complex components)
length: ‖x‖2 = x2

1 + · · ·+ x2
n ↔ length: ‖x‖2 = |x1|2 + · · ·+ |xn|2

transpose: AT
i j = A ji ↔ Hermitian transpose: AH

i j = A ji

(AB)T = BTAT ↔ (AB)H = BHAH

inner product: xTy = x1y1 + · · ·+ xnyn ↔ inner product: xHy = x1y1 + · · ·+ xnyn

(Ax)Ty = xT(ATy) ↔ (Ax)Hy = xH(AHy)
orthogonality: xTy = 0 ↔ orthogonality: xHy = 0
symmetric matrices: AT = A ↔ Hermitian matrices: AH = A
A = QΛQ−1 = QΛQT (real Λ) ↔ A = UΛU−1 = UΛUH (real Λ)
skew-symmetric KT =−K ↔ skew-Hermitian KH =−K
orthogonal QTQ = I or QT = Q−1 ↔ unitary UHU = I or UH = U−1

(Qx)T(Qy) = xTy and ‖Qx‖= ‖x‖ ↔ (Ux)H(Uy) = xHy and ‖Ux‖= ‖x‖
The columns, rows, and eigenvectors of Q and U are orthonormal, and every |λ |= 1
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Problem Set 5.5

1. For the complex numbers 3+4i and 1− i,

(a) find their positions in the complex plane.

(b) find their sum and product.

(c) find their conjugates and their absolute values.

Do the original numbers lie inside or outside the unit circle?

2. What can you say about

(a) the sum of a complex number and its conjugate?

(b) the conjugate of a number on the unit circle?

(c) the product of two numbers on the unit circle?

(d) the sum of two numbers on the unit circle?

3. If x = 2+ i and y = 1+3i, find x, xx, 1/x, and x/y. Check that the absolute value |xy|
equals |x| times |y|, and the absolute value |1/x| equals 1 divided by |x|.

4. Find a and b for the complex numbers a + ib at the angles θ = 30°,60°,90° on the
unit circle. Verify by direct multiplication that the square of the first is the second,
and the cube of the first is the third.

5. (a) If x = reiθ what are x2, x−1, and x in polar coordinates? Where are the complex
numbers that have x−1 = x?

(b) At t = 0, the complex number e(−1+i)t equals one. Sketch its path in the complex
plane as t increases from 0 to 2π .

6. Find the lengths and the inner product of

x =

[
2−4i

4i

]
and y =

[
2+4i

4i

]
.

7. Write out the matrix AH and compute C = AHA if

A =

[
1 i 0
i 0 1

]
.

What is the relation between C and CH? Does it hold whenever C is constructed from
some AHA?

8. (a) With the preceding A, use elimination to solve Ax = 0.

(b) Show that the nullspace you just computed is orthogonal to C(AH) and not to
the usual row space C(AT). The four fundamental spaces in the complex case
are N(A) and C(A) as before, and then N(AH) and C(AH).
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9. (a) How is the determinant of AH related to the determinant of A?

(b) Prove that the determinant of any Hermitian matrix is real.

10. (a) How many degrees of freedom are there in a real symmetric matrix, a real diag-
onal matrix, and a real orthogonal matrix? (The first answer is the sum of the
other two, because A = QΛQT.)

(b) Show that 3 by 3 Hermitian matrices A and also unitary U have 9 real degrees of
freedom (columns of U can be multiplied by any eiθ ).

11. Write P, Q and R in the form λ1x1xH
1 +λ2x2xH

2 of the spectral theorem:

P =

[
1
2

1
2

1
2

1
2

]
, Q =

[
0 1
1 0

]
, R =

[
3 4
4 −3

]
.

12. Give a reason if true or a counterexample if false:

(a) If A is Hermitian, then A+ iI is invertible.

(b) If Q is orthogonal. then Q+ 1
2I is invertible.

(c) If A is real, then A+ iI is invertible.

13. Suppose A is a symmetric 3 by 3 matrix with eigenvalues 0, 1, 2.

(a) What properties can be guaranteed for the corresponding unit eigenvectors u, v,
w?

(b) In terms of u, v, w, describe the nullspace, left nullspace, row space and column
space of A.

(c) Find a vector x that satisfies Ax = v+w. Is x unique?

(d) Under what conditions on b does Ax = b have a solution?

(e) If u, v, w are the columns of S, what are S−1 and S−1AS?

14. In the list below, which classes of matrices contain A and which contain B?

A =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


 and B =

1
4




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 .

Orthogonal, invertible, projection, permutation, Hermitian, rank-1, diagonalizable,
Markov. Find the eigenvalues of A and B.

15. What is the dimension of the space S of all n by n real symmetric matrices? The
spectral theorem says that every symmetric matrix is a combination of n projection
matrices. Since the dimension exceeds n, how is this difference explained?

16. Write one significant fact about the eigenvalues of each of the following.



5.5 Complex Matrices 323

(a) A real symmetric matrix.

(b) A stable matrix: all solutions to du/dt = Au approach zero.

(c) An orthogonal matrix.

(d) A Markov matrix.

(e) A defective matrix (nondiagonalizable).

(f) A singular matrix.

17. Show that if U and V are unitary, so is UV . Use the criterion UHU = I.

18. Show that a unitary matrix has |detU | = 1, but possibly detU is different from
detUH. Describe all 2 by 2 matrices that are unitary.

19. Find a third column so that U is unitary. How much freedom in column 3?

U =




1/
√

3 i/
√

2
1/
√

3 0
i/
√

3 1/
√

2


 .

20. Diagonalize the 2 by 2 skew-Hermitian matrix K =
[

i i
i i

]
, whose entries are all

√−1.
Compute eKt = SeΛtS−1, and verify that eKt is unitary. What is the derivative of eKt

at t = 0?

21. Describe all 3 by 3 matrices that are simultaneously Hermitian, unitary, and diagonal.
How many are there?

22. Every matrix Z can be split into a Hermitian and a skew-Hermitian part, Z = A+K,
just as a complex number z is split into a+ ib, The real part of z is half of z+ z, and
the “real part” of Z is half of Z +ZH. Find a similar formula for the “imaginary part”
K, and split these matrices into A+K:

Z =

[
3+ i 4+2i

0 5

]
and Z =

[
i i
−i i

]
.

23. Show that the columns of the 4 by 4 Fourier matrix F in Example 5 are eigenvectors
of the permutation matrix P in Example 6.

24. For the permutation of Example 6, write out the circulant matrix C = c0I + c1P +
c2P2 + c3P3. (Its eigenvector matrix is again the Fourier matrix.) Write out also
the four components of the matrix-vector product Cx, which is the convolution of
c = (c0,c1,c2,c3) and x = (x0,x1,x2,x3).

25. For a circulant C = FΛF−1, why is it faster to multiply by F−1, then Λ, then F (the
convolution rule), than to multiply directly by C?

26. Find the lengths of u = (1+ i,1− i,1+2i) and v = (i, i, i). Also find uHv and vHu.
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27. Prove that AHA is always a Hermitian matrix, Compute AHA and AAH:

A =

[
i 1 i
1 i i

]
.

28. If Az = 0, then AHAz = 0. If AHAz = 0, multiply by zH to prove that Az = 0. The
nullspaces of A and AHA are . AHA is an invertible Hermitian matrix when the
nullspace of A contains only z = .

29. When you multiply a Hermitian matrix by a real number c, is cA still Hermitian? If
c = i, show that iA is skew-Hermitian. The 3 by 3 Hermitian matrices are a subspace,
provided that the “scalars” are real numbers.

30. Which classes of matrices does P belong to: orthogonal, invertible, Hermitian, uni-
tary, factorizable into LU , factorizable into QR?

P =




0 1 0
0 0 1
1 0 0


 .

31. Compute P2, P3, and P100 in Problem 30. What are the eigenvalues of P?

32. Find the unit eigenvectors of P in Problem 30, and put them into the columns of a
unitary matrix U . What property of P makes these eigenvectors orthogonal?

33. Write down the 3 by 3 circulant matrix C = 2I + 5P + 4P2. It has the same eigen-
vectors as P in Problem 30. Find its eigenvalues.

34. If U is unitary and Q is a real orthogonal matrix, show that U−1 is unitary and also
UQ is unitary. Start from UHU = I and QTQ = I.

35. Diagonalize A (real λ ’s) and K (imaginary λ ’s) to reach UΛUH:

A =

[
0 1− i

i+1 1

]
K =

[
0 −1+ i

1+ i i

]

36. Diagonalize this orthogonal matrix to reach Q = UΛUH. Now all λ ’s are :

Q =

[
cosθ −sinθ
sinθ cosθ

]
.

37. Diagonalize this unitary matrix V to reach V = UΛUH. Again all |λ |= 1:

V =
1√
3

[
1 1− i

1+ i −1

]
.
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38. If v1, . . . ,vn is an orthonormal basis for Cn, the matrix with those columns is a
matrix. Show that any vector z equals (vH

1 z)v1 + · · ·+(vH
n z)vn.

39. The functions e−ix and e−ix are orthogonal on the interval 0 ≤ x ≤ 2π because their
complex inner product is

∫ 2π
0 = 0.

40. The vectors v = (1, i,1), w = (i,1,0) and z = are an orthogonal basis for .

41. If A = R+ iS is a Hermitian matrix, are the real matrices R and S symmetric?

42. The (complex) dimension of Cn is . Find a nonreal basis for Cn.

43. Describe all 1 by 1 matrices that are Hermitian and also unitary. Do the same for 2
by 2 matrices.

44. How are the eigenvalues of AH (square matrix) related to the eigenvalues of A?

45. If uHu = 1, show that I−2uuH is Hermitian and also unitary. The rank-1 matrix uuH

is the projection onto what line in Cn?

46. If A+ iB is a unitary matrix (A and B are real), show that Q =
[

A −B
B A

]
is an orthogonal

matrix.

47. If A+ iB is a Hermitian matrix (A and B are real), show that
[

A −B
B A

]
is symmetric.

48. Prove that the inverse of a Hermitian matrix is again a Hermitian matrix.

49. Diagonalize this matrix by constructing its eigenvalue matrix Λ and its eigenvector
matrix S:

A =

[
2 1− i

1+ i 3

]
= AH.

50. A matrix with orthonormal eigenvectors has the form A = UΛU−1 = UΛUH. Prove
that AAH = AHA. These are exactly the normal matrices.

5.6 Similarity Transformations

Virtually every step in this chapter has involved the combination S−1AS. The eigenvec-
tors of A went into the columns of S, and that made S−1AS a diagonal matrix (called
Λ). When A was symmetric, we wrote Q instead of S, choosing the eigenvectors to be
orthonormal. In the complex case, when A is Hermitian we write U—it is still the matrix
of eigenvectors. Now we look at all combinations M−1AM—formed with any invertible
M on the right and its inverse on the left. The invertible eigenvector matrix S may fail to
exist (the defective case), or we may not know it, or we may not want to use it.

First a new word: The matrices A and M−1AM are “similar”. Going from one to
the other is a similarity transformation. It is the natural step for differential equations
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or matrix powers or eigenvalues—just as elimination steps were natural for Ax = b.
Elimination multiplied A on the left by L−1, but not on the right by L. So U is not
similar to A, and the pivots are not the eigenvalues.

A whole family of matrices M−1AM is similar to A, and there are two questions:

1. What do these similar matrices M−1AM have in common?

2. With a special choice of M, what special form can be achieved by M−1AM?

The final answer is given by the Jordan form, with which the chapter ends.
These combinations M−1AM arise in a differential or difference equation, when a

“change of variables” u = Mv introduces the new unknown v:

du
dt

= Au becomes M
dv
dt

= AMv, or
dv
dt

= M−1AMv

un+1 = Aun becomes Mvn+1 = AMvn, or vn+1 = M−1AMvn.

The new matrix in the equation is M−1AM. In the special case M = S, the system is
uncoupled because Λ = S−1AS is diagonal. The eigenvectors evolve independently. This
is the maximum simplification, but other M’s are also useful. We try to make M−1AM
easier to work with than A.

The family of matrices M−1AM includes A itself, by choosing M = I. Any of these
similar matrices can appear in the differential and difference equations, by the change
u = Mv, so they ought to have something in common, and they do: Similar matrices
share the same eigenvalues.

5P Suppose that B = M−1AM. Then A and B have the same eigenvalues.
Every eigenvector x of A corresponds to an eigenvector M−1x of B.

Start from Ax = λx and substitute A = MBM−1:

Same eigenvaluc MBM−1x = λx which is B(M−1x) = λ (M−1x). (1)

The eigenvalue of B is still λ . The eigenvector has changed from x to M−1x.
We can also check that A−λ I and B−λ I have the same determinant:

Product of matrices B−λ I = M−1AM−λ I = M−1(A−λ I)M

Product rule det(B−λ I) = detM−1 det(A−λ I)detM = det(A−λ I).

The polynomials det(A−λ I) and det(B−λ I) are equal. Their roots—the eigenvalues
of A and B—are the same. Here are matrices B similar to A.
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Example 1. A =
[

1 0
0 0

]
has eigenvalues 1 and 0. Each B is M−1AM:

If M =

[
1 b
0 1

]
, then B =

[
1 b
0 0

]
: triangular with λ = 0 and 0.

If M =

[
1 1
−1 1

]
, then B =

[
1
2

1
2

1
2

1
2

]
: projection with λ = 0 and 0.

If M =

[
a b
c d

]
, then B = an arbitrary matrix with λ = 0 and 0.

In this case we can produce any B that has the correct eigenvalues. It is an easy case,
because the eigenvalues 1 and 0 are distinct. The diagonal A was actually Λ, the out-
standing member of this family of similar matrices (the capo). The Jordan form will
worry about repeated eigenvalues and a possible shortage of eigenvectors. All we say
no is that every M−1AM has the same number of independent eigenvectors as A (each
eigenvector is multiplied by M−1).

The first step is to look at the linear transformations that lie behind the matrices.
Rotations, reflections, and projections act on n-dimensional space. The transformation
can happen without linear algebra, but linear algebra turns it into matrix multiplication.

Change of Basis = Similarity Transformation

The similar matrix B = M−1AM is closely connected to A, if we go back to linear trans-
formations. Remember the key idea: Every linear transformation is represented by a
matrix. The matrix depends on the choice of basis! If we change the basis by M we
change the matrix A to a similar matrix B.

Similar matrices represent the same transformation T with respect so different
bases. The algebra is almost straightforward. Suppose we have a basis v1, . . . ,vn. The
jth column of A comes from applying T to v j:

T v j = combination of the basis vectors = a1 jv1 + · · ·+an jvn. (2)

For a new basis V1, . . . ,Vn, the new matrix B is constructed in the same way: TVj =
combination of the V ’s = b1 jV1 + · · ·+ bn jVn. But also each V must be a combination
of the old basis vectors: Vj = ∑mi jvi. That matrix M is really representing the identity
transformation (!) when the only thing happening is the change of basis (T is I). The in-
verse matrix M−1 also represents the identity transformation. when the basis is changed
from the v’s back to the V ’s. Now the product rule gives the result we want:

5Q The matrices A and B that represent the same linear transformation T
with respect to two different bases (the v’s and the V ’s) are similar:

[T ]V to V

B
=
=

[I]v to V

M−1
[T ]v to v

A
[I]V to v

M.
(3)
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I think an example is the best way to explain B = M−1AM. Suppose T is projection
onto the line L at angle θ . This linear transformation is completely described without the
help of a basis. But to represent T by a matrix, we do need a basis. Figure 5.5 offers two
choices, the standard basis v1 = (1,0), v2 = (0,1) and a basis V1, V2 chosen especially
for T .

[

1

0

]

projection

[

−.5

.5

]

[

0

1

]

projection

[

.5

−.5

]

A =

[

.5 −.5

−.5 .5

]

135° y = −x

V2 =

[

1

1

]

projects to zero

V1 =

[

1

−1

]

projects to V1

Λ =

[

1 0

0 0

]

135° y = −x

Figure 5.5: Change of basis to make the projection matrix diagonal.

In fact TV1 = V1 (since V1 is already on the line L) and TV2 = 0 (since V2 is perpen-
dicular to the line). In that eigenvector basis, the matrix is diagonal:

Elgenvector basis B = [T ]V to V =

[
1 0
0 0

]
.

The other thing is the change of basis matrix M. For that we express V1 as a combination
v1 cosθ⊥v2 sinθ and put those coefficients into column 1. Similarly V2 (or IV2, the
transformation is the identity) is −v1 sinθ + v2 cosθ , producing column 2:

Change of basis M = [I]V to v =

[
c −s
s c

]
.

The inverse matrix M−1 (which is here the transpose) goes from v to V . Combined with
B and M, it gives the projection matrix in the standard basis of v’s:

Standard basis A = MBM−1 =

[
c2 cs
cs s2

]
.

We can summarize the main point. The way to simplify that matrix A—in fact to diag-
onalize it—is to find its eigenvectors. They go into the columns of M (or S) and M−1AM
is diagonal. The algebraist says the same thing in the language of linear transformations:
Choose a basis consisting of eigenvectors. The standard basis led to A, which was not
simple. The right basis led to B, which was diagonal.

We emphasize again that M−1AM does not arise in solving Ax = b. There the basic
operation was to multiply A (on the left side only!) by a matrix that subtracts a multiple
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of one row from another. Such a transformation preserved the nullspace and row space
of A; it normally changes the eigenvalues.

Eigenvalues are actually calculated by a sequence of simple similarities. The matrix
goes gradually toward a triangular form, and the eigenvalues gradually appear on the
main diagonal. (Such a sequence is described in Chapter 7.) This is much better than
trying to compute det(A−λ I), whose roots should be the eigenvalues. For a large matrix,
it is numerically impossible to concentrate all that information into the polynomial and
then get it out again.

Triangular Forms with a Unitary M

Our first move beyond the eigenvector matrix M = S is a little bit crazy: Instead of a
more general M, we go the other way and restrict M to be unitary. M−1AM can achieve
a triangular form T under this restriction. The columns of M = U are orthonormal (in
the real case, we would write M = Q). Unless the eigenvectors of Λ are orthogonal, a
diagonal U−1AU is impossible. But “Schur’s lemma” in 5R is very useful—at least to
the theory. (The rest of this chapter is devoted more to theory than to applications. The
Jordan form is independent of this triangular form.)

5R There is a unitary matrix M = U such that U−1AU = T is triangular.

The eigenvalues of A appear along the diagonal of this similar matrix T .

Proof. Every matrix, say 4 by 4, has at least one eigenvalue λ1. In the worst case, it
could be repeated four times. Therefore A has at least one unit eigenvector x1, which we
place in the first column of U . At this stage the other three columns are impossible to
determine, so we complete the matrix in any way that leaves it unitary, and call it U1.
(The Gram-Schmidt process guarantees that this can be done.) Ax1 = λ1x1 column 1
means that the product U−1

1 AU1 starts in the right form:

AU1 = U1




λ1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗


 leads to U−1

1 AU1 =




λ1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗


 .

Now work with the 3 by 3 submatrix in the lower right-hand corner. It has a unit
eigenvector x2, which becomes the first column of a unitary matrix M2:

If U2 =




1 0 0 0
0
0 M2

0


 then U−1

2 (U−1
1 AU1)U2 =




λ1 ∗ ∗ ∗
0 λ2 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗


 .
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At the last step, an eigenvector of the 2 by 2 matrix in the lower right-hand corner goes
into a unitary M3, which is put into the corner of U3:

Triangular U−1
3

(
U−1

2 U−1
1 AU1U2

)
U3 =




λ1 ∗ ∗ ∗
0 λ2 ∗ ∗
0 0 λ3 ∗
0 0 0 ∗


 = T.

The product U = U1U2U3 is still a unitary matrix, and U−1AU = T .

This lemma applies to all matrices, with no assumption that A is diagoalizable. We
could use it to prove that the powers Ak approach zero when all |λi|< 1, and the expo-
nentials eAt approach zero when all Reλi < 0—even without the full set of eigenvectors
which was assumed in Sections 5.3 and 5.4.

Example 2. A =

[
2 −1
1 0

]
has the eigenvalue λ = 1 (twice).

The only line of eigenvectors goes through (1,1). After dividing by
√

2, this is the first
column of U , and the triangular U−1AU = T has the eigenvalues on its diagonal:

U−1AU =

[
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

][
2 −1
1 0

][
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

]
=

[
1 2
0 1

]
= T. (4)

Diagonalizing Symmetric and Hermitian Matrices

This triangular form will show that any symmetric or Hermitian matrix—whether its
eigenvalues are distinct or not—has a complete set of orthonormal eigenvectors. We
need a unitary matrix such that U−1AU is diagonal. Schur’s lemma has just found it.
This triangular T must be diagonal, because it is also Hermitian when A = AH:

T = T H (U−1AU)H = UHAH(U−1)H = U−1AU.

The diagonal matrix U−1AU represents a key theorem in linear algebra.

5S (Spectral Theorem) Every real symmetric A can be diagonalized by an
orthogonal matrix Q. Every Hermitian matrix can be diagonalized by a unitary
U :

(real) Q−1AQ = Λ or A = QΛQT

(complex) U−1AU = Λ or A = UΛUH

The columns of Q (or U) contain orthonormal eigenvectors of A.

Remark 1. In the real symmetric case, the eigenvalues and eigenvectors are real at every
step. That produces a real unitary U—an orthogonal matrix.
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Remark 2. A is the limit of symmetric matrices with distinct eigenvalues. As the limit
approaches, the eigenvectors stay perpendicular. This can fail if A 6= AT:

A(θ) =

[
0 cosθ
0 sinθ

]
has eigenvectors

[
1
0

]
and

[
cosθ
sinθ

]
.

As θ → 0, the only eigenvector of the nondiagonalizable matrix
[

0 1
0 0

]
is

[
1
0

]
.

Example 3. The spectral theorem says that this A = AT can be diagonalized:

A =




0 1 0
1 0 0
0 0 1


 with repeated eigenvalues λ1 = λ2 = 1 and λ3 =−1.

λ = 1 has a plane of eigenvectors, and we pick an orthonormal pair x1 and x2:

x1 =
1√
2




1
1
0


 and x2 =




0
0
1


 and x3 =

1√
2




1
−1
0


 for λ3 =−1.

These are the columns of Q. Splitting A = QΛQT into 3 columns times 3 rows gives

A =




0 1 0
1 0 0
0 0 1


 = λ1




1
2

1
2 0

1
2

1
2 0

0 0 0


+λ2




0 0 0
0 0 0
0 0 1


+λ3




1
2 −1

2 0
−1

2
1
2 0

0 0 0


 .

Since λ1 = λ2, those first two projections x1xT
1 and x2xT

2 (each of rank 1) combine to give
a projection P1 of rank 2 (onto the plane of eigenvectors). Then A is




0 1 0
1 0 0
0 0 1


 = λ1P1 +λ3P3 = (+1)




1
2

1
2 0

1
2

1
2 0

0 0 1


+(−1)




1
2 −1

2 0
−1

2
1
2 0

0 0 0


 . (5)

Every Hermitian matrix with k different eigenvalues has a spectral decomposition into
A = λ1P1 + · · ·+λkPk, where Pi is the projection onto the eigenspace for λi. Since there is
a full set of eigenvectors, the projections add up to the identity. And since the eigenspace
are orthogonal, two projections produce zero: PjPi = 0.

We are very close to answering an important question, so we keep going: For which
matrices is T = Λ? Symmetric, skew-symmetric, and orthogonal T ’s are all diagonal!
Hermitian, skew-Hermitian, and unitary matrices are also in this class. They correspond
to numbers on the real axis, the imaginary axis, and the unit circle. Now we want the
whole class, corresponding to all complex numbers. The matrices are called “normal”.

5T The matrix N is normal if it commutes with NH: NNH = NHN. For
such matrices, and no others, the triangular T = U−1NU is the diagonal Λ.
Normal matrices are exactly those that have a complete set of orthonormal
eigenvectors.



332 Chapter 5 Eigenvalues and Eigenvectors

Symmetric and Hermitian matrices are certainly normal: If A = AH, then AAH and
AHA both equal A2. Orthogonal and unitary matrices are also normal: UUH and UHU
both equal I. Two steps will work for any normal matrix:

1. If N is normal, then so is the triangular T = U−1NU :

T T H = U−1NUUHNHU = U−1NNHU = U−1NHNU = UHNHUU−1NU = T HT.

2. A triangular T that is normal must be diagonal! (See Problems 19–20 at the end of
this section.)

Thus, if N is normal, the triangular T =U−1NU must be diagonal. Since T has the same
eigenvalues as N, it must be Λ. The eigenvectors of N are the columns of U , and they
are orthonormal. That is the good case. We turn now from the best possible matrices
(normal) to the worst possible (defective).

Normal N =

[
2 1
−1 2

]
Defective A =

[
2 1
0 2

]
.

The Jordan Form

This section has done its best while requiring M to be a unitary matrix U . We got
M−1AM into a triangular form T . Now we lift this restriction on M. Any matrix is
allowed, and the goal is to make M−1AM as nearly diagonal as possible.

The result of this supreme effort at diagonalization is the Jordan form J. If A has a full
set of eigenvectors, we take M = S and arrive at J = S−1AS = Λ. Then the Jordan form
coincides with the diagonal Λ. This is impossible for a defective (nondiagonalizable)
matrix. For every missing eigenvector, the Jordan form will have a 1 just above its main
diagonal. The eigenvalues appear on the diagonal because J is triangular. And distinct
eigenvalues can always be decoupled.

It is only a repeated λ that may (or may not!) require an off-diagonal 1 in J.

5U If A has s independent eigenvectors, it is similar to a matrix with s blocks:

Jordan form J = M−1AM =




J1
. . .

Js


 . (6)

Each Jordan block Ji is a triangular matrix that has only a single eigenvalue λi

and only one eigenvector:

Jordan block Ji =




λi 1
λi ·

· 1
λi


 . (7)
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The same λi will appear in several blocks, if it has several independent eigen-
vectors. Two matrices are similar if and only if they share the same Jordan
form J.

Many authors have made this theorem the climax of their linear algebra course.
Frankly, I think that is a mistake. It is certainly true that not all matrices are diagonaliz-
able, and the Jordan form is the most general case. For that very reason, its construction
is both technical and extremely unstable. (A slight change in A can put back all the
missing eigenvectors, and remove the off-diagonal is.) Therefore the right place for the
details is in the appendix, and the best way to start on the Jordan form is to look at some
specific and manageable examples.

Example 4. T =

[
1 2
0 1

]
and A =

[
2 −1
1 0

]
and B =

[
1 0
1 1

]
all lead to J =

[
1 1
0 1

]
.

These four matrices have eigenvalues 1 and 1 with only one eigenvector—so J con-
sists of one block. We now check that. The determinants all equal 1. The traces (the
sums down the main diagonal) are 2. The eigenvalues satisfy 1 ·1 = 1 and 1+1 = 2. For
T , B, and J, which are triangular, the eigenvalues are on the diagonal. We want to show
that these matrices are similar—they all belong to the same family.

(T) From T to J, the job is to change 2 to 1. and a diagonal M will do it:

M−1T M =

[
1 0
0 2

][
1 2
0 1

][
1 0
0 1

2

]
=

[
1 1
0 1

]
= J.

(B) From B to J, the job is to transpose the matrix. A permutation does that:

P−1BP =

[
0 1
1 0

][
1 0
1 1

][
0 1
1 0

]
=

[
1 1
0 1

]
= J.

(A) From A to J, we go first to T as in equation (4). Then change 2 to 1:

U−1AU =

[
1 2
0 1

]
= T and then M−1T M =

[
1 1
0 1

]
= J.

Example 5. A =




0 1 2
0 0 1
0 0 0


 and B =




0 0 1
0 0 0
0 0 0


.

Zero is a triple eigenvalue for A and B, so it will appear in all their Jordan blocks. There
can be a single 3 by 3 block, or a 2 by 2 and a 1 by I block, or three I by I blocks. Then
A and B have three possible Jordan forms:

J1 =




0 1 0
0 0 1
0 0 0


 , J2 =




0 1 0
0 0 0
0 0 0


 , J3 =




0 0 0
0 0 0
0 0 0


 . (8)
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The only eigenvector of A is (1,0,0). Its Jordan form has only one block, and A must
be similar to J1. The matrix B has the additional eigenvector (0,1,0), and its Jordan
form is J2 with two blocks, As for J3 = zero matrix, it is in a family by itself; the only
matrix similar to J3 is M−10M = 0. A count of the eigenvectors will determine J when
there is nothing more complicated than a triple eigenvalue.

Example 6. Application to difference and differential equations (powers and expo-
nentials). If A can be diagonalized, the powers of A = SΛS−1 are easy: Ak = SΛkS−1. In
every case we have Jordan’s similarity A = MJM−1, so now we need the powers of J:

Ak = (MJM−1)(MJM−1) · · ·(MJM−1) = MJkM−1.

J is block-diagonal, and the powers of each block can be taken separately:

(Ji)k =




λ 1 0
0 λ 1
0 0 λ




k

=




λ k kλ k−1 1
2k(k−1)λ k−2

0 λ k kλ k−1

0 0 λ k


 . (9)

This block Ji will enter when λ is a triple eigenvalue with a single eigenvector. Its
exponential is in the solution to the corresponding differential equation:

Exponential eJit =




eλ t teλ t 1
2t2eλ t

0 eλ t teλ t

0 0 eλ t


 . (10)

Here I + Jit +(Jit)2/2!+ · · · produces 1+λ t +λ 2t2/2!+ · · ·= eλ t on the diagonal.
The third column of this exponential comes directly from solving du/dt = Jiu:

d
dt




u1

u2

u3


 =




λ 1 0
0 λ 1
0 0 λ







u1

u2

u3


 starting from u0 =




0
0
1


 .

This can be solved by back-substitution (since Ji is triangular). The last equation du3/dt =
λu3 yields u3 = eλ t . The equation for u2 is du2/dt = λu2 + u3, and its solution is teλ t .
The top equation is du1/dt = λu1 + u2, and its solution is 1

2t2eλ t . When λ has multi-
plicity m with only one eigenvector, the extra factor t appears m−1 times.

These powers and exponentials of J are a part of the solutions uk and u(t). The other
part is the M that connects the original A to the more convenient matrix J:

if uk+1 = Auk then uk = Aku0 = MJkM−1u0

if du/dt = Au then u(t) = eAtu(0) = MeJtM−1u(0).

When M and J are S and Λ (the diagonalizable case) those are the formulas of Sections
5.3 and 5.4. Appendix B returns to the nondiagonalizable case, and shows how the
Jordan form can be reached. I hope the following table will be a convenient summary.
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Similarity Transformations

1. A is diagonalizable: The columns of S are eigenvectors and S−1AS = Λ.

2. A is arbitrary: The columns of M include “generalized eigenvectors” of A, and the
Jordan form M−1AM = J is block diagonal.

3. A is arbitrary: The unitary U can be chosen so that U−1AU = T is triangular.

4. A is normal, AAH = AHA: then U can be chosen so that U−1AU = Λ.
Special cases of normal matrices, all with orthonormal eigenvectors:

(a) If A = AH is Hermitian, then all λi are real.

(b) If A = AT is real symmetric, then Λ is real and U = Q is orthogonal.

(c) If A =−AH is skew-Hermitian, then all λi are purely imaginary.

(d) If A is orthogonal or unitary, then all |λi|= 1 are on the unit circle.

Problem Set 5.6

1. If B is similar to A and C is similar to B, show that C is similar to A. (Let B = M−1AM
and C = N−1BN.) Which matrices are similar to I?

2. Describe in words all matrices that are similar to
[

1 0
0 −1

]
, and find two of them.

3. Explain why A is never similar to A+ I.

4. Find a diagonal M, made up of 1s and −1s, to show that

A =




2 1
1 2 1

1 2 1
1 2


 is similar to B =




2 −1
−1 2 −1

−1 2 −1
−1 2


 .

5. Show (if B is invertible) that BA is similar to AB.

6. (a) If CD =−DC (and D is invertible), show that C is similar to −C.

(b) Deduce that the eigenvalues of C must come in plus-minus pairs.

(c) Show directly that if Cx = λx, then C(Dx) =−λ (Dx).

7. Consider any A and a “Givens rotation” M in the 1–2 plane:

A =




a b c
d e f
g h i


 , M =




cosθ −sinθ 0
sinθ cosθ 0

0 0 1


 .

Choose the rotation angle θ to produce zero in the (3,1) entry of M−1AM.
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Note. This “zeroing” is not so easy to continue, because the rotations that produce
zero in place of d and h will spoil the new zero in the corner. We have to leave one
diagonal below the main one, and finish the eigenvalue calculation in a different way.
Otherwise, if we could make A diagonal and see its eigenvalues, we would be finding
the roots of the polynomial det(A−λ I) by using only the square roots that determine
cosθ—and that is impossible.

8. What matrix M changes the basis V1 = (1,1), V2 = (1,4) to the basis v1 = (2,5),
v2 = (1,4)? The columns of M come from expressing V1 and V2 as combinations
∑mi jvi of the v’s.

9. For the same two bases, express the vector (3,9) as a combination c1V1 + c2V2 and
also as d1v1 +d2v2. Check numerically that M connects c to d: Mc = d.

10. Confirm the last exercise: If V1 = m11v1 + m21v2 and V2 = m12v1 + m22v2, and
m11c1 +m12c2 = d1 and m21c1 +m22c2 = d2, the vectors c1V1 +c2V2 and d1v1 +d2v2

are the same. This is the “change of basis formula” Mc = d.

11. If the transformation T is a reflection across the 45° line in the plane, find its matrix
with respect to the standard basis v1 = (1,0), v2 = (0,1), and also with respect to
V1 = (1,1), V2 = (1,−1). Show that those matrices are similar.

12. The identity transformation takes every vector to itself: T x = x. Find the corre-
sponding matrix, if the first basis is v1 = (1,2), v2 = (3,4) and the second basis is
w1 = (1,0), w2 = (0,1). (It is not the identity matrix!)

13. The derivative of a+bx+ cx2 is b+2cx+0x2.

(a) Write the 3 by 3 matrix D such that

D




a
b
c


 =




b
2c
0


 .

(b) Compute D3 and interpret the results in terms of derivatives.

(c) What are the eigenvalues and eigenvectors of D?

14. Show that every number is an eigenvalue for T f (x) = d f /dx, but the transformation
T f (x) =

∫ x
0 f (t)dt has no eigenvalues (here −∞ < x < ∞).

15. On the space of 2 by 2 matrices, let T be the transformation that transposes every
matrix. Find the eigenvalues and “eigenmatrices” for AT = λA.

16. (a) Find an orthogonal Q so that Q−1AQ = Λ if

A =




1 1 1
1 1 1
1 1 1


 and Λ =




0 0 0
0 0 0
0 0 3


 .
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Then find a second pair of orthonormal eigenvectors x1, x2 for λ = 0.

(b) Verify that P = x1xT
1 + x2xT

2 is the same for both pairs.

17. Prove that every unitary matrix A is diagonalizable, in two steps:

(i) If A is unitary, and U is too, then so is T = U−1AU .

(ii) An upper triangular T that is unitary must be diagonal. Thus T = Λ.

Any unitary matrix A (distinct eigenvalues or not) has a complete set of orthonormal
eigenvectors. All eigenvalues satisfy |λ |= 1.

18. Find a normal matrix (NNH = NHN) that is not Hermitian, skew-Hermitian, unitary,
or diagonal. Show that all permutation matrices are normal.

19. Suppose T is a 3 by 3 upper triangular matrix, with entries ti j. Compare the entries of
T T H and T HT , and show that if they are equal, then T must be diagonal. All normal
triangular matrices are diagonal.

20. If N is normal, show that ‖Nx‖= ‖NHx‖ for every vector x. Deduce that the ith row
of N has the same length as the ith column. Note: If N is also upper triangular, this
leads again to the conclusion that it must be diagonal.

21. Prove that a matrix with orthonormal eigenvectors must be normal, as claimed in 5T:
If U−1NU = A, or N = UΛUH, then NNH = NHN.

22. Find a unitary U and triangular T so that U−1AU = T , for

A =

[
5 −3
4 −2

]
and A =




0 1 0
0 0 0
1 0 0


 .

23. If A has eigenvalues 0, 1, 2, what are the eigenvalues of A(A− I)(A−2I)?

24. (a) Show by direct multiplication that every triangular matrix T , say 3 by 3, satisfies
its own characteristic equation: (T −λ1I)(T −λ2I)(T −λ3I) = 0.

(b) Substituting U−1AU for T , deduce the famous Cayley-Hamilton theorem: Every
matrix satisfies its own characteristic equation. For 3 by 3 this is (A−λ1I)(A−
λ2I)(A−λ3I) = 0.

25. The characteristic polynomial of A =
[

a b
c d

]
is λ 2− (a + d)λ +(ad−bc). By direct

substitution, verify Cayley-Hamilton: A2− (a+d)A+(ad−bc)I = 0.

26. If ai j = 1 above the main diagonal and ai j = 0 elsewhere, find the Jordan form (say
4 by 4) by finding all the eigenvectors.

27. Show, by trying for an M and failing, that no two of the three Jordan forms in equa-
tion (8) are similar: J1 6= M−1J2M, J1 6= M−1J3M, and J2 6= M−1J3M.
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28. Solve u′ = Ju by back-substitution, solving first for u2(t):

du
dt

= Ju =

[
5 1
05

][
u1

u2

]
with initial value u(0) =

[
1
2

]
.

Notice te5t in the first component u1(t).

29. Compute A10 and eA if A = MJM−1:

A =

[
14 9
−16 −10

]
=

[
3 −2
−4 3

][
2 1
0 2

][
3 2
4 3

]
.

30. Show that A and B are similar by finding M so that B = M−1AM:

(a) A =

[
1 0
1 0

]
and B =

[
0 1
0 1

]
.

(b) A =

[
1 1
1 1

]
and B =

[
1 −1
−1 1

]
.

(c) A =

[
1 2
3 4

]
and B =

[
4 3
2 1

]
.

31. Which of these matrices A1 to A6 are similar? Check their eigenvalues.
[

1 0
0 1

] [
0 1
1 0

] [
1 1
0 0

] [
0 0
1 1

] [
1 0
1 0

] [
0 1
0 1

]
.

32. There are sixteen 2 by 2 matrices whose entries are 0s and 1s. Similar matrices go
into the same family. How many families? How many matrices (total 16) in each
family?

33. (a) If x is in the nullspace of A, show that M−1x is in the nullspace of M−1AM.

(b) The nullspaces of A and M−1AM have the same (vectors)(basis)(dimension).

34. If A and B have the exactly the same eigenvalues and eigenvectors, does A = B? With
n independent eigenvectors, we do have A = B. Find A 6= B when λ = 0,0 (repeated),
but there is only one line of eigenvectors (x1,0).

Problems 35–39 are about the Jordan form.

35. By direct multiplication, find J2 and J3 when

J =

[
c 1
0 c

]
.

Guess the form of Jk. Set k = 0 to find J0. Set k =−1 to find J−1.



5.6 Similarity Transformations 339

36. If J is the 5 by 5 Jordan block with λ = 0, find J2 and count its eigenvectors, and
find its Jordan form (two blocks).

37. The text solved du/dt = Ju for a 3 by 3 Jordan block J. Add a fourth equation
dw/dt = 5w+ x. Follow the pattern of solutions for z, y, x to find w.

38. These Jordan matrices have eigenvalues 0, 0, 0, 0. They have two eigenvectors (find
them). But the block sizes don’t match and J is not similar to K:

J =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 and K =




0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0


 .

For any matrix M, compare JM with MK. If they are equal, show that M is not
invertible. Then M−1JM = K is impossible.

39. Prove in three steps that AT is always similar to A (we know that the λ ’s are the
same, the eigenvectors are the problem):

(a) For A = one block, find Mi = permutation so that M−1
i JiMi = JT

i .

(b) For A = any J, build M0 from blocks so that M−1
0 JM0 = JT.

(c) For any A = MJM−1: Show that AT is similar to JT and so to J and to A.

40. Which pairs are similar? Choose a, b, c, d to prove that the other pairs aren’t:
[

a b
c d

] [
b a
d c

] [
c d
a b

] [
d c
b a

]
.

41. True or false, with a good reason:

(a) An invertible matrix can’t be similar to a singular matrix.

(b) A symmetric matrix can’t be similar to a nonsymmetric matrix.

(c) A can’t be similar to −A unless A = 0.

(d) A− I can’t be similar to A+ I.

42. Prove that AB has the same eigenvalues as BA.

43. If A is 6 by 4 and B is 4 by 6, AB and BA have different sizes. Nevertheless,
[

I −A
0 I

][
AB 0
B 0

][
I A
0 I

]
=

[
0 0
B BA

]
= G.

(a) What sizes are the blocks of G? They are the same in each matrix.

(b) This equation is M−1FM = G, so F and G have the same 10 eigenvalues. F has
the eigenvalues of AB plus 4 zeros; G has the eigenvalues of BA plus 6 zeros. AB
has the same eigenvalues as BA plus zeros.
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44. Why is each of these statements true?

(a) If A is similar to B, then A2 is similar to B2.

(b) A2 and B2 can be similar when A and B are not similar (try λ = 0,0).

(c)
[

3 0
0 4

]
is similar to

[
3 1
0 4

]
.

(d)
[

3 0
0 3

]
is not similar to

[
3 1
0 3

]
.

(e) If we exchange rows 1 and 2 of A, and then exchange columns 1 and 2, the
eigenvalues stay the same.

Properties of Eigenvalues and Eigenvectors

How are the properties of a matrix reflected in its eigenvalues and eigenvectors? This
question is fundamental throughout Chapter 5. A table that organizes the key facts may
be helpful. For each class of matrices, here are the special properties of the eigenvalues
λi and eigenvectors xi.

Symmetric: AT = A real λ ’s orthogonal xT
i x j = 0

Orthogonal: QT = Q−1 all |λ |= 1 orthogonal xT
i x j = 0

Skew-symmetric: AT =−A imaginary λ ’s orthogonal xT
i x j = 0

Complex Hermitian: AT = A real λ ’s orthogonal xT
i x j = 0

Positive definite: xTAx > 0 all λ > 0 orthogonal
Similar matrix: B = M−1AM λ (B) = λ (A) x(B) = M−1x(A)
Projection: P = P2 = PT λ = 1;0 column space; nullspace
Reflection: I−2uuT λ =−1;1, . . . ,1 u;u⊥

Rank-1 matrix: uvT λ = vTu;0, . . . ,0 u;v⊥

Inverse: A−1 1/λ (A) eigenvectors of A
Shift: A+ cI λ (A)+ c eigenvectors of A
Stable powers: An → 0 all |λ |< 1
Stable exponential: eAt → 0 all Reλ < 0
Markov: mi j > 0, ∑n

i=1 mi j = 1 λmax = 1 steady state x > 0
Cyclic permutation: Pn = I λk = e2πik/n xk = (1,λk, . . . ,λ n−1

k )
Diagonalizable: SΛS−1 diagonal of Λ columns of S are independent
Symmetric: QΛQT diagonal of Λ (real) columns of Q are orthonormal
Jordan: J = M−1AM diagonal of J each block gives 1 eigenvector
Every matrix: A = UΣV T rank(A) = rank(Σ) eigenvectors of ATA, AAT in V , U
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Review Exercises

5.1 Find the eigenvalues and eigenvectors, and the diagonalizing matrix S, for

A =

[
1 0
2 3

]
and B =

[
7 2
−15 −4

]
.

5.2 Find the determinants of A and A−1 if

A = S

[
λ1 2
0 λ2

]
S−1.

5.3 If A has eigenvalues 0 and 1, corresponding to the eigenvectors
[

1
2

]
and

[
2
−1

]
,

how can you tell in advance that A is symmetric? What are its trace and determi-
nant? What is A?

5.4 In the previous problem, what will be the eigenvalues and eigenvectors of A2? What
is the relation of A2 to A?

5.5 Does there exist a matrix A such that the entire family A + cI is invertible for all
complex numbers c? Find a real matrix with A+ rI invertible for all real r.

5.6 Solve for both initial values and then find eAt :

du
dt

=

[
3 1
1 3

]
u if u(0) =

[
1
0

]
and if u(0) =

[
0
1

]
.

5.7 Would you prefer to have interest compounded quarterly at 40% per year, or annu-
ally at 50%?

5.8 True or false (with counterexample if false):

(a) If B is formed from A by exchanging two rows, then B is similar to A.

(b) If a triangular matrix is similar to a diagonal matrix, it is already diagonal.

(c) Any two of these statements imply the third: A is Hermitian, A is unitary, A2 = I.

(d) If A and B are diagonalizable, so is AB.

5.9 What happens to the Fibonacci sequence if we go backward in time, and how is F−k

related to Fk? The law Fk+2 = Fk+1 +Fk is still in force, so F−1 = 1.

5.10 Find the general solution to du/dt = Au if

A =




0 −1 0
1 0 −1
0 1 0


 .
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Can you find a time T at which the solution u(T ) is guaranteed to return to the
initial value u(0)?

5.11 If P is the matrix that projects Rn onto a subspace S, explain why every vector in
S is an eigenvector, and so is every vector in S⊥. What are the eigenvai (Note the
connection to P2 = P, which means that λ 2 = λ .)

5.12 Show that every matrix of order > 1 is the sum of two singular matrices.

5.13 (a) Show that the matrix differential equation dX/dt = AX + XB has the solution
X(t) = eAtX(0)eBt .

(b) Prove that the solutions of dX/dt = AX−XA keep the same eigenvalues for all
time.

5.14 If the eigenvalues of A are 1 and 3 with eigenvectors (5,2) and (2,1), find the
solutions to du/dt = Au and uk+1 = Auk, starting from u = (9,4).

5.15 Find the eigenvalues and eigenvectors of

A =




0 −i 0
i 1 i
0 −i 0


 .

What property do you expect for the eigenvectors, and is it true?

5.16 By trying to solve [
a b
c d

][
a b
c d

]
=

[
0 1
0 0

]
= A

show that A has no square root. Change the diagonal entries of A to 4 and find a
square root.

5.17 (a) Find the eigenvalues and eigenvectors of A =
[

0 4
1
4 0

]
.

(b) Solve du/dt = Au starting from u(0) = (100,100).

(c) If v(t) = income to stockbrokers and w(t) = income to client, and they help
each other by dv/dt = 4w and dw/dt = 1

4v, what does the ratio v/w approach
as t → ∞?

5.18 True or false, with reason if true and counterexample if false:

(a) For every matrix A, there is a solution to du/dt = Au starting from u(0) =
(1, . . . ,1).

(b) Every invertible matrix can be diagonalized.

(c) Every diagonalizable matrix can be inverted.

(d) Exchanging the rows of a 2 by 2 matrix reverses the signs of its eigenvalues.
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(e) If eigenvectors x and y correspond to distinct eigenvalues, then xHy = 0.

5.19 If K is a skew-symmetric matrix, show that Q = (I−K)(I +K)−1 is an orthogonal
matrix. Find Q if K =

[
0 2
−2 0

]
.

5.20 If KH =−K (skew-Hermitian), the eigenvalues are imaginary and the eigenvectors
are orthogonal.

(a) How do you know that K− I is invertible?

(b) How do you know that K = UΛUH for a unitary U?

(c) Why is eΛt unitary?

(d) Why is eKt unitary?

5.21 If M is the diagonal matrix with entries d, d2, d3, what is M−1AM? What are its
eigenvalues in the following case?

A =




1 1 1
1 1 1
1 1 1


 .

5.22 If A2 = −I, what are the eigenvalues of A? If A is a real n by n matrix show that n
must be even, and give an example.

5.23 If Ax = λ1x and ATy = λ2y (all real), show that xTy = 0.

5.24 A variation on the Fourier matrix is the “sine matrix”:

S =
1√
2




sinθ sin2θ sin3θ
sin2θ sin4θ sin6θ
sin3θ sin6θ sin9θ


 with θ =

π
4
.

Verify that ST = S−1. (The columns are the eigenvectors of the tridiagonal −1, 2,
−1 matrix.)

5.25 (a) Find a nonzero matrix N such that N3 = 0.

(b) If Nx = λx, show that λ must be zero.

(c) Prove that N (called a “nilpotent” matrix) cannot be symmetric.

5.26 (a) Find the matrix P = aaT/aTa that projects any vector onto the line through
a = (2,1,2).

(b) What is the only nonzero eigenvalue of P, and what is the corresponding eigen-
vector?

(c) Solve uk+1 = Puk, starting from u0 = (9,9,0).

5.27 Suppose the first row of A is 7, 6 and its eigenvalues are i, −i. Find A.
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5.28 (a) For which numbers c and d does A have real eigenvalues and orthogonal eigen-
vectors?

A =




1 2 0
2 d c
0 5 3


 .

(b) For which c and d can we find three orthonormal vectors that are combinations
of the columns (don’t do it!)?

5.29 If the vectors x1 and x2 are in the columns of S, what are the eigenvalues and eigen-
vectors of

A = S

[
2 0
0 1

]
S−1 and B = S

[
2 3
0 1

]
S−1?

5.30 What is the limit as k → ∞ (the Markov steady state) of

[
.4 .3
.6 .7

]k [
a
b

]
?



Chapter 6
Positive Definite Matrices

6.1 Minima, Maxima, and Saddle Points

Up to now, we have hardly thought about the signs of the eigenvalues. We couldn’t
ask whether λ was positive before it was known to be real. Chapter 5 established that
every symmetric matrix has real eigenvalues. Now we will find a test that can be applied
directly to A, without computing its eigenvalues, which will guarantee that all those
eigenvalues are positive. The test brings together three of the most basic ideas in the
book—pivots, determinants, and eigenvalues.

The signs of the eigenvalues are often crucial. For stability in differential equations,
we needed negative eigenvalues so that eλ t would decay. The new and highly important
problem is to recognize a minimum point. This arises throughout science and engi-
neering and every problem of optimization. The mathematical problem is to move the
second derivative test F ′′ > 0 into n dimensions. Here are two examples:

F(x,y) = 7+2(x+ y)2− ysiny− x3 f (x,y) = 2x2 +4xy+ y2.

Does either F(x,y) or f (x,y) have a minimum at the point x = y = 0?

Remark 3. The zero-order terms F(0,0) = 7 and f (0,0) = 0 have no effect on the an-
swer. They simply raise or lower the graphs of F and f .

Remark 4. The linear terms give a necessary condition: To have any chance of a mini-
mum, the first derivatives must vanish at x = y = 0:

∂F
∂x

= 4(x+ y)−3x2 = 0 and
∂F
∂y

= 4(x+ y)− ycosy− siny = 0

∂ f
∂x

= 4x+4y = 0 and
∂ f
∂y

= 4x+2y = 0. All zero.

Thus (x,y) = (0,0) is a stationary point for both functions. The surface z = F(x,y) is
tangent to the horizontal plane z = 7, and the surface z = f (x,y) is tangent to the plane
z = 0. The question is whether the graphs go above those planes or not, as we move
away from the tangency point x = y = 0.
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Remark 5. The second derivatives at (0,0) are decisive:

∂ 2F
∂x2 = 4−6x = 4

∂ 2F
∂x∂y

=
∂ 2F
∂y∂x

= 4

∂ 2F
∂y2 = 4+ ysiny−2cosy = 2

∂ 2 f
∂x2 = 4

∂ 2 f
∂x∂y

=
∂ 2 f

∂y∂x
= 4

∂ 2 f
∂y2 = 2.

These second derivatives 4, 4, 2 contain the answer. Since they are the same for F and
f , they must contain the same answer. The two functions behave in exactly the same
way near the origin. F has a minimum if and only if f has a minimum. I am going to
show that those functions don’t!

Remark 6. The higher-degree terms in F have no effect on the question of a local min-
imum, but they can prevent it from being a global minimum. In our example the term
−x3 must sooner or later pull F toward −∞. For f (x,y), with no higher terms, all the
action is at (0,0).

Every quadratic form f = ax2 +2bxy+cy2 has a stationary point at the origin, where
∂ f /∂x = ∂ f /∂y = 0. A local minimum would also be a global minimum, The surface
z = f (x,y) will then be shaped like a bowl, resting on the origin (Figure 6.1). If the
stationary point of F is at x = α , y = β , the only change would be to use the second
derivatives at α , β :

Quadratic
part of F

f (x,y) =
x2

2
∂ 2F
∂x2 (α,β )+ xy

∂ 2F
∂x∂y

(α,β )+
y2

2
∂ 2F
∂y2 (α,β ). (1)

This f (x,y) behaves near (0,0) in the same way that F(x,y) behaves near (α,β ).

Figure 6.1: A bowl and a saddle: Definite A =
[

1 0
0 1

]
and indefinite A =

[
0 1
1 0

]
.

The third derivatives are drawn into the problem when the second derivatives fail to
give a definite decision. That happens when the quadratic part is singular. For a true
minimum, f is allowed to vanish only at x = y = 0. When f (x,y) is strictly positive at
all other points (the bowl goes up), it is called positive definite.
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Definite versus Indefinite: Bowl versus Saddle

The problem comes down to this: For a function of two variables x and y, what is the
correct replacement for the condition ∂ 2F/∂x2 > 0? With only one variable, the sign of
the second derivative decides between a minimum or a maximum. Now we have three
second derivatives: Fxx, Fxy = Fyx, and Fyy. These three numbers (like 4, 4, 2) must
determine whether or not F (as well as f ) has a minimum.

What conditions on a, b, and c ensure that the quadratic f (x,y) = ax2 +2bxy+ cy2

is positive definite? One necessary condition is easy:

(i) If ax2 +2bxy+ cy2 is positive definite, then necessarily a > 0.

We look at x = 1, y = 0, where ax2 + 2bxy + cy2 is equal to a. This must be positive.
Translating back to F , that means that ∂ 2F/∂x2 > 0. The graph must go up in the x
direction. Similarly, fix x = 0 and look in the y direction where f (0,y) = cy2:

(ii) If f (x,y) is positive definite, then necessarily c > 0.

Do these conditions a > 0 and c > 0 guarantee that f (x,y) is always positive? The
answer is no. A large cross term 2bxy can pull the graph below zero.

Example 1. f (x,y) = x2−10xy+ y2. Here a = 1 and c = 1 are both positive. But f is
not positive definite, because f (1,1) =−8. The conditions a > 0 and c > 0 ensure that
f (x,y) is positive on the x and y axes. But this function is negative on the line x = y,
because b =−10 overwhelms a and c.

Example 2. In our original f the coefficient 2b = 4 was positive. Does this ensure a
minimum? Again the answer is no; the sign of b is of no importance! Even though its
second derivatives are positive, 2x2 + 4xy + y2 is not positive definite. Neither F nor f
has a minimum at (0,0) because f (1,−1) = 2−4+1 =−1.

It is the size of b, compared to a and c, that must be controlled. We now want a
necessary and sufficient condition for positive definiteness. The simplest technique is to
complete the square:

Express f (x,y)
using squares

f = ax2 +2bxy+ cy2 = a
(

x+
b
a

y
)2

+
(

c− b2

a

)
y2. (2)

The first term on the right is never negative, when the square is multiplied by a > 0.
But this square can be zero, and the second term must then be positive. That term
has coefficient (ac− b2)/a. The last requirement for positive definiteness is that this
coefficient must be positive:

(iii) If ax2 +2bxy+ cy2 stays positive, then necessarily ac > b2.

Test for a minimum: The conditions a > 0 and ac > b2 are just right. They guarantee
c > 0. The right side of (2) is positive, and we have found a minimum:
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6A ax2 +2bxy+cy2 is positive definite if and only if a > 0 and ac > b2. Any
f (x,y) has a minimum at a point where ∂F/∂x = ∂F/∂y = 0 with

∂F2

∂x2 > 0 and
[

∂F2

∂x2

][
∂F2

∂y2

]
>

[
∂F2

∂x∂y

]2

. (3)

Test for a maximum: Since f has a maximum whenever− f has a minimum, we just
reverse the signs of a, b, and c. This actually leaves ac > b2 unchanged: The quadratic
form is negative definite if and only if a < 0 and ac > b2. The same change applies for
a maximum of F(x,y).

Singular case ac = b2: The second term in equation (2) disappears to leave only
the first square—which is either positive semidefinite, when a > 0, or negative semidef-
inite, when a < 0. The prefix semi allows the possibility that f can equal zero, as it will
at the point x = b, y =−a. The surface z = f (x,y) degenerates from a bowl into a valley.
For f = (x+ y)2, the valley runs along the line x+ y = 0.

Saddle Point ac < b2: In one dimension, F(x) has a minimum or a maximum, or
F ′′ = 0. In two dimensions, a very important possibility still remains: The combination
ac−b2 may be negative. This occurred in both examples, when b dominated a and c. It
also occurs if a and c have opposite signs. Then two directions give opposite results—in
one direction f increases, in the other it decreases. It is useful to consider two special
cases:

Saddle points at (0,0) f1 = 2xy and f2 = x2− y2 and ac−b2 =−1.

In the first, b = 1 dominates a = c = 0. In the second, a = 1 and c =−1 have opposite
sign. The saddles 2xy and x2− y2 are practically the same; if we turn one through 45°
we get the other. They are also hard to draw.

These quadratic forms are indefinite, because they can take either sign. So we have
a stationary point that is neither a maximum or a minimum. It is called a saddle point.
The surface z = x2−y2 goes down in the direction of the y axis, where the legs fit (if you
still ride a horse). In case you switched to a car, think of a road going over a mountain
pass. The top of the pass is a minimum as you look along the range of mountains, but it
is a maximum as you go along the road.

Higher Dimensions: Linear Algebra

Calculus would be enough to find our conditions Fxx > 0 and FxxFyy > F2
xy for a minimum.

But linear algebra is ready to do more, because the second derivatives fit into a symmetric
matrix A. The terms ax2 and cy2 appear on the diagonal. The cross derivative 2bxy is
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split between the same entry b above and below. A quadratic f (x,y) comes directly from
a symmetric 2 by 2 matrix!

xTAx in R2 ax2 +2bxy+ cy2 =
[
x y

][
a b
b c

][
x
y

]
. (4)

This identity (please multiply it out) is the key to the whole chapter. It generalizes
immediately to n dimensions, and it is a perfect shorthand for studying maxima and
minima. When the variables are x1, . . . ,xn, they go into a column vector x. For any
symmetric matrix A, the product xTAx is a pure quadratic form f (x1, . . . ,xn):

xTAx in Rn
[
x1 x2 · xn

]



a11 a12 · a1n

a21 a22 · a2n

· · · ·
an1 an2 · ann







x1

x2

·
xn


 =

n

∑
i=1

n

∑
j=1

ai jxix j. (5)

The diagonal entries a11 to ann multiply x2
1 to x2

n. The pair ai j = a ji combines into
2ai jxix j. Then f = a11x2

1 +2a12x1x2 + · · ·+annx2
n.

There are no higher-order terms or lower-order terms—only second-order. The func-
tion is zero at x = (0, . . . ,0), and its first derivatives are zero. The tangent is flat; this is
a stationary point. We have to decide if x = 0 is a minimum or a maximum or a saddle
point of the function f = xTAx.

Example 3. f = 2x2 +4xy+ y2 and A =

[
2 2
2 1

]
→ saddle point.

Example 4. f = 2xy and A =

[
0 1
1 0

]
→ saddle point.

Example 5. A is 3 by 3 for 2x2
1−2x1x2 +2x2

2−2x2x3 +2x2
3:

f =
[
x1 x2 x3

]



2 −1 0
−1 2 −1
0 −1 2







x1

x2

x3


→ minimum at (0,0,0).

Any function F(x1, . . . ,xn) is approached in the same way. At a stationary point
all first derivatives are zero. A is the “second derivative matrix” with entries ai j =
∂ 2F/∂xi∂x j. This automatically equals a ji = ∂ 2F/∂x j∂xi, so A is symmetric. Then F
has a minimum when the pure quadratic xTAx is positive definite. These second-order
terms control F near the stationary point:

Taylor series F(x) = F(0)+ xT(grad F)+
1
2

xTAx+higher order terms. (6)

At a stationary point, grad F = (∂F/∂x1, . . . ,∂F/∂xn) is a vector of zeros. The second
derivatives in xTAx take the graph up or down (or saddle). If the stationary point is at x0
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instead of 0, F(x) and all derivatives are computed at x0. Then x changes to x− x0 on
the right-hand side.

The next section contains the tests to decide whether xTAx is positive (the bowl goes
up from x = 0). Equivalently, the tests decide whether the matrix A is positive defi-
nite—which is the main goal of the chapter.

Problem Set 6.1

1. The quadratic f = x2 +4xy+2y2 has a saddle point at the origin, despite the fact that
its coefficients are positive. Write f as a difference of two squares.

2. Decide for or against the positive definiteness of these matrices, and write out the
corresponding f = xTAx:

(a)

[
1 3
3 5

]
. (b)

[
1 −1
−1 1

]
. (c)

[
2 3
3 5

]
. (d)

[
−1 2
2 −8

]
.

The determinant in (b) is zero; along what line is f (x,y) = 0?

3. If a 2 by 2 symmetric matrix passes the tests a > 0, ac > b2, solve the quadratic
equation det(A−λ I) = 0 and show that both eigenvalues are positive.

4. Decide between a minimum, maximum, or saddle point for the following functions.

(a) F =−1+4(ex− x)−5xsiny+6y2 at the point x = y = 0.

(b) F = (x2−2x)cosy, with stationary point at x = 1, y = π .

5. (a) For which numbers b is the matrix A =
[

1 b
b 9

]
positive definite?

(b) Factor A = LDLT when b is in the range for positive definiteness.

(c) Find the minimum value of 1
2(x

2 +2bxy+9y2)− y for b in this range.

(d) What is the minimum if b = 3?

6. Suppose the positive coefficients a and c dominate b in the sense that a + c > 2b.
Find an example that has ac < b2, so the matrix is not positive definite.

7. (a) What 3 by 3 symmetric matrices A1 and A2 correspond to f1 and f2?

f1 = x2
1 + x2

2 + x2
3−2x1x2−2x1x3 +2x2x3

f2 = x2
1 +2x2

2 +11x2
3−2x1x2−2x1x3−4x2x3.

(b) Show that f1 is a single perfect square and not positive definite. Where is f1

equal to 0?

(c) Factor A2 into LLT, Write f2 = xTA2x as a sum of three squares.

8. If A =
[

a b
b c

]
is positive definite, test A−1 = [ p q

q r ] for positive definiteness.
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9. The quadratic f (x1,x2) = 3(x1 + 2x2)2 + 4x2
2 is positive. Find its matrix A, factor it

into LDLT, and connect the entries in D and L to 3, 2, 4 in f .

10. If R = [ p q
q r ], write out R2 and check that it is positive definite unless R is singular.

11. (a) If A =
[

a b
b c

]
is Hermitian (complex b), find its pivots and determinant.

(b) Complete the square for xHAx. Now xH = [x1 x2] can be complex

a|x1|2 +2Rebx1x2 + c|x2|2 = a|x1 +(b/a)x2|2 + |x2|2.

(c) Show that a > 0 and ac > |b|2 ensure that A is positive definite.

(d) Are the matrices
[ 1 1+i

1−i 2

]
and

[ 3 4+i
4−i 6

]
positive definite?

12. Decide whether F = x2y2− 2x− 2y has a minimum at the point x = y = 1 (after
showing that the first derivatives are zero at that point).

13. Under what conditions on a, b, c is ax2 +2bxy+ cy2 > x2 + y2 for all x, y?

Problems 14–18 are about tests for positive definiteness.

14. Which of A1, A2, A3, A4 has two positive eigenvalues? Test a > 0 and ac > b2, don’t
compute the eigenvalues. Find an x so that xTA1x < 0.

A1 =

[
5 6
6 7

]
A2 =

[
−1 −2
−2 −5

]
A3 =

[
1 10

10 100

]
A4 =

[
1 10

10 101

]
.

15. What is the quadratic f = ax2 +2bxy+cy2 for each of these matrices? Complete the
square to write f as a sum of one or two squares d1( )2 +d2( )2.

A =

[
1 2
2 9

]
and A =

[
1 3
3 9

]
.

16. Show that f (x,y) = x2 + 4xy + 3y2 does not have a minimum at (0,0) even though
it has positive coefficients. Write f as a difference of squares and find a point (x,y)
where f is negative.

17. (Important) If A has independent columns, then ATA is square and symmetric and
invertible (Section 4.2). Rewrite xTATAx to show why it is positive except when
x = 0. Then ATA is positive definite.

18. Test to see if ATA is positive definite in each case:

A =

[
1 2
0 3

]
, A =




1 1
1 2
2 1


 , and A =

[
1 1 2
1 2 1

]
.
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19. Find the 3 by 3 matrix A and its pivots, rank, eigenvalues, and determinant:

[
x1 x2 x3

]

 A







x1

x2

x3


 = 4(x1− x2 +2x3)2.

20. For F1(x,y) = 1
4x4 + x2y + y2 and F2(x,y) = x3 + xy− x, find the second derivative

matrices A1 and A2:

A =

[
∂ 2F/∂x2 ∂ 2F/∂x∂y

∂ 2F/∂y∂x ∂ 2F/∂y2

]
.

A1 is positive definite, so F1 is concave up (= convex). Find the minimum point of
F1 and the saddle point of F2 (look where first derivatives are zero).

21. The graph of z = x2 + y2 is a bowl opening upward. The graph of z = x2− y2 is a
saddle. The graph of z = −x2− y2 is a bowl opening downward. What is a test on
F(x,y) to have a saddle at (0,0)?

22. Which values of c give a bowl and which give a saddle point for the graph of z =
4x2 +12xy+ cy2? Describe this graph at the borderline value of c.

6.2 Tests for Positive Definiteness

Which symmetric matrices have the property that xTAx > 0 for all nonzero vectors x?
There are four or five different ways to answer this question, and we hope to find all of
them. The previous section began with some hints about the signs of eigenvalues. but
that gave place to the tests on a, b, c:

b =

[
a b
b c

]
is positive definite when a > 0 and ac−b2 > 0.

From those conditions, both eigenvalues are positive. Their product λ1λ2 is determinant
ac−b2 > 0, so the eigenvalues are either both positive or both negative. They must be
positive because their sum is the trace a+ c > 0.

Looking at a and ac−b2, it is even possible to spot the appearance of the pivots. They
turned up when we decomposed xTAx into a sum of squares:

Sum of squares ax2 +2bxy+ cy2 = a
(

x+
b
a

y
)2

+
ac−b2

a
y2. (1)

Those coefficients a and (ac− b2)/a are the pivots for a 2 by 2 matrix. For larger
matrices the pivots still give a simple test for positive definiteness: xTAx stays positive
when n independent squares are multiplied by positive pivots.
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One more preliminary remark. The two parts of this hook were linked by the chapter
on determinants. Therefore we ask what part determinants play. It is not enough to
require that the determinant of A is positive. If a = c = −1 and b = 0. then detA = 1
but A = −I = negative definite. The determinant test is applied not only to A itself,
giving ac−b2 > 0, but also to the 1 by 1 submatrix a in the upper left-hand corner.

The natural generalization will involve all n of the upper left submatrices of A:

A1 =
[
a11

]
, A2 =

[
a11 a12

a21 a22

]
, A3 =




a11 a12 a13

a21 a22 a23

a31 a32 a33


 , · · · , An = A.

Here is the main theorem on positive definiteness, and a reasonably detailed proof:

6B Each of the following tests is a necessary and sufficient condition for the
real symmetric matrix A to be positive definite:

(I) xTkx > 0 for all nonzero real vectors x.

(II) All the eigenvalues of A satisfy λi > 0.

(III) All the upper left submatrices Ak have positive determinants.

(IV) All the pivots (without row exchanges) satisfy dk > 0.

Proof. Condition I defines a positive definite matrix. Our first step shows that each
eigenvalue will be positive:

If Ax = λx, then xTAx = xTλx = λ‖x‖2.

A positive definite matrix has positive eigenvalues, since xTAx > 0.
Now we go in the other direction. If all λi > 0, we have to prove xTAx > 0 for

every vector x (not just the eigenvectors). Since symmetric matrices have a full set of
orthonormal eigenvectors, any x is a combination c1x1 + · · ·+ cnxn. Then

Ax = c1Ax1 + · · ·+ cnAxn = c1λ1x1 + · · ·+ cnλnxn.

Because of the orthogonality xT
i xi = 0, and the normalization xT

i xi = 1,

xTAx =
(
c1xT

1 + · · ·+ cnxT
n
)
(c1λ1x1 + · · ·+ cnλnxn)

= c2
1λ1 + · · ·+ c2

nλn.
(2)

If every λi > 0, then equation (2) shows that xTAx > 0. Thus condition II implies condi-
tion I.

If condition I holds, so does condition III: The determinant of A is the product of
the eigenvalues. And if condition I holds, we already know that these eigenvalues are
positive. But we also have to deal with every upper left submatrix Ak. The trick is to
look at all nonzero vectors whose last n− k components are zero:

xTAx =
[
xT

k 0
][

Ak ∗
∗ ∗

][
xk

0

]
= xT

k Akxk > 0.
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Thus Ak is positive definite. Its eigenvalues (not the same λ1!) must be positive. Its
determinant is their product, so all upper left determinants are positive.

If condition III holds, so does condition IV: According to Section 4.4, the kth pivot
dk is the ratio of detAk to detAk−1. If the determinants are all positive, so are the pivots.

If condition IV holds, so does condition I: We are given positive pivots, and must
deduce that xTAx > 0. This is what we did in the 2 by 2 case, by completing the square.
The pivots were the numbers outside the squares. To see how that happens for symmetric
matrices of any size, we go back to elimination on a symmetric matrix: A = LDLT.

Example 1. Positive pivots 2, 3
2 , and 4

3 :

A =




2 −1 0
−1 2 −1
0 −1 2


 =




1 0 0
−1

2 1 0
0 −2

3 1







2
3
2

4
3







1 −1
2 0

0 1 −2
3

0 0 1


 = LDLT.

I want to split xTAx into xTLDLTx:

If x =




u
v
w


 , then LTx =




1 −1
2 0

0 1 −2
3

0 0 1







u
v
w


 =




u− 1
2v

v− 2
3w

w


 .

So xTAx is a sum of squares with the pivots 2, 3
2 , and 4

3 as coefficients:

xTAx = (LTx)TD(LTx) = 2
(

u− 1
2

v
)2

+
3
2

(
v− 2

3
w

)2

+
4
3
(w)2.

Those positive pivots in D multiply perfect squares to make xTAx positive. Thus condi-
tion IV implies condition I, and the proof is complete.

It is beautiful that elimination and completing the square are actually the same. Elim-
ination removes x1 from all later equations. Similarly, the first square accounts for all
terms in xTAx involving x1. The sum of squares has the pivots outside. The multipliers
`i j are inside! You can see the numbers −1

2 and −2
3 inside the squares in the example.

Every diagonal entry aii must be positive. As we know from the examples, however,
it is far from sufficient to look only at the diagonal entries.

The pivots di are not to be confused with the eigenvalues. For a typical positive
definite matrix, they are two completely different sets of positive numbers, In our 3 by 3
example, probably the determinant test is the easiest:

Determinant test detA1 = 2, detA2 = 3, detA3 = detA = 4.

The pivots are the ratios d1 = 2, d2 = 3
2 , d3 = 4

3 . Ordinarily the eigenvalue test is the
longest computation. For this A we know the λ ’s are all positive:

Eigenvalue test λ1 = 2−
√

2, λ2 = 2, λ3 = 2+
√

2.
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Even though it is the hardest to apply to a single matrix, eigenvalues can be the most
useful test for theoretical purposes. Each test is enough by itself .

Positive Definite Matrices and Least Squares

I hope you will allow one more test for positive definiteness. It is already close. We
connected positive definite matrices to pivots (Chapter 1), determinants (Chapter 4), and
eigenvalues (Chapter 5). Now we see them in the least-squares problems in Chapter 3,
coming from the rectangular matrices of Chapter 2.

The rectangular matrix will be R and the least-squares problem will be Rx = b. It has
m equations with m≥ n (square systems are included). The least-square choice x̂ is the
solution of RTRx̂ = RTb. That matrix ARTR is not only symmetric but positive definite,
as we now show—provided that the n columns of R are linearly independent:

6C The symmetric matrix A is positive definite if and only if

(V) There is a matrix R with independent columns such that A = RTR.

The key is to recognize xTAx as xTRTRx = (Rx)T(Rx). This squared length ‖Rx‖2 is
positive (unless x = 0), because R has independent columns. (If x is nonzero then Rx is
nonzero.) Thus xTRTRx > 0 and RTR is positive definite.

It remains to find an R For which A = RTR. We have almost done this twice already:

Elimination A = LDLT = (L
√

D)(
√

DLT). So take R =
√

DLT.

This Cholesky decomposition has the pivots split evenly between L and LT.

Eigenvalues A = QΛQT = (Q
√

Λ)(
√

ΛQT). So take R =
√

ΛQT. (3)

A third possibility is R = Q
√

ΛQT, the symmetric positive definite square root of A.
There are many other choices, square or rectangular, and we can see why. If you multiply
any R by a matrix Q with orthonormal columns, then (QR)T(QR) = RTQTQR = RTIR =
A. Therefore QR is another choice.

Applications of positive definite matrices are developed in my earlier book Intro-
duction to Applied Mathematics and also the new Applied Mathematics and Scientific
Computing (see www.wellesleycambridge.com). We mention that Ax = λMx
arises constantly in engineering analysis. If A and M are positive definite, this general-
ized problem is parallel to the familiar Ax = λx, and λ > 0. M is a mass matrix for the
finite element method in Section 6.4.

Semidefinite Matrices

The tests for semidefiniteness will relax xTAx > 0, λ > 0, d > 0, and det > 0, to allow
zeros to appear. The main point is to see the analogies with the positive definite case.
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6D Each of the following tests is a necessary and sufficient condition for a
symmetric matrix A to be positive semidefinite:

(I′) xTAx≥ 0 for all vectors x (this defines positive semidefinite).

(II′) All the eigenvalues of A satisfy λi ≥ 0.

(III′) No principal submatrices have negative determinants.

(IV′) No pivots are negative.

(V′) There is a matrix R, possibly with dependent columns, such that A = RTR.

The diagonalization A = QΛQT leads to xTAx = xTQΛQTx = yTΛy. If A has rank r, there
are r nonzero λ ’s and r perfect squares in yTΛy = λ1y2

1 + · · ·+λry2
r .

Note. The novelty is that condition III′ applies to all the principal submatrices, not only
those in the upper left-hand corner. Otherwise, we could not distinguish between two
matrices whose upper left determinants were all zero:

[
0 0
0 1

]
is positive semidefinite, and

[
0 0
0 −1

]
is negative semidefinite.

A row exchange comes with the same column exchange to maintain symmetry.

Example 2.

A =




2 −1 −1
−1 2 −1
−1 −1 2


 is positive semidefinite, by all five tests:

(I′) xTAx = (x1− x2)2 +(x1− x3)2 +(x2− x3)2 ≥ 0 (zero if x1 = x2 = x3).

(II′) The eigenvalues are λ1 = 0, λ2 = λ3 = 3 (a zero eigenvalue).

(III′) detA = 0 and smaller determinants are positive.

(IV′) A =




2 −1 −1
−1 2 −1
−1 −1 2


→




2 0 0
0 3

2 −3
2

0 −3
2

3
2


→




2 0 0
0 3

2 0
0 0 0


 (missing pivot).

(V′) A = RTR with dependent columns in R:



2 −1 −1
−1 2 −1
−1 −1 2


 =




1 −1 0
0 1 −1
−1 0 1







1 0 −1
−1 1 0
0 −1 1


 (1,1,1) in the nullspace.

Remark. The conditions for semidefiniteness could also be deduced from the origin con-
ditions I-V for definiteness by the following trick: Add a small multiple of the identity
giving a positive definite matrix A + εI. Then let ε approach zero. Since the determi-
nants and eigenvalues depend continuously on ε , they will be positive until the very last
moment. At ε = 0 they must still be nonnegative.
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My class often asks about unsymmetric positive definite matrices. I never use that
term. One reasonable definition is that the symmetric part 1

2(A+AT) should be positive
definite. That guarantees that the real parts of the eigenvalues are positive. But it is not
necessary: A =

[
1 4
0 1

]
has λ > 0 but 1

2(A+AT) =
[

1 2
2 1

]
is indefinite.

If Ax = λx, then xHAx = λxHx and xHAHx = λxHx.

Adding, 1
2xH(A+AH)x = (Reλ )xHx > 0, so that Reλ > 0.

Ellipsoids in n Dimensions

Throughout this book, geometry has helped the matrix algebra. A linear equation pro-
duced a plane. The system Ax = b gives an intersection of planes. Least squares gives
a perpendicular projection. The determinant is the volume of a box. Now, for a positive
definite matrix and its xTAx, we finally get a figure that is curved. It is an ellipse in two
dimensions, and an ellipsoid in n dimensions.

The equation to consider is xTAx = 1. If A is the identity matrix, this simplifies to
x2

1 + x2
2 + · · ·+ x2

n = 1. This is the equation of the “unit sphere” in Rn. If A = 4I, the
sphere gets smaller. The equation changes to 4x2

1 + · · ·+4x2
n = 1. Instead of (1,0, . . . ,0),

it goes through (1
2 ,0, . . . ,0). The center is at the origin, because if x satisfies xTAx = 1,

so does the opposite vector −x. The important step is to go from the identity matrix to a
diagonal matrix:

Ellipsoid For A =




4
1

1
9


 , the equation is xTAx = 4x2

1 + x2
2 + 1

9x2
3 = 1.

Since the entries are unequal (and positive!) the sphere changes to an ellipsoid.
One solution is x = (1

2 ,0,0) along the first axis. Another is x = (0,1,0). The major
axis has the farthest point x = (0,0,3). It is like a football or a rugby ball, but not quite—
those are closer to x2

1 + x2
2 + 1

2x2
3 = 1. The two equal coefficients make them circular in

the x1-x2 plane, and much easier to throw!
Now comes the final step, to allow nonzeros away from the diagonal of A.

Example 3. A =
[

5 4
4 5

]
and xTAx = 5u2 + 8uv + 5v2 = 1. That ellipse is centered at

u = v = 0, but the axes are not so clear. The off-diagonal 4s leave the matrix positive
definite, but they rotate the ellipse—its axes no longer line up with the coordinate axes
(Figure 6.2). We will show that the axes of the ellipse point toward the eigenvector of
A. Because A = AT, those eigenvectors and axes are orthogonal. The major axis of the
ellipse corresponds to the smallest eigenvalue of A.

To locate the ellipse we compute λ1 = 1 and λ2 = 9. The unit eigenvectors are
(1,−1)/

√
2 and (1,1)/

√
2. Those are at 45° angles with the u-v axes, and they are

lined up with the axes of the ellipse. The way to see the ellipse properly is to rewrite
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u

v

b

b

Q = 1

3

(

1
√

2
, 1
√

2

)

P =
(

1
√

2
,− 1

√

2

)

−1 11

Figure 6.2: The ellipse xTAx = 5u2 +8uv+5v2 = 1 and its principal axes.

xTAx = 1:

New squares 5u2 +8uv+ v2 =
(

u√
2
− v√

2

)2

+9
(

u√
2

+
v√
2

)2

= 1. (4)

λ = 1 and λ = 9 are outside the squares. The eigenvectors are inside. This is different
from completing the square to 5(u+ 4

5v)2 + 9
5v2, with the pivots outside.

The first square equals 1 at (1/
√

2,−1/
√

2) at the end of the major axis. The minor
axis is one-third as long, since we need (1

3)
2 to cancel the 9.

Any ellipsoid xTAx = 1 can be simplified in the same way. The key step is to diago-
nalize A = QΛQT. We straightened the picture by rotating the axes. Algebraically, the
change to y = QTx produces a sum of squares:

xTAx = (xTQ)Λ(QTx) = yTΛy = λ1y2
1 + · · ·+λny2

n = 1. (5)

The major axis has y1 = 1/
√

λ1 along the eigenvector with the smallest eigenvalue.
The other axes are along the other eigenvectors. Their lengths are 1/

√
λ2, . . . ,1/

√
λn.

Notice that the λ ’s must be positive—the matrix must be positive definite—or these
square roots are in trouble. An indefinite equation y2

1− 9y2
2 = 1 describes a hyperbola

and not an ellipse. A hyperbola is a cross-section through a saddle, and an ellipse is a
cross-section through a bowl.

The change from x to y = QTx rotates the axes of the space, to match the axes of
the ellipsoid. In the y variables we can see that it is an ellipsoid, because the equation
becomes so manageable:

6E Suppose A = QΛQT with λi > 0. Rotating y = QTx simplifies xTAx = 1:

xTQΛQTx = 1, yTΛy = 1, and λ1y2
1 + · · ·+λny2

n = 1.

This is the equation of an ellipsoid. Its axes have lengths 1/
√

λ1, . . . ,1/
√

λn

from the center. In the original x-space they point along the eigenvectors of A.
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The Law of Inertia

For elimination and eigenvalues, matrices become simpler by elementary operations
The essential thing is to know which properties of the matrix stay unchanged. When
a multiple of one row is subtracted from another, the row space, nullspace. rant and
determinant all remain the same. For eigenvalues, the basic operation was a similarity
transformation A→ S−1AS (or A→M−1AM). The eigenvalues are unchanged (and also
the Jordan form). Now we ask the same question for symmetric matrices: What are the
elementary operations and their invariants for xTAx?

The basic operation on a quadratic form is to change variables. A new vector y is
related to x by some nonsingular matrix, x =Cy. The quadratic form becomes yTCTACy.
This shows the fundamental operation on A:

Congruence transformation A→CTAC for some nonsingular C. (6)

The symmetry of A is preserved, since CTAC remains symmetric. The real question is,
What other properties are shared by A and CTAC? The answer is given by Sylvester’s
law of inertia.

6F CTAC has the same number of positive eigenvalues, negative eigenvalues,
and zero eigenvalues as A.

The signs of the eigenvalues (and not the eigenvalues themselves) are preserved by a
congruence transformation. In the proof, we will suppose that A is nonsingular. Then
CTAC is also nonsingular, and there are no zero eigenvalues to worry about. (Otherwise
we can work with the nonsingular A+ εI and A− εI, and at the end let ε → 0.)

Proof. We want to borrow a trick from topology. Suppose C is linked to an orthogonal
matrix Q by a continuous chain of nonsingular matrices C(t). At t = 0 and t = 1, C(0) =
C and C(1) = Q. Then the eigenvalues of C(t)TAC(t) will change gradually, as t goes
from 0 to 1, from the eigenvalues of CTAC to the eigenvalues of QTAQ. Because C(t) is
never singular, none of these eigenvalues can touch zero (not to mention cross over it!).
Therefore the number of eigenvalues to the right of zero, and the number to the left, is
the same for CTAC as for QTAQ. And A has exactly the same eigenvalues as the similar
matrix Q−1AQ = QTAQ.

One good choice for Q is to apply Gram-Schmidt to the columns of C. Then C = QR,
and the chain of matrices is C(t) = tQ+(1− t)QR. The family C(t) goes slowly through
Gram-Schmidt, from QR to Q. It is invertible, because Q is invertible and the triangular
factor tI +(1− t)R has positive diagonal. That ends the proof.

Example 4. Suppose A = I. Then CTAC = CTC is positive definite. Both I and CTC
have n positive eigenvalues, confirming the law of inertia.

Example 5. If A =
[

1 0
0 −1

]
, then CTAC has a negative determinant:

detCTAC = (detCT)(detA)(detC) =−(detC)2 < 0.
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Then CTAC must have one positive and one negative eigenvalue, like A.

Example 6. This application is the important one:

6G For any symmetric matrix A, the signs of the pivots agree with the signs
of the eigenvalues. The eigenvalue matrix Λ and the pivot matrix D have the
same number of positive entries, negative entries, and zero entries.

We will assume that A allows the symmetric factorization A = LDLT (without row ex-
changes). By the law of inertia, A has the same number of positive eigenvalues as D.
But the eigenvalues of D are just its diagonal entries (the pivots). Thus the number of
positive pivots matches the number of positive eigenvalues of A.

That is both beautiful and practical. It is beautiful because it brings together (for
symmetric matrices) two parts of this book that were previously separate: pivots and
eigenvalues. It is also practical, because the pivots can locate the eigenvalues:

A has positive pivots
A−2I has a negative pivot

A =




3 3 0
3 10 7
0 7 8


 A−2I =




1 3 0
3 8 7
0 7 6


 .

A has positive eigenvalues, by our test. But we know that λmin is smaller than 2, because
subtracting 2 dropped it below zero. The next step looks at A− I, to see if λmin < 1. (It
is, because A− I has a negative pivot.) That interval containing λ is cut in half at every
step by checking the signs of the pivots.

This was almost the first practical method of computing eigenvalues. It was dominant
about 1960, after one important improvement—to make A tridiagonal first. Then the
pivots are computed in 2n steps instead of 1

6n3. Elimination becomes fast, and the search
for eigenvalues (by halving the intervals) becomes simple. The current favorite is the
QR method in Chapter 7.

The Generalized Eigenvalue Problem

Physics, engineering, and statistics are usually kind enough to produce symmetric ma-
trices in their eigenvalue problems. But sometimes Ax = λx is replaced by Ax = λMx.
There are two matrices rather than one.

An example is the motion of two unequal masses in a line of springs:

m1
d2v
dt2 +2v−w = 0

m2
d2w
dt2 − v+2w = 0

or

[
m1 0
0 m2

]
d2u
dt2 +

[
2 −1
−1 2

]
u = 0. (7)

When the masses were equal, m1 = m2 = 1, this was the old system u′′+ Au = 0. Now
it is Mu′′+Au = 0, with a mass matrix M. The eigenvalue problem arises when we look
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for exponential solutions eiωtx:

Mu′′+Au = 0 becomes M(iω)2eiωtx+Aeiωtx = 0. (8)

Canceling eiωt , and writing λ for ω2, this is an eigenvalue problem:

Generalized problem Ax = λMx

[
2 −1
−1 2

]
x = λ

[
m1 0
0 m2

]
x. (9)

There is a solution when A−λM is singular. The special choice M = I brings back the
usual det(A−λ I) = 0. We work out det(A−λM) with m1 = 1 and m2 = 2:

det

[
2−λ −1
−1 2−2λ

]
= 2λ 2−6λ +3 = 0 gives λ =

3±√3
2

.

For the eigenvector x1(
√

3−1,1), the two masses oscillate together—but the first mass
only moves as far as

√
3− 1 ≈ .73. In the fastest mode, the components of x2 = (1 +√

3,−1) have opposite signs and the masses move in opposite directions. This time the
smaller mass goes much further.

The underlying theory is easier to explain if M is split into RTR. (M is assumed to be
positive definite.) Then the substitution y = Rx changes

Ax = λMx = λRTRx into AR−1y = λRTy.

Writing C for R−1, and multiplying through by (RT)−1 = CT, this becomes a standard
eigenvalue problem for the single symmetric matrix CTAC:

Equivalent problem CTACy = λy. (10)

The eigenvalues λ j are the same as for the original Ax = λMx. and the eigenvectors are
related by y j = Rx j. The properties of CTAC lead directly to thc properties of Ax = λMx,
when A = AT and M is positive definite:

1. The eigenvalues for Ax = λMx are real, because CTAC is symmetric.

2. The λ ’s have the same signs as the eigenvalues of A, by the law of inertia.

3. CTAC has orthogonal eigenvectors y j. So the eigenvectors of Ax = λMx have

“M-orthogonality” xT
i Mx j = xT

i RTRx j = yT
i y j = 0. (11)

A and M are being simultaneously diagonalized. If S has the x j in its columns, then
STAS = Λ and STMS = I. This is a congruence transformation, with ST on the left,
and not a similarity transformation with S−1. The main point is easy to summarize: As
long as M is positive definite, the generalized eigenvalue problem Ax =−λMx behaves
exactly like Ax = λx.
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Problem Set 6.2

1. For what range of numbers a and b are the matrices A and B positive definite?

A =




a 2 2
2 a 2
2 2 a


 B =




1 2 4
2 b 8
4 8 7


 .

2. Decide for or against the positive definiteness of

A =




2 −1 −1
−1 2 −1
−1 −1 2


 , B =




2 −1 −1
−1 2 1
−1 1 2


 , C =




0 1 2
1 0 1
2 1 0




2

.

3. Construct an indefinite matrix with its largest entries on the main diagonal:

A =




1 b −b
b 1 b
−b b 1


 with |b|< 1 can have detA < 0.

4. Show from the eigenvalues that if A is positive definite, so is A2 and so is A−1.

5. If A and B are positive definite, then A+B is positive definite. Pivots and eigenvalues
are not convenient for A+B. Much better to prove xT(A+B)x > 0.

6. From the pivots, eigenvalues, and eigenvectors of A =
[

5 4
4 5

]
, write A as RTR in three

ways: (L
√

D)(
√

DLT), (Q
√

Λ)(
√

ΛQT), and (Q
√

ΛQT)(Q
√

ΛQT).

7. If A = QΛQT is symmetric positive definite, then R = Q
√

ΛQT is its symmetric pos-
itive definite square root. Why does R have positive eigenvalues? Compute R and
verify R2 = A for

A =

[
10 6
6 10

]
and A =

[
10 −6
−6 10

]
.

8. If A is symmetric positive definite and C is nonsingular, prove that B = CTAC is also
symmetric positive definite.

9. If A = RTR prove the generalized Schwarz inequality |xTAy|2 ≤ (xTAx)(yTAy).

10. The ellipse u2 +4v2 = 1 corresponds to A =
[

1 0
0 4

]
. Write the eigenvalues and eigen-

vectors, and sketch the ellipse.

11. Reduce the equation 3u2 − 2
√

2uv + 2v2 = 1 to a sum of squares by finding the
eigenvalues of the corresponding A, and sketch the ellipse.
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12. In three dimensions, λ1y2
1 +λ2y2

2 +λ3y2
3 = 1 represents an ellipsoid when all λi > 0.

Describe all the different kinds of surfaces that appear in the positive semidefinite
case when one or more of the eigenvalues is zero.

13. Write down the five conditions for a 3 by 3 matrix to be negative definite (−A is
positive definite) with special attention to condition III: How is det(−A) related to
detA?

14. Decide whether the following matrices are positive definite, negative definite, semidef-
inite, or indefinite:

A =




1 2 3
2 5 4
3 4 9


 , B =




1 2 0 0
2 6 −2 0
0 −2 5 −2
0 0 −2 3


 , C =−B, D = A−1.

Is there a real solution to −x2−5y2−9z2−4xy−6xz−8yz = 1?

15. Suppose A is symmetric positive definite and Q is an orthogonal matrix. True or
false:

(a) QTAQ is a diagonal matrix.

(b) QTAQ is symmetric positive definite.

(c) QTAQ has the same eigenvalues as A.

(d) e−A is symmetric positive definite.

16. If A is positive definite and a11 is increased, prove from cofactors that the determinant
is increased. Show by example that this can fail if A is indefinite.

17. From A = RTR. show for positive definite matrices that detA ≤ a11a22 · · ·ann. (The
length squared of column j of R is a j j. Use determinant = volume.)

18. (Lyapunov test for stability of M) Suppose AM + MHA = −I with positive definite
A. If Mx = λx show that ReA < 0. (Hint: Multiply the first equation by xH and x.)

19. Which 3 by 3 symmetric matrices A produce these functions f = xTAx? Why is the
first matrix positive definite but not the second one?

(a) f = 2(x2
1 + x2

2 + x2
3− x1x2− x2x3).

(b) f = 2(x2
1 + x2

2 + x2
3− x1x2− x1x3− x2x3).

20. Compute the three upper left determinants to establish positive definiteness. Verify
that their ratios give the second and third pivots.

A =




2 2 0
2 5 3
0 3 8


 .
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21. A positive definite matrix cannot have a zero (or even worse, a negative number) on
its diagonal. Show that this matrix fails to have xTAx > 0:

[
x1 x2 x3

]



4 1 1
1 0 2
1 2 5







x1

x2

x3


 is not positive when (x1,x2,x3) = ( , , ).

22. A diagonal entry a j j of a symmetric matrix cannot be smaller than all λ ’s. If it
were, then A−a j jI would have eigenvalues and would be positive definite. But
A−a j jI has a on the main diagonal.

23. Give a quick reason why each of these statements is true:

(a) Every positive definite matrix is invertible.

(b) The only positive definite projection matrix is P = I.

(c) A diagonal matrix with positive diagonal entries is positive definite.

(d) A symmetric matrix with a positive determinant might not be positive definite!

24. For which s and t do A and B have all λ > 0 (and are therefore positive definite)?

A =




s −4 −4
−4 s −4
−4 −4 s


 and B =




t 3 0
3 t 4
0 4 t


 .

25. You may have seen the equation for an ellipse as ( x
a)

2 +( y
b)

2 = 1. What are a and
b when the equation is written as λ1x2 + λ2y2 = 1? The ellipse 9x2 + 16y2 = 1 has
half-axes with lengths a = , and b = .

26. Draw the tilted ellipse x2 + xy+ y2 = 1 and find the half-lengths of its axes from the
eigenvalues of the corresponding A.

27. With positive pivots in D, the factorization A = LDLT becomes L
√

D
√

DLT. (Square
roots of the pivots give D =

√
D
√

D.) Then C = L
√

D yields the Cholesky factor-
ization A = CCT, which is “symmetrized LU”:

From C =

[
3 0
1 2

]
find A. From A =

[
4 8
8 25

]
find C.

28. In the Cholesky factorization A =CCT, with C = L
√

D, the square roots of the pivots
are on the diagonal of C. Find C (lower triangular) for

A =




9 0 0
0 1 2
0 2 8


 and A =




1 1 1
1 2 2
1 2 7


 .
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29. The symmetric factorization A = LDLT means that xTAx = xTLDLTx:

[
x y

][
a b
b c

][
x
y

]
=

[
x y

][
1 0

b/a 1

][
a 0
0 (ac−b2)/a

][
1 b/a
0 1

][
x
y

]
.

The left-hand side is ax2 + 2bxy + cy2. The right-hand side is a(x + b
ay)2 + y2.

The second pivot completes the square! Test with a = 2, b = 4, c = 10.

30. Without multiplying A =
[

cosθ −sinθ
sinθ cosθ

][
2 0
0 5

][
cosθ sinθ
−sinθ cosθ

]
, find

(a) the determinant of A. (b) the eigenvalues of A.
(c) the eigenvectors of A. (d) a reason why A is symmetric positive definite.

31. For the semidefinite matrices

A =




2 −1 −1
−1 2 −1
−1 −1 2


 (rank 2) and B =




1 1 1
1 1 1
1 1 1


 (rank 1),

write xTAx as a sum of two squares and xTBx as one square.

32. Apply any three tests to each of the matrices

A =




1 1 1
1 1 1
1 1 0


 and B =




2 1 2
1 1 1
2 1 2


 ,

to decide whether they are positive definite, positive semidefinite, or indefinite.

33. For C =
[

2 0
0 −1

]
and A =

[
1 1
1 1

]
, confirm that CTAC has eigenvalues of the same signs

as A. Construct a chain of nonsingular matrices C(t) linking C to an orthogonal
Q. Why is it impossible to construct a nonsingular chain linking C to the identity
matrix?

34. If the pivots of a matrix are all greater than 1, are the eigenvalues all greater than 1?
Test on the tridiagonal −1, 2, −1 matrices.

35. Use the pivots of A− 1
2I to decide whether A has an eigenvalue smaller than 1

2 :

A− 1
2

I =




2.5 3 0
3 9.5 7
0 7 7.5


 .

36. An algebraic proof of the law of inertia starts with the orthonormal eigenvectors
x1, . . . ,xp of A corresponding to eigenvalues λi > 0. and the orthonormal eigenvectors
y1, . . . ,yq of CTAC corresponding to eigenvalues µi < 0.



366 Chapter 6 Positive Definite Matrices

(a) To prove that the p + q vectors x1, . . . ,xp, Cy1, . . . ,Cyq are independent, assume
that some combination gives zero:

a1x1 + · · ·+apxp = b1Cy1 + · · ·+bqCyq (= z, say).

Show that zTAz = λ1a2
1 + · · ·+λpa2

p ≥ 0 and zTAz = µ1b2
1 + · · ·+ µqb2

q ≤ 0.

(b) Deduce that the a’s and b’s are zero (proving linear independence). From that
deduce p+q≤ n.

(c) The same argument for the n− p negative λ ’s and the n− q positive µ’s gives
n− p + n− q ≤ n. (We again assume no zero eigenvalues—which are handled
separately). Show that p + q = n, so the number p of positive λ ’s equals the
number n−q of positive µ’s—which is the law of inertia.

37. If C is nonsingular, show that A and CTAC have the same rank. Thus they have the
same number of zero eigenvalues.

38. Find by experiment the number of positive, negative, and zero eigenvalues of

A =

[
I B

BT 0

]

when the block B (of order 1
2n) is nonsingular.

39. Do A and CTAC always satisfy the law of inertia when C is not square?

40. In equation (9) with m1 = 1 and m2 = 2, verify that the normal modes are M-
orthogonal: xT

1 Mx2 = 0.

41. Find the eigenvalues and eigenvectors of Ax = λMx:
[

6 −3
−3 6

]
x =

λ
18

[
4 1
1 4

]
x.

42. If the symmetric matrices A and M are indefinite, Ax = λMx might not have real
eigenvalues. Construct a 2 by 2 example.

43. A group of nonsingular matrices includes AB and A−1 if it includes A and B. “Prod-
ucts and inverses stay in the group.” Which of these sets are groups? Positive definite
symmetric matrices A, orthogonal matrices Q, all exponentials etA of a fixed matrix
A, matrices P with positive eigenvalues, matrices D with determinant 1. Invent a
group containing only positive definite matrices.
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6.3 Singular Value Decomposition

A great matrix factorization has been saved for the end of the basic course. UΣV T joins
with LU from elimination and QR from orthogonalization (Gauss and Gram-Schmidt).
Nobody’s name is attached; A = UΣV T is known as the “SVD” or the singular value
decomposition. We want to describe it, to prove it, and to discuss its applications—
which are many and growing.

The SVD is closely associated with the eigenvalue-eigenvector factorization QΛQT of
a positive definite matrix. The eigenvalues are in the diagonal matrix Λ. The eigenvector
matrix Q is orthogonal (QTQ = I) because eigenvectors of a symmetric matrix can be
chosen to be orthonormal. For most matrices that is not true, and for rectangular matrices
it is ridiculous (eigenvalues undefined). But now we allow the Q on the left and the QT

on the right to be any two orthogonal matrices U and V T—not necessarily transposes of
each other. Then every matrix will split into A = UΣV T.

The diagonal (but rectangular) matrix Σ has eigenvalues from ATA, not from A! Those
positive entries (also called sigma) will be σ1, . . . ,σr. They are the singular values of A.
They fill the first r places on the main diagonal of Σ—when A has rank r. The rest of Σ
is zero.

With rectangular matrices, the key is almost always to consider ATA and AAT.

Singular Value Decomposition: Any m by n matrix A can be factored
into

A = UΣV T = (orthogonal)(diagonal)(orthogonal).

The columns of U (m by m) are eigenvectors of AAT, and the columns of V (n
by n) are eigenvectors of ATA. The r singular values on the diagonal of Σ (m
by n) are the square roots of the nonzero eigenvalues of both AAT and ATA.

Remark 1. For positive definite matrices, Σ is Λ and UΣV T is identical to QΛQT. For
other symmetric matrices, any negative eigenvalues in Λ become positive in Σ. For
complex matrices, Σ remains real but U and V become unitary (the complex version of
orthogonal). We take complex conjugates in UHU = I and V HV = I and A = UΣV H.

Remark 2. U and V give orthonormal bases for all four fundamental subspaces:

first r columns of U : column space of A
last m− r columns of U : left nullspace of A
first r columns of V : row space of A
last n− r columns of V : nullspace of A

Remark 3. The SVD chooses those bases in an extremely special way. They are more
than just orthonormal. When A multiplies a column v j of V , it produces σ j times a
column of U . That comes directly from AV = UΣ, looked at a column at a time.
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Remark 4. Eigenvectors of AAT and ATA must go into the columns of U and V :

AAT = (UΣV T)(V ΣTUT) = UΣΣTUT and, similarly, ATA = V ΣTΣV T. (1)

U must be the eigenvector matrix for AAT. The eigenvalue matrix in the middle is ΣΣT—
which is m by m with σ2

1 , . . . ,σ2
r on the diagonal.

From the ATA = V ΣTΣV T, the V matrix must be the eigenvector matrix for ATA. The
diagonal matrix ΣTΣ has the same σ2

1 , . . . ,σ2
r , but it is n by n.

Remark 5. Here is the reason that Av j = σ ju j. Start with ATAv j = σ2
j v j:

Multiply by A AATAv j = σ2
j Av j (2)

This says that Av j is an eigenvector of AAT! We just moved parentheses to (AAT)(Av j).
The length of this eigenvector Av j is σ j, because

vTATAv j = σ2
j vT

j v j gives ‖Av j‖2 = σ2
j .

So the unit eigenvector is Av j/σ j = u j. In other words, AV = UΣ.

Example 1. This A has only one column: rank r = 1. Then Σ has only σ1 = 3:

SVD A =



−1
2
2


 =



−1

3
2
3

2
3

2
3 −1

3
2
3

2
3

2
3 −1

3







3
0
0




[
1
]

= U3×3Σ3×1V T
1×1.

ATA is 1 by 1, whereas AAT is 3 by 3. They both have eigenvalue 9 (whose square root
is the 3 in Σ). The two zero eigenvalues of AAT leave some freedom for the eigenvectors
in columns 2 and 3 of U . We kept that matrix orthogonal.

Example 2. Now A has rank 2, and AAT =

[
2 −1
−1 2

]
with λ = 3 and 1:

[
−1 1 0
0 −1 1

]
= UΣV T =

1√
2

[
−1 1
1 1

][√
3 0 0

0 1 0

]


1 −2 1
−1 0 1
1 1 1




/
√

6
/
√

2
/
√

3
.

Notice
√

3 and
√

1. The columns of U are left singular vectors (unit eigenvectors of
AAT). The columns of V are right singular vectors (unit eigenvectors of ATA).

Application of the SVD

We will pick a few important applications, after emphasizing one key point. The SVD is
terrific for numerically stable computations. because U and V are orthogonal matrices.
They never change the length of a vector. Since ‖Ux‖2 = xTUTUx = ‖x‖2, multiplication
by U cannot destroy the scaling.
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Of course Σ could multiply by a large σ or (more commonly) divide by a small σ ,
and overflow the computer. But still Σ is as good as possible. It reveals exactly what is
large and what is small. The ratio σmax/σmin is the condition number of an invertible n
by n matrix. The availability of that information is another reason for the popularity of
the SVD. We come back to this in the second application.

1. Image processing Suppose a satellite takes a picture, and wants to send it to Earth.
The picture may contain 1000 by 1000 “pixels”—a million little squares, each with a
definite color. We can code the colors, and send back 1,000,000 numbers. It is better to
find the essential information inside the 1000 by 1000 matrix, and send only that.

Suppose we know the SVD. The key is in the singular values (in Σ). Typically, some
σ ’s are significant and others are extremely small. If we keep 20 and throw away 980,
then we send only the corresponding 20 columns of U and V . The other 980 columns
are multiplied in UΣV T by the small σ ’s that are being ignored. We can do the matrix
multiplication as columns times rows:

A = UΣV T = u1σ1vT
1 +u2σ2vT

2 + · · ·+urσrvT
r . (3)

Any matrix is the sum of r matrices of rank 1. If only 20 terms are kept, we send 20
times 2000 numbers instead of a million (25 to 1 compression).

The pictures are really striking, as more and more singular values are included. At
first you see nothing, and suddenly you recognize everything. The cost is in computing
the SVD—this has become much more efficient, but it is expensive for a big matrix.

2. The effective rank The rank of a matrix is the number of independent rows, and
the number of independent columns. That can be hard to decide in computations! In
exact arithmetic, counting the pivots is correct. Real arithmetic can be misleading—but
discarding small pivots is not the answer. Consider the following:

ε is small

[
ε 2ε
1 2

]
and

[
ε 1
0 0

]
and

[
ε 1
ε 1+ ε

]
.

The first has rank 1, although roundoff error will probably produce a second pivot. Both
pivots will be small; how many do we ignore? The second has one small pivot, but we
cannot pretend that its row is insignificant. The third has two pivots and its rank is 2, but
its “effective rank” ought to be 1.

We go to a more stable measure of rank. The first step is to use ATA or AAT, which
are symmetric but share the same rank as A. Their eigenvalues—the singular values
squared—are not misleading. Based on the accuracy of the data, we decide on a toler-
ance like 10−6 and count the singular values above it—that is the effective rank. The
examples above have effective rank 1 (when ε is very small).

3. Polar decomposition Every nonzero complex number z is a positive number r times
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a number eiθ on the unit circle: z = reiθ . That expresses z in “polar coordinates.” If
we think of z as a 1 by 1 matrix, r corresponds to a positive definite matrix and eiθ

corresponds to an orthogonal matrix. More exactly, since eiθ is complex and satisfies
e−iθ eiθ = 1, it forms a 1 by 1 unitary matrix: UHU = I. We take the complex conjugate
as well as the transpose, for UH.

The SVD extends this “polar factorization” to matrices of any size:

Every real square matrix can be factored into A = QS, where Q is orthogonal
and S is symmetric positive semidefinite. If A is invertible then S is positive
definite.

For proof we just insert V TV = I into the middle of the SVD:

A = UΣV T = (UV T)(V ΣV T). (4)

The factor S =V ΣV T is symmetric and semidefinite (because Σ is). The factor Q =UV T

is an orthogonal matrix (because QTQ =VUTUV T = I). In the complex case, S becomes
Hermitian instead of symmetric and Q becomes unitary instead of orthogonal. In the
invertible case Σ is definite and so is S.

Example 3. Polar decomposition:

A = QS

[
1 −2
3 −1

]
=

[
0 −1
1 0

][
3 −1
−1 2

]
.

Example 4. Reverse polar decomposition:

A = S′Q

[
1 −2
3 −1

]
=

[
2 1
1 3

][
0 −1
1 0

]
.

The exercises show how, in the reverse order. S changes but Q remains the same. Both
S and S′ are symmetric positive definite because this A is invertible.

Application of A = QS: A major use of the polar decomposition is in continuum
mechanics (and recently in robotics). In any deformation, it is important to separate
stretching from rotation, and that is exactly what QS achieves. The orthogonal matrix
Q is a rotation, and possibly a reflection. The material feels no strain. The symmetric
matrix S has eigenvalues σ1, . . . ,σr, which are the stretching factors (or compression
factors). The diagonalization that displays those eigenvalues is the natural choice of
axes—called principal axes: as in the ellipses of Section 6.2. It is S that requires work
on the material, and stores up elastic energy.

We note that S2 is ATA, which is symmetric positive definite when A is invertible. S
is the symmetric positive definite square root of ATA, and Q is AS−1. In fact, A could be
rectangular, as long as ATA is positive definite. (That is the condition we keep meeting,
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that A must have independent columns.) In the reverse order A = S′Q, the matrix S′ is
the symmetric positive definite square root of AAT.

4. Least Squares For a rectangular system Ax = b. the least-squares solution comes
from the normal equations ATAx̂ = ATb. If A has dependent columns then ATA is not
invertible and x̂ is not determined. Any vector in the nullspace could be added to x̂. We
can now complete Chapter 3, by choosing a “best” (shortest) x̂ for every Ax = b.

Ax = b has two possible difficulties: Dependent rows or dependent columns. With
dependent rows, Ax = b may have no solution. That happens when b is outside the
column space of A. Instead of Ax = b. we solve ATAx̂ = ATb. But if A has dependent
columns, this x̂ will not be unique. We have to choose a particular solution of ATAx̂ =
ATb, and we choose the shortest.

The optimal solution of Ax = b is the minimum length solution of ATAx̂ = ATb.

That minimum length solution will be called x+. It is our preferred choice as the best
solution to Ax = b (which had no solution), and also to ATAx̂ = ATb (which had too
many). We start with a diagonal example.

Example 5. A is diagonal, with dependent rows and dependent columns:

Ax̂ = p is




σ1 0 0 0
0 σ2 0 0
0 0 0 0







x̂1

x̂2

x̂3

x̂4


 =




b1

b2

0


 .

The columns all end with zero. In the column space, the closest vector to b = (b1,b2,b3)
is p = (b1,b2,0). The best we can do with Ax = b is to solve the first two equations,
since the third equation is 0 = b3. That error cannot be reduced, but the errors in the first
two equations will be zero. Then

x̂1 = b1/σ1 and x̂2 = b2/σ2.

Now we face the second difficulty. To make x̂ as short as possible, we choose the
totally arbitrary x̂3 and x̂4 to be zero. The minimum length solution is x+:

A+ is pseudoinverse
x+ = A+b is shortest

x+ =




b1/σ1

b2/σ2

0
0


 =




1/σ1 0 0
0 1/σ2 0
0 0 0
0 0 0







b1

b2

b3


 . (5)

This equation finds x+, and it also displays the matrix that produces x+ from b. That
matrix is the pseudoinverse A+ of our diagonal A. Based on this example, we know Σ+
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and x+ for any diagonal matrix Σ:

Σ =




σ1
. . .

σr


 Σ+ =




1/σ1
. . .

1/σr


 Σ+b =




b1/σ1
...

br/σr


 .

The matrix Σ is m by n, with r nonzero entries σi. Its pseudoinverse Σ+ is n by m, with
r nonzero entries 1/σi. All the blank spaces are zeros. Notice that (Σ+)+ is Σ again.
That is like (A−1)−1 = A, but here A is not invertible.

Now we find x+ in the general case. We claim that the shortest solution x+ is always
in the row space of A. Remember that any vector x̂ can be split into a row space compo-
nent xr and a nullspace component: x̂ = xr + xn. There are three important points about
that splitting:

1. The row space component also solves ATAx̂r = ATb, because Axn = 0.

2. The components are orthogonal, and they obey Pythagoras’s law:

‖x̂‖2 = ‖xr‖2 +‖xn‖2, so x̂ is shortest when xn = 0.

3. All solutions of ATAx̂ = ATb have the same xr. That vector is x+.

The fundamental theorem of linear algebra was in Figure 3.4. Every p in the column
space comes from one and only one vector xr in the row space. All we are doing is to
choose that vector, x+ = xr, as the best solution to Ax = b.

The pseudoinverse in Figure 6.3 starts with b and comes back to x+. It inverts A where
A is invertible—between row space and column space. The pseudoinverse knocks out
the left nullspace by sending it to zero, and it knocks out the nullspace by choosing xr as
x+.

We have not yet shown that there is a matrix A+ that always gives x+—but there is.
It will be n by m, because it takes b and p in Rm back to x+ in Rn. We look at one more
example before finding A+ in general.

Example 6. Ax = b is −x1 +2x2 +2x3 = 18, with a whole plane of solutions.
According to our theory, the shortest solution should be in the row space of A =

[−1 2 2]. The multiple of that row that satisfies the equation is x+ = (−2,4,4). There
are longer solutions like (−2,5,3), (−2,7,1), or (−6,3,3), but they all have nonzero
components from the nullspace. The matrix that produces x+ from b = [18] is the pseu-
doinverse A+. Whereas A was 1 by 3, this A+ is 3 by 1:

A+ =
[
−1 2 2

]+
=



−1

9
2
9
2
9


 and A+[18] =



−2
4
4


 . (6)
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Figure 6.3: The pseudoinverse A+ inverts A where it can on the column space.

The row space of A is the column space of A+. Here is a formula for A+:

If A = UΣV T (the SVD), then its pseudoinverse is A+ = V Σ+UT. (7)

Example 6 had σ = 3—the square root of the eigenvalue of AAT = [9]. Here it is again
with Σ and Σ+:

A =
[
−1 2 2

]
= UΣV T =

[
1
][

3 0 0
]


−1

3
2
3

2
3

2
3 −1

3
2
3

2
3

2
3 −1

3




V Σ+UT =



−1

3
2
3

2
3

2
3 −1

3
2
3

2
3

2
3 −1

3







1
3
0
0




[
1
]

=



−1

9
2
9
2
9


 = A+.

The minimum length least-squares solution is x+ = A+b = V Σ+UTb.

Proof. Multiplication by the orthogonal matrix UT leaves lengths unchanged:

‖Ax−b‖= ‖UΣV Tx−b‖= ‖ΣV Tx−UTb‖.

Introduce the new unknown y = V Tx = V−1x, which has the same length as x. Then,
minimizing ‖Ax−b‖ is the same as minimizing ‖Σy−UTb‖. Now Σ is diagonal and we
know the best y+. It is y+ = Σ+UTb so the best x+ is V y+:

Shortest solution x+ = V y+ = V Σ+UTb = A+b.

V y+ is in the row space, and ATAx+ = ATb from the SVD.
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Problem Set 6.3

Problems 1–2 compute the SVD of a square singular matrix A.

1. Compute ATA and its eigenvalues σ2
1 , 0 and unit eigenvectors v1, v2:

A =

[
1 4
2 8

]
.

2. (a) Compute AAT and its eigenvalues σ2
1 , 0 and unit eigenvectors u1, u2.

(b) Choose signs so that Av1 = σ1u1 and verify the SVD:
[

1 4
2 8

]
=

[
u1 u2

][
σ1

0

][
v1 v2

]T
.

(c) Which four vectors give orthonormal bases for C(A), N(A), C(AT), N(AT)?

Problems 3–5 ask for the SVD of matrices of rank 2.

3. Find the SVD from the eigenvectors v1, v2 of ATA and Avi = σiui:

Fibonacci matrix A =

[
1 1
1 0

]
.

4. Use the SVD part of the MATLAB demo eigshow (or Java on the course page
web.mit.edu/18.06) to find the same vectors v1 and v2 graphically.

5. Compute ATA and AAT, and their eigenvalues and unit eigenvectors, for

A =

[
1 1 0
0 1 1

]
.

Multiply the three matrices UΣV T to recover A.

Problems 6–13 bring out the underlying ideas of the SVD.

6. Suppose u1, . . . ,un and v1, . . . ,vn are orthonormal bases for Rn. Construct the matrix
A that transforms each v j into u j to give Av1 = u1, . . . ,Avn = un.

7. Construct the matrix with rank 1 that has Av = 12u for v = 1
2(1,1,1,1) and u =

1
3(2,2,1). Its only singular value is σ1 = .

8. Find UΣV T if A has orthogonal columns w1, . . . ,wn of lengths σ1, . . . ,σn.

9. Explain how UΣV T expresses A as a sum of r rank-1 matrices in equation (3):

A = σ1u1vT
1 + · · ·+σrurvT

r .
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10. Suppose A is a 2 by 2 symmetric matrix with unit eigenvectors u1 and u2. If its
eigenvalues are λ1 = 3 and λ2 =−2, what are U , Σ, and V T?

11. Suppose A is invertible (with σ1 > σ2 > 0). Change A by as small a matrix as possible
to produce a singular matrix A0. Hint: U and V do not change:

Find A0 from A =
[
u1 u2

][
σ1

σ2

][
v1 v2

]T
.

12. (a) If A changes to 4A, what is the change in the SVD?

(b) What is the SVD for AT and for A−1?

13. Why doesn’t the SVD for A+ I just use Σ+ I?

14. Find the SVD and the pseudoinverse 0+ of the m by n zero matrix.

15. Find the SVD and the pseudoinverse V Σ+UT of

A =
[
1 1 1 1

]
, B =

[
0 1 0
1 0 0

]
, and C =

[
1 1
0 0

]
.

16. If an m by n matrix Q has orthonormal columns, what is Q+?

17. Diagonalize ATA to find its positive definite square root S = V Σ1/2V T and its polar
decomposition A = QS:

A =
1√
10

[
10 6
0 8

]
.

18. What is the minimum-length least-squares solution x+ = A+b to the following?

Ax =




1 0 0
1 0 0
1 1 1







C
D
E


 =




0
2
2


 .

You can compute A+, or find the general solution to ATAx̂ = ATb and choose the
solution that is in the row space of A. This problem fits the best plane C +Dt +Ez to
b = 0 and also b = 2 at t = z = 0 (and b = 2 at t = z = 1).

(a) If A has independent columns, its left-inverse (ATA)−1AT is A+.

(b) If A has independent rows, its right-inverse AT(AAT)−1 is A+.

In both cases, verify that x+ = A+b is in the row space. and ATAx+ = ATb.

19. Split A = UΣV T into its reverse polar decomposition QS′.

20. Is (AB)+ = B+A+ always true for pseudoinverses? I believe not.
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21. Removing zero rows of U leaves A = LU , where the r columns or L span the column
space of A and the r rows of U span the row space. Then A+ has the explicit formula
UT(U UT)−1(LTL)−1LT.

Why is A+b in the row space with UT at the front? Why does ATAA+b = ATb, so
that x+ = A+b satisfies the normal equation as it should?

22. Explain why AA+ and A+A are projection matrices (and therefore symmetric). What
fundamental subspaces do they project onto?

6.4 Minimum Principles

In this section we escape for the first time from linear equations. The unknown x will not
be given as the solution to Ax = b or Ax = λx. Instead, the vector x will be determined
by a minimum principle.

It is astonishing how many natural laws can be expressed as minimum principles. Just
the fact that heavy liquids sink to the bottom is a consequence of minimizing their po-
tential energy. And when you sit on a chair or lie on a bed, the springs adjust themselves
so that the energy is minimized. A straw in a glass of water looks bent because light
reaches your eye as quickly as possible. Certainly there are more highbrow examples:
The fundamental principle of structural engineering is the minimization of total energy.1

We have to say immediately that these “energies” are nothing but positive definite
quadratic functions. And the derivative of a quadratic is linear. We get back to the
familiar linear equations, when we set the first derivatives to zero. Our first goal in
this section is to find the minimum principle that is equivalent to Ax = b, and the
minimization equivalent to Ax = λx. We will be doing in finite dimensions exactly
what the theory of optimization does in a continuous problem, where “first derivatives
= 0” gives a differential equation. In every problem, we are free to solve the linear
equation or minimize the quadratic.

The first step is straightforward: We want to find the “parabola” P(x) whose minimum
occurs when Ax = b. If A is just a scalar, that is easy to do:

The graph of P(x) =
1
2

Ax2−bx has zero slope when
dP
dx

= Ax−b = 0.

This point x = A−1b will be a minimum if A is positive. Then the parabola P(x) opens
upward (Figure 6.4). In more dimensions this parabola turns into a parabolic bowl (a
paraboloid). To assure a minimum of P(x), not a maximum or a saddle point, A must be
positive definite!

1I am convinced that plants and people also develop in accordance with minimum principles. Perhaps civilization
is based on a law of least action. There must be new laws (and minimum principles) to be found in the social
sciences and life sciences.
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6H If A is symmetric positive definite, then P(x) = 1
2xTAx− xTb reaches its

minimum at the point where Ax = b. At that point Pmin =−1
2bTA−1b.

Figure 6.4: The graph of a positive quadratic P(x) is a parabolic bowl.

Proof. Suppose Ax = b. For any vector y, we show that P(y)≥ P(x):

P(y)−P(x) =
1
2

yTAy− yTb− 1
2

xTAx+ xTb

=
1
2

yTAy− yTAx+
1
2

xTAx (set b = Ax)

=
1
2
(y− x)TA(y− x).

(1)

This can’t be negative since A is positive definite—and it is zero only if y−x = 0. At all
other points P(y) is larger than P(x), so the minimum occurs at x.

Example 1. Minimize P(x) = x2
1− x1x2 + x2

2− b1x1− b2x2. The usual approach, by
calculus, is to set the partial derivatives to zero. This gives Ax = b:

∂P/∂x1 = 2x1− x2−b1 = 0

∂P/∂x2 =−x1 +2x2−b2 = 0
means

[
2 −1
−1 2

][
x1

x2

]
=

[
b1

b2

]
. (2)

Linear algebra recognizes this P(x) as 1
2xTAx−xTb, and knows immediately that Ax = b

gives the minimum. Substitute x = A−1b into P(x):

Minimum value Pmin =
1
2
(A−1b)TA(A−1b)− (A−1b)Tb =−1

2
bTA−1b. (3)

In applications, 1
2xTAx is the internal energy and −xTb is the external work. The system

automatically goes to x = A−1b, where the total energy P(x) is a minimum.

Minimizing with Constraints

Many applications add extra equations Cx = d on top of the minimization problem.
These equations are constraints. We minimize P(x) subject to the extra requirement
Cx = d. Usually x can’t satisfy n equations Ax = b and also ` extra constraints Cx = d.
We have too many equations and we need ` more unknowns.
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Those new unknowns y1, . . . ,y` are called Lagrange multipliers. They build the
constraint into a function L(x,y). This was the brilliant insight of Lagrange:

L(x,y) = P(x)+ yT(Cx−d) =
1
2

xTAx− xTb+ xTCTy− yTd.

That term in L is chosen exactly so that ∂L/∂y = 0 brings back Cx = d. When we set
the derivatives of L to zero, we have n+ ` equations for n+ ` unknowns x and y:

Constrained
minimization

∂L/∂x = 0 :

∂L/∂y = 0 :
Ax+CTy = b

Cx = d
(4)

The first equations involve the mysterious unknowns y. You might well ask what they
represent. Those “dual unknowns” y tell how much the constrained minimum PC/min
(which only allows x when Cx = d) exceeds the unconstrained Pmin (allowing all x):

Sensitivity of minimum PC/min = Pmin +
1
2

yT(CA−1b−d)≥ Pmin. (5)

Example 2. Suppose P(x1,x2) = 1
2x2

1 + 1
2x2

2. Its smallest value is certainly Pmin = 0.
This unconstrained problem has n = 2, A = I, and b = 0. So the minimizing equation
Ax = b just gives x1 = 0 and x2 = 0.

Now add one constraint c1x1 + c2x2 = d. This puts x on a line in the x1-x2 plane.
The old minimizer x1 = x2 = 0 is not on the line. The Lagrangian function L(x,y) =
1
2x2

1 + 1
2x2

2 + y(c1x1 + c2x2−d) has n+ ` = 2+1 partial derivatives:

∂L/∂x1 = 0

∂L/∂x2 = 0

∂L/∂y = 0

x1 + c1y = 0

x2 + c2y = 0

c1x1 + c2x2 = d.

(6)

Substituting x1 =−c1y and x2 =−c2y into the third equation gives −c2
1y− c2

2y = d.

Solution y =
−d

c2
1 + c2

2
x1 =

c1d
c2

1 + c2
2

x2 =
c2d

c2
1 + c2

2
. (7)

The constrained minimum of P = 1
2xTx is reached at that solution point:

PC/min =
1
2

x2
1 +

1
2

x2
2 =

1
2

c2
1d2 + c2

2d2

(c2
1 + c2

2)2 =
1
2

d2

c2
1 + c2

2
. (8)

This equals −1
2yd as predicted in equation (5), since b = 0 and Pmin = 0.

Figure 6.5 shows what problem the linear algebra has solved, if the constraint keeps
x on a line 2x1− x2 = 5. We are looking for the closest point to (0,0) on this line. The
solution is x = (2,−1). We expect this shortest vector x to be perpendicular to the line,
and we are right.
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Figure 6.5: Minimizing 1
2‖x‖2 for all x on the constraint line 2x1− x2 = 5.

Least Squares Again

In minimization, our big application is least squares. The best x̂ is the vector that mini-
mizes the squared error E2 = ‖Ax−b‖2. This is a quadratic and it fits our framework! I
will highlight the parts that look new:

Squared error E2 = (Ax−b)T(Ax−b) = xTATAx−2xTATb+bTb. (9)

Compare with 1
2xTAx− xTb at the start of the section, which led to Ax = b:

[
A changes to ATA

] [
b changes to ATb

] [
bTb is added

]
.

The constant bTb raises the whole graph—this has no effect on the best x̂. The other
two changes, A to ATA and b to ATb, give a new way to reach the least-squares equation
(normal equation). The minimizing equation Ax = b changes into the

Least-squares equation ATAx̂ = ATb. (10)

Optimization needs a whole book. We stop while it is pure linear algebra.

The Rayleigh quotient

Our second goal is to find a minimization problem equivalent to Ax = λx. That is not so
easy. The function to minimize cannot be a quadratic, or its derivative would be linear—
and the eigenvalue problem is nonlinear (λ times x). The trick that succeeds is to divide
one quadratic by another one:

Rayleigh quotient Minimize R(x) =
xTAx
xTx

.

6I Rayleigh’s Principle: The minimum value of the Rayleigh quotient is
the smallest eigenvalue λ1. R(x) reaches that minimum at the first eigenvector
x1 of A:

Minimum where Ax1 = λx1 R(x1) =
xT

1 Ax1

xT
1 x1

=
xT

1 λ1x1

xT
1 x1

= λ1.
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If we keep xTAx = 1, then R(x) is a minimum when xTx = ‖x‖2 is as large as possible.
We are looking for the point on the ellipsoid xTAx = 1 farthest from the origin—the
vector x of greatest length. From our earlier description of the ellipsoid, its longest axis
points along the first eigenvector. So R(x) is a minimum at x1.

Algebraically, we can diagonalize the symmetric A by an orthogonal matrix: QTAQ =
Λ. Then set x = Qy and the quotient becomes simple:

R(x) =
(Qy)TA(Qy)
(Qy)T(Qy)

=
yTΛy
yTy

=
λ1y2

1 + · · ·+λny2
n

y2
1 + · · ·+ y2

n
. (11)

The minimum of R is λ1, at the point where y1 = 1 and y2 = · · ·= yn = 0:

At all points λ1(y2
1 + y2

2 + · · ·+ y2
n)≤ (λ1y2

1 +λ2y2
2 + · · ·+λny2

n).

The Rayleigh quotient in equation (11) is never below λ1 and never above λn (the largest
eigenvalue). Its minimum is at the eigenvector x1 and its maximum is at xn:

Maximum where Axn = λnxn R(xn) =
xT

n Axn

xT
n xn

=
xT

n λnxn

xT
n xn

= λn.

One small yet important point: The Rayleigh quotient equals a11, when the trial vector
is x = (1,0, . . . ,0). So a11 (on the main diagonal) is between λ1 and λn. You can see this
in Figure 6.6, where the horizontal distance to the ellipse (where a11x2 = 1) is between
the shortest distance and the longest distance:

1√
λn
≤ 1√

a11
≤ 1√

λ1
which is λ1 ≤ a11 ≤ λn.

The diagonal entries of any symmetric matrix are between λ1 and λn. We drew Figure
6.6 for a 2 by 2 positive definite matrix to see it clearly.

Intertwining of the Eigenvalues

The intermediate eigenvectors x2, . . . ,xn−1 are saddle points of the Rayleigh quotient
(zero derivatives, but not minima or maxima). The difficulty with saddle points is that
we have no idea whether R(x) is above or below them. That makes the intermediate
eigenvalues λ2, . . . ,λn−1 harder to estimate.

For this optional topic, the key is to find a constrained minimum or maximum. The
constraints come from the basic property of symmetric matrices: x j is perpendicular to
the other eigenvectors.

6J The minimum of R(x) subject to xTx1 = 0 is λ2. The minimum of R(x)
subject to any other constraint xTv = 0 is not above λ2:

λ2 = min
xTx1=0

R(x) and λ2 ≥ min
xTv=0

R(x). (12)
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b

b

b

1/
√

λ1

1/
√

a11

1/
√

λn

ellipse x
T
Ax = 1

Figure 6.6: The farthest x = x1/
√

λ1 and the closet x = xn/
√

λn both give xTAx = xTλx = 1. These are the major
axes of the ellipse.

This “maximin principle” makes λ2 the maximum over all v of the minimum of R(x) with
xTv = 0. That offers a way to estimate λ2 without knowing λ1.

Example 3. Throw away the last row and column of any symmetric matrix:

λ1(A) = 2−
√

2

λ2(A) = 2

λ3(A) = 2+
√

2

A =




2 −1 0
−1 2 −1
0 −1 2


 becomes B =

[
2 −1
−1 2

]
λ1(B) = 1

λ2(B) = 3.

The second eigenvalue λ2(A) = 2 is above the lowest eigenvalue λ1(B) = 1. The lowest
eigenvalue λ1(A) = 2−√2 is below λ1(B). So λ1(B) is caught between.

This example chose v = (0,0,1) so the constraint xTv = 0 knocked out the third com-
ponent of x (thereby reducing A to B).

The complete picture is an intertwining of eigenvalues:

λ1(A)≤ λ1(B)≤ λ2(A)≤ λ2(B)≤ ·· · ≤ λn−1(B)≤ λn(A). (13)

This has a natural interpretation for an ellipsoid, when it is cut by a plane through the
origin. The cross section is an ellipsoid of one lower dimension. The major axis Of this
cross section cannot be longer than the major axis of the whole ellipsoid: λ1(B)≥ λ1(A).
But the major axis of the cross section is at least as long as the second axis of the original
ellipsoid: λ1(B) ≤ λ2(A). Similarly the minor axis of the cross section is smaller than
the original second axis, and larger than the original minor axis: λ2(A)≤ λ2(B)≤ λ3(A).

You can see the same thing in mechanics. When springs and masses are oscillating,
suppose one mass is held at equilibrium. Then the lowest frequency is increased but not
above λ2. The highest frequency is decreased, but not below λn−1.

We close with three remarks, I hope your intuition says that they are correct.
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Remark 1. The maximin principle extends to j-dimensional subspaces S j:

Maximum of minimum λ j+1 = max
all S j

[
min
x⊥S j

R(x)
]
. (14)

Remark 2. There is also a minimax principle for λn− j:

Minimum of maximum λn− j = min
all S j

[
max
x⊥S j

R(x)
]
. (15)

If j = 1, we are maximizing R(x) over one constraint xTv = 0. That maximum is between
the unconstrained λn−1 and λn. The toughest constraint makes x perpendicular to the top
eigenvector v = xn. Then the best x is the next eigenvector xn−1. The “minimum of the
maximum” is λn−1.

Remark 3. For the generalized problem Ax = λMx, the same principles hold if M is
positive definite. In the Rayleigh quotient, xTx becomes xTMx:

Rayleigh quotient Minimizing R(x) =
xTAx
xTMx

gives λ1(M−1A). (16)

Even for unequal masses in an oscillating system (M 6= I), holding one mass at equilib-
rium will raise the lowest frequency and lower the highest frequency.

Problem Set 6.4

1. Consider the system Ax = b given by



2 −1 0
−1 2 −1
0 −1 2







x1

x2

x3


 =




4
0
4


 .

Construct the corresponding quadratic P(x1,x2,x3), compute its partial derivatives
∂P/∂xi, and verify that they vanish exactly at the desired solution.

2. Complete the square in P = 1
2xTAx− xTb = 1

2(x−A−1b)TA(x−A−1b) + constant.
This constant equals Pmin because the term before it is never negative. (Why?)

3. Find the minimum, if there is one of P1 = 1
2x2 +xy+y2−3y and P2 = 1

2x2−3y. What
matrix A is associated with P2?

4. (Review) Another quadratic that certainly has its minimum at Ax = b is

Q(x) =
1
2
‖Ax−b‖2 =

1
2

xTATAx− xTATb+
1
2

bTb.

Comparing Q with P, and ignoring the constant 1
2bTb, what system of equations do

we get at the minimum of Q? What are these equations called in the theory of least
squares?



6.4 Minimum Principles 383

5. For any symmetric matrix A, compute the ratio R(x) for the special choice x =
(1, . . . ,1). How is the sum of all entries ai j related to λ1 and λn?

6. With A =
[ 2 −1
−1 2

]
, find a choice of x that gives a smaller R(x) than the bound λ1 ≤ 2

that comes from the diagonal entries. What is the minimum value of R(x)?

7. If B is positive definite, show from the Rayleigh quotient that the smallest eigenvalue
of A+B is larger than the smallest eigenvalue of A.

8. If λ1 and µ1 are the smallest eigenvalues of A and B, show that the smallest eigen-
value θ1 of A + B is at least as large as λ1 + µ1. (Try the corresponding eigenvector
x in the Rayleigh quotients.)

Note. Problems 7 and 8 are perhaps the most typical and most important results
that come easily from Rayleigh’s principle, but only with great difficulty from the
eigenvalue equations themselves.

9. If B is positive definite, show from the minimax principle (12) that the second small-
est eigenvalue is increased by adding B : λ2(A+B) > λ2(A).

10. If you throw away two rows and columns of A, what inequalities do you expect
between the smallest eigenvalue µ of the new matrix and the original λ ’s?

11. Find the minimum values of

R(x) =
x2

1− x1x2 + x2
2

x2
1 + x2

2
and R(x) =

x2
1− x1x2 + x2

2

2x2
1 + x2

2
.

12. Prove from equation (11) that R(x) is never larger than the largest eigenvalue λn.

13. The minimax principle for λ j involves j-dimensional subspaces S j:

Equivalent to equation (15) λ j = min
S j

[
max
x in S j

R(x)
]
.

(a) If λ j is positive, infer that every S j contains a vector x with R(x) > 0.

(b) Deduce that S j contains a vector y = C−1x with yTcTACy/yTy > 0.

(c) Conclude that the jth eigenvalue of CTAC, from its minimax principle, is also
positive—proving again the law of inertia in Section 6.2.

14. Show that the smallest eigenvalue λ1 of Ax = λMx is not larger than the ratio a11/m11

of the corner entries.

15. Which particular subspace S2 in Problem 13 gives the minimum value λ2? In other
words, over which S2 is the maximum of R(x) equal to λ2?
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16. (Recommended) From the zero submatrix decide the signs of the n eigenvalues:

A =




0 · 0 1
· · 0 2
0 0 0 ·
1 2 · n


 .

17. (Constrained minimum) Suppose the unconstrained minimum x = A−1b happens to
satisfy the constraint Cx = d. Verify that equation (5) correctly gives PC/min = Pmin;
the correction term is zero.

6.5 The Finite Element Method

There were two main ideas in the preceding section on minimum principles:

(i) Solving Ax = b is equivalent to minimizing P(x) = 1
2xTAx− xTb.

(ii) Solving Ax = λ1x is equivalent to minimizing R(x) = xTAx/xTx.

Now we try to explain how these ideas can be applied.
The story is a long one, because these principles have been known for more than a

century. In engineering problems like plate bending, or physics problems like the ground
state (eigenfunction) of an atom, minimization was used to get a rough approximation
to the true solution. The approximations had to be rough; the computers were human.
The principles (i) and (ii) were there, but they could not be implemented.

Obviously the computer was going to bring about a revolution. It was the method
of finite differences that jumped ahead, because it is easy to “discretize” a differential
equation. Already in Section 1.7, derivatives were replaced by differences. The physical
region is covered by a mesh, and u′′ = f (x) became u j+1 − 2u j + u j−1 = h2 f j. The
1950s brought new ways to solve systems Au = f that are very large and very sparse—
algorithms and hardware are both much faster now.

What we did not fully recognize was that even finite differences become incredibly
complicated for real engineering problems, like the stresses on an airplane. The real
difficulty is not to solve the equations, but to set them up. For an irregular region we
piece the mesh together from triangles or quadrilaterals or tetrahedra. Then we need a
systematic way to approximate the underlying physical laws. The computer has to help
not only in the solution of Au = f and Ax = λx, but in its formulation.

You can guess what happened. The old methods came back, with a new idea and a
new name. The new name is the finite element method. The new ides uses more of
the power of the computer—in constructing a discrete approximation, solving it, and
displaying the results—than any other technique in scientific computation2. If the basic

2Please forgive this enthusiasm: I know the method may not be immortal.
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idea is simple, the applications can be complicated. For problems on this scale, the one
undebatable point is their cost—I am afraid a billion dollars would be a conservative
estimate of the expense so far. I hope some readers will be vigorous enough to master
the finite element method and put it to good use.

Trial Functions

Starting from the classical Rayleigh-Ritz principle, I will introduce the new idea of finite
elements. The equation can be −u′′ = f (x) with boundary conditions u(0) = u(1) =
0. This problem is infinite-dimensional (the vector b is replaced by a function f , and
the matrix A becomes −d2/dx2). We can write down the energy whose minimum is
required, replacing inner products vT f by integrals of v(x) f (x):

Total energy P(v) =
1
2

vTAv− vT f =
1
2

∫ 1

0
v(x)(−v′′(x))dx−

∫ 1

0
v(x) f (x)dx. (1)

P(v) is to be minimized over all functions v(x) that satisfy v(0) = v(1) = 0. The function
that gives the minimum will be the solution u(x). The differential equation has been
converted to a minimum principle, and it only remains to integrate by parts:

∫ 1

0
v(−v′′)dx =

∫ 1

0
(v′)2dx− [vv′]x=1

x=0 so P(v) =
∫ 1

0

[
1
2
(v′(x))2 + v(x) f (x)

]
dx.

The term vv′ is zero at both limits, because v is. Now
∫
(v′(x))2dx is positive like xTAx.

We are guaranteed a minimum.
To compute the minimum exactly is equivalent to solving the differential equation ex-

actly. The Rayleigh-Ritz principle produces an n-dimensional problem by choosing only
n trial functions V1(x), . . . ,Vn(x). From all combinations V = y1V1(x) + · · ·+ ynVn(x),
we look for the particular combination (call it U) that minimizes P(V ). This is the key
idea, to minimize over a subspace of V ’s instead of over all possible v(x). The function
that gives the minimum is U(x). We hope and expect that U(x) is near the correct u(x).

Substituting V for v, the quadratic turns into

P(V ) =
1
2

∫ 1

0

(
y1V ′

1(x)+ · · ·+ ynV ′
n(x)

)2dx−
∫ 1

0

(
y1V1(x)+ · · ·+ ynVn(x)

)
f (x)dx. (2)

The trial functions V are chosen in advance. That is the key step! The unknowns
y1, . . . ,yn go into a vector y. Then P(V ) = 1

2yTAy− yTb is recognized as one of the
quadratics we are accustomed to. The matrix entries Ai j are

∫
V ′

i V ′
jdx = coefficient of

yiy j. The components b j are
∫

Vj f dx. We can certainly find the minimum of 1
2yTAy−yTb

by solving Ay = b. Therefore the Rayleigh-Ritz method has three steps:

1. Choose the trial functions V1, . . . ,Vn.

2. Compute the coefficients Ai j and b j.
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3. Solve Ay = b to find U(x) = y1V1(x)+ · · ·+ ynVn(x).

Everything depends on step 1. Unless the functions Vj(x) are extremely simple, the
other steps will be virtually impossible. And unless some combination of the Vj is close
to the true solution u(x), those steps will be useless. To combine both computability
and accuracy, the key idea that makes finite elements successful is the use of piecewise
polynomials as the trial functions V (x).

Linear Finite Elements

The simplest and most widely used finite element is piecewise linear. Place nodes at
the interior points x1 = h,x2 = 2h, . . . ,xn = nh, just as for finite differences. Then Vj is
the “hat function” that equals 1 at the node x j, and zero at all the other nodes (Figure
6.7a). It is concentrated in a small interval around its node, and it is zero everywhere
else (including x = 0 and x = 1). Any combination y1V1 + · · ·+ynVn must have the value
y j at node j (the other V ’s are zero there), so its graph is easy to draw (Figure 6.7b).

1

0 1x4 = 4h

V4(x)

0 1

V (x) = y1V1 + · · ·+ y5V5

y1

y4

Figure 6.7: Hat functions and their linear combinations.

Step 2 computes the coefficients Ai j =
∫

V ′
i V ′

jdx in the “stiffness matrix” A. The slope
V ′

j equals 1/h in the small interval to the left of x j, and −1/h in the interval to the right.
If these “double intervals” do not overlap, the product V ′

i V ′
j is zero and Ai j = 0. Each

hat function overlaps itself and only two neighbors:

Diagonal i = j Aii =
∫

V ′
i V ′

i dx =
∫ (

1
h

)2

dx+
∫ (

−1
h

)2

dx =
2
h
.

Off-diagonal i = j±1 Ai j =
∫

V ′
i V ′

jdx =
∫ (

1
h

)(−1
h

)
dx =

−1
h

.

Then the stiffness matrix is actually tridiagonal:

Stiffness matrix A =
1
h




2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2




.
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This looks just like finite differences! It has led to a thousand discussions about the
relation between these two methods. More complicated finite elements—polynomials of
higher degree. defined on triangles or quadrilaterals for partial differential equations—
also produce sparse matrices A. You could think of finite elements as a systematic way
to construct accurate difference equations on irregular meshes. The essential thing is the
simplicity of these piecewise polynomials. Inside every element, their slopes arc easy to
find and to integrate.

The components b j on the right side are new. Instead of just the value of f at x j,
as for finite differences, they are now an average of f around that point: b j =

∫
Vj f dx.

Then, in step 3, we solve the tridiagonal system Ay = b, which gives the coefficients in
the minimizing trial function U = y1V1 + · · ·+ ynVn. Connecting all these heights y j by
a broken line, we have the approximate solution U(x).

Example 1. u′′ = 2 with u(0) = u(1) = 0, and solution u(x) = x− x2.
The approximation will use three intervals and two hat functions, with h = 1

3 . The
matrix A is 2 by 2. The right side requires integration of the hat function times f (x) = 2.
That produces twice the area 1

3 under the hat:

A = 3

[
2 −1
−1 2

]
and b =

[
2
3
2
3

]
.

The solution to Ay = b is y = (2
9 ,

2
9). The best U(x) is 2

9V1 + 2
9V2, which equals 2

9 at the
mesh points. This agrees with the exact solution u(x) = x− x2 = 1

3 − 1
9 .

In a more complicated example, the approximation will not be exact at the nodes.
But it is remarkably close. The underlying theory is explained in the author’s book An
Analysis of the Finite Element Method (see www.wellesleycambridge.com) written
jointly with George Fix. Other books give more detailed applications, and the subject
of finite elements has become an important part of engineering education. It is treated
in Introduction to Applied Mathematics, and also in my new book Applied Mathematics
and Scientific Computing. There we discuss partial differential equations, where the
method really comes into its own.

Eigenvalue Problems

The Rayleigh-Ritz idea—to minimize over a finite-dimensional family of V ’s in place
of all admissible v’s—is also useful for eigenvalue problems. The true minimum of the
Rayleigh quotient is the fundamental frequency λ1. Its approximate minimum Λ1 will
be larger—because the class of trial functions is restricted to the V ’s. This step was
completely natural and inevitable: to apply the new finite element ideas to this long-
established variational form of the eigenvalue problem.

The best example of an eigenvalue problem has u(x) = sinπx and λ1 = π2:

Eigenfunction u(x) −u′′ = λu, with u(0) = u(1) = 0.
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That function sinπx minimizes the Rayleigh quotient vTAv/vTv:

Rayleigh quotient R(v) =
∫ 1

0 v(x)(−v′′(x))dx
∫ 1

0 (v(x))2dx
=

∫ 1
0 (v′(x))2dx

∫ 1
0 (v(x))2dx

.

This is a ratio of potential to kinetic energy, and they are in balance at the eigenvector.
Normally this eigenvector would be unknown, and to approximate it we admit only the
trial candidates V = y1V1 + · · ·+ ynVn:

R(V ) =
∫ 1

0 (y1V ′
1 + · · ·+ ynV ′

n)
2dx

∫ 1
0 (y1V1 + · · ·+ ynVn)2dx

=
yTAy
yTMy

.

Now we face a matrix problem: Minimize yTAy/yTMy. With M = I, this leads to the
standard eigenvalue problem Ay = λy. But our matrix M will be tridiagonal, because
neighboring hat functions overlap. It is exactly this situation that brings in the general-
ized eigenvalue problem. The minimum value Λ1 will be the smallest eigenvalue of
Ay = λMy. That Λ1 will be close to (and above) π2. The eigenvector y will give the
approximation U = y1V1 + · · ·+ ynVn to the eigenfunction.

As in the static problem. The method can be summarized in three steps: (1) choose
the Vj, (2) compute A and M, and (3) solve Ay = λMy. I don’t know why that costs a
billion dollars.

Problem Set 6.5

1. Use three hat functions, with h = 1
4 , to solve −u′′ = 2 with u(0) = u(1) = 0. Verify

that the approximation U matches u = x− x2 at the nodes.

2. Solve −u′′ = x with u(0) = u(1) = 0. Then solve approximately with two hat func-
tions and h = 1

3 . Where is the largest error?

3. Suppose −u′′ = 2, with the boundary condition u(1) = 0 changed to u′(1) = 0. This
“natural” condition on u′ need not be imposed on the trial functions V . With h = 1

3 ,
there is an extra half-hat V3, which goes from 0 to 1 between x = 2

3 and x = 1.
Compute A33 =

∫
(V ′

3)
2dx and f3 =

∫
2V3dx. Solve Ay = f for the finite element

solution y1V1 + y2V2 + y3V3.

4. Solve−u′′ = 2 with a single hat function, but place its node at x = 1
4 instead of x = 1

2 .
(Sketch this function V1.) With boundary conditions u(0) = u(1) = 0, compare the
finite element approximation with the true u = x− x2.

5. Galerkin’s method starts with the differential equation (say −u′′ = f (x)) instead of
the energy P. The trial solution is still u = y1V1 + y2V2 + · · ·+ ynVn, and the y’s are
chosen to make the difference between −u′′ and f orthogonal to every Vj:

Galerkin
∫

(−y1V ′′
1 − y2V ′′

2 −·· ·− ynV ′′
n )Vjdx =

∫
f (x)Vj(x)dx.
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integrate the left side by parts to reach Ay = f , proving that Galerkin gives the same
A and f as Rayleigh-Ritz for symmetric problems.

6. A basic identity for quadratics shows y = A−1b as minimizing:

P(y) =
1
2

yTAy− yTb =
1
2
(y−A−1b)TA(y−A−1b)− 1

2
bTA−1b.

The minimum over a subspace of trial functions is at the y nearest to A−1b. (That
makes the first term on the right as small as possible; it is the key to convergence of
U to u.) If A = I and b = (1,0,0), which multiple of V = (1,1,1) gives the smallest
value of P(y) = 1

2yTy− y1?

7. For a single hat function V (x) centered at x = 1
2 , compute A =

∫
(V ′)2dx and M =∫

V 2dx. In the 1 by 1 eigenvalue problem, is λ = A/M larger or smaller than the true
eigenvalue λ = π2?

8. For the hat functions V1 and V2 centered at x = h = 1
3 and x = 2h = 2

3 , compute the 2
by 2 mass matrix Mi j =

∫
ViVjdx, and solve the eigenvalue problem Ax = λMx.

9. What is the mass matrix Mi j =
∫

ViVjdx for n hat functions with h = 1
n+1?



Chapter 7
Computations with Matrices

7.1 Introduction

One aim of this book is to explain the useful parts of matrix theory. In comparison
with older texts in abstract linear algebra, the underlying theory has not been radically
changed. One of the best things about the subject is that the theory is really essential
for the applications. What is different is the change in emphasis which comes with a
new point of view. Elimination becomes more than just a way to find a basis for the
row space, and the Gram-Schmidt process is not just a proof that every subspace has an
orthonormal basis. Instead, we really need these algorithms. And we need a convenient
description, A = LU or A = QR, of what they do.

This chapter will take a few more steps in the same direction. I suppose these steps are
governed by computational necessity, rather than by elegance, and I don’t know whether
to apologize for that; it makes them sound very superficial, and that is wrong. They deal
with the oldest and most fundamental problems of the subject, Ax = b and Ax = λx, but
they are continually changing and improving. In numerical analysis there is a survival
of the fittest, and we want to describe some ideas that have survived so far. They fall
into three groups:

1. Techniques for Solving Ax = b. Elimination is a perfect algorithm, except
when the particular problem has special properties—as almost every problem has. Sec-
tion 7.4 will concentrate on the property of sparseness, when most of the entries in A
are zero. We develop iterative rather than direct methods for solving Ax = b. An iter-
ative method is “self-correcting,” and never reaches the exact answer. The object is to
get close more quickly than elimination. In some problems, that can be done; in many
others, elimination is safer and faster if it takes advantage of the zeros. The competition
is far from over, and we will identify the spectral radius that controls the speed of con-
vergence to x = A−1b.

2. Techniques for Solving Ax = λx. The eigenvalue problem is one of the out-
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standing successes of numerical analysis. It is clearly defined, its importance is obvious,
but until recently no one knew how to solve it. Dozens of algorithms have been sug-
gested, and everything depends on the size and the properties of A (and on the number
of eigenvalues that are wanted). You can ask LAPACK for an eigenvalue subroutine,
without knowing its contents, but it is better to know. We have chosen two or three ideas
that have superseded almost all of their predecessors: the QR algorithm, the family of
“power methods,” and the preprocessing of a symmetric matrix to make it tridiagonal.

The first two methods are iterative, and the last is direct. It does its job in a finite
number of steps, but it does not end up with the eigenvalues themselves. This produces
a much simpler matrix to use in the iterative steps.

3. The Condition Number of a Matrix. Section 7.2 attempts to measure the
“sensitivity” of a problem: If A and b are slightly changed, how great is the effect on
x = A−1b? Before starting on that question, we need a way to measure A and the change
∆A. The length of a vector is already defined, and now we need the norm of a matrix.
Then the condition number, and the sensitivity of A will follow from multiplying the
norms of A and A−1. The matrices in this chapter are square.

7.2 Matrix Norm and Condition Number

An error and a blunder are very different things. An error is a small mistake, probably
unavoidable even by a perfect mathematician or a perfect computer. A blunder is much
more serious, and larger by at least an order of magnitude. When the computer rounds
oft a number after 16 bits, that is an error, But when a problem is so excruciatingly
sensitive that this roundoff error completely changes the solution, then almost certainly
someone has committed a blunder. Our goal in this section is to analyze the effect of
errors, so that blunders can be avoided.

We are actually continuing a discussion that began in Chapter 1 with

A =

[
1 1
1 1.0001

]
and B =

[
0.0001 1

1 1

]
.

We claimed that B is well-conditioned, and not particularly sensitive to roundoff—except
that if Gaussian elimination is applied in a stupid way, the matrix becomes completely
vulnerable. It is a blunder to accept .0001 as the first pivot, and we must insist on a larger
and safer choice by exchanging the rows of B. When “partial pivoting” is built into the
elimination algorithm, the computer automatically looks for the largest pivot. Then the
natural resistance to roundoff error is no longer compromised.

How do we measure this natural resistance, and decide whether a matrix is well-
conditioned or ill-conditioned? If there is a small change in b or in A, how large a
change does that produce in the solution x?
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We begin with a change in the right-hand side, from b to b + δb. This error might
come from experimental data or from roundoff. We may suppose that δb is small, but
its direction is outside our control. The solution is changed from x to x+δx:

Error equation A(x+δx) = b+δb, so, by subtraction A(δx) = δb. (1)

An error δb leads to δx = A−1δb. There will be a large change in the solution x when
A−1 is large—A is nearly singular. The change in x is especially large when δb points in
the direction that is amplified most by A−1.

Suppose A is symmetric and its eigenvalues are positive: 0 < λ1 ≤ ·· · ≤ λn. Any
vector δb is a combination of the corresponding unit eigenvectors x1, . . . ,xn. The worst
error δx, coming from A−1, is in the direction of the first eigenvector x1:

Worst error If δb = εx1, then δx =
δb
λ1

. (2)

The error ‖δb‖ is amplified by 1/λ1, which is the largest eigenvalue of A−1. This
amplification is greatest when λ1 is near zero, and A is nearly singular.

Measuring sensitivity entirely by λ1 has a serious drawback. Suppose we multiply all
the entries of A by 1000; then λ1 will be multiplied by 1000 and the matrix will look
much less singular. This offends our sense of fair play; such a simple rescaling cannot
make an ill-conditioned matrix well. It is true that δx will be 1000 times smaller, but so
will the solution x = A−1b. The relative error ‖δx‖/‖x‖ will be the same. Dividing by
‖x‖ normalizes the problem against a trivial change of scale. At the same time there is
a normalization for δb; our problem is to compare the relative change ‖δb‖/‖b‖ with
the relative error ‖δx‖/‖x‖.

The worst case is when ‖δx‖ is large—with δb in the direction of the eigenvector
x1—and when ‖x‖ is small. The true solution x should be as small as possible compared
to the true b. This means that the original problem Ax = b should be at the other extreme,
in the direction of the last eigenvector xn: if b = xn, then x = A−1b = b/λn.

It is this combination, b = xn and δb = εx1, that makes the relative error as large as
possible. These are the extreme cases in the following inequalities:

7A For a positive definite matrix, the solution x = A−1b and the error δx =
A−1δb always satisfy

‖x‖ ≥ ‖b‖
λmax

and ‖δx‖ ≤ ‖δb‖
λmin

and
‖δx‖
‖x‖ ≤ λmax

λmin

‖δb‖
‖b‖ . (3)

The ratio c = λmax/λmin is the condition number of a positive definite matrix
A.

Example 1. The eigenvalues of A are approximately λ1 = 10−4/2 and λ2 = 2:

A =

[
1 1
1 1.0001

]
has condition number about c = 4 ·104.
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We must expect a violent change in the solution from ordinary changes in the data.
Chapter 1 compared the equations Ax = b and Ax′ = b′:

u + v = 2
u + 1.0001v = 2

u + v = 2
u + 1.0001v = 2.0001.

The right-hand sides are changed only by ‖δb‖= .0001 = 10−4. At the same time, the
solution goes from u = 2, v = 0 to u = v = 1. This is a relative error of

‖δx‖
‖x‖ =

‖(−1,1)‖
‖(2,0)‖ =

√
2

2
, which equals 2 ·104‖δb‖

‖b‖ .

Without having made any special choice of the perturbation, there was a relatively large
change in the solution. Our x and δb make 45° angles with the worst cases, which
accounts for the missing 2 between 2 ·104 and the extreme possibility c = 4 ·104.

If A = I or even if A = I/10, its condition number is c = λmax/λmin = 1. By compari-
son, the determinant is a terrible measure of ill-conditioning. It depends not only on the
scaling but also on the order n; if A = I/10, then the determinant of A is 10−n. In fact,
this “nearly singular” matrix is as well-conditioned as possible.

Example 2. The n by n finite difference matrix A has λmax ≈ 4 and λmin ≈ π2/n2:

A =




2 −1
−1 2 −1

−1 2 ·
· · −1

−1 2




.

The condition number is approximately c(A) = 1
2n2, and this time the dependence on the

order n is genuine. The better we approximate −u′′ = f , by increasing the number of
unknowns, the harder it is to compute the approximation. At a certain crossover point,
an increase in n will actually produce a poorer answer.

Fortunately for the engineer, this crossover occurs where the accuracy is already
pretty good. Working in single precision, a typical computer might make roundoff errors
of order 10−9. With n = 100 unknowns and c = 5000, the error is amplified at most to
be of order 10−5—which is still more accurate than any ordinary measurements. But
there will be trouble with 10,000 unknowns, or with a 1, −4, 6, −4, 1 approximation to
d4u/dx4 = f (x)—for which the condition number grows as n4.1

Unsymmetric Matrices

Our analysis so far has applied to symmetric matrices with positive eigenvalues. We
could easily drop the positivity assumption, and use absolute values |λ |. But to go

1The usual rule of thumb, experimentally verified, is that the computer can lose logc decimal places to the
roundoff errors in Gaussian elimination.
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beyond symmetry, as we certainly want to do, there will have to be a major change. This
is easy to see for the very unsymmetric matrices

A =

[
1 100
0 1

]
and A−1 =

[
1 −100
0 1

]
. (4)

The eigenvalues all equal one, but the proper condition number is not λmax/λmin = 1.
The relative change in x is not bounded by the relative change in b. Compare

x =

[
0
1

]
when b =

[
100

1

]
; x′ =

[
100

0

]
when b′ =

[
100
0

]
.

A 1% change in b has produced a hundredfold change in x; the amplification factor is
1002. Since c represents an upper bound, the condition number must be at least 10,000.
The difficulty here is that a large off-diagonal entry in A means an equally large entry in
A−1. Expecting A−1 to get smaller as A gets bigger is often wrong.

For a proper definition of the condition number, we look back at equation (3). We
were trying to make x small and b = Ax large. When A is not symmetric, the maximum of
‖Ax‖/‖x‖ may be found at a vector x that is not one of the eigenvectors. This maximum
is an excellent measure of the size of A. It is the norm of A.

7B The norm of A is the number ‖A‖ defined by

‖A‖= max
x 6=0

‖Ax‖
‖x‖ . (5)

In other words, ‖A‖ bounds the “amplifying power” of the matrix:

‖Ax‖ ≤ ‖A‖‖x‖ for all vectors x. (6)

The matrices A and A−1 in equation (4) have norms somewhere between 100 and 101.
They can be calculated exactly, but first we want to complete the connection between
norms and condition numbers. Because b = Ax and δx = A−1δb, equation (6) gives

‖b‖ ≤ ‖A‖‖x‖ and ‖δx‖ ≤ ‖A−1‖‖δb‖. (7)

This is the replacement for equation (3), when A is not symmetric. In the symmetric case,
‖A‖ is the same as λmax, and ‖A−1‖ is the same as 1/λmin. The correct replacement for
λmax/λmin is the product ‖A‖‖A−1‖—which is the condition number.

7C The condition number of A is c = ‖A‖‖A−1‖. The relative error satisfies

δx from δb
‖δx‖
‖x‖ ≤ c

‖δb‖
‖b‖ directly from equation (7). (8)

If we perturb the matrix A instead of the right-hand side b, then

δx from δA
‖δx‖

‖x+δx‖ ≤ c
‖δA‖
‖A‖ from equation (10) below. (9)



7.2 Matrix Norm and Condition Number 395

What is remarkable is that the same condition number appears in equation (9), when the
matrix itself is perturbed: If Ax = b and (A+δA)(x+δx) = b, then by subtraction

Aδx+δA(x+δx) = 0, or δx =−A−1(δA)(x+δx).

Multiplying by δA amplifies a vector by no more than ‖δA‖, and multiplying by A−1

amplifies by no more than ‖A−1‖. Then ‖δx‖< ‖A−1‖‖δA‖‖x+δx‖, which is

‖δx‖
‖x+δx‖ ≤ ‖A−1‖‖δA‖= c

‖δA‖
‖A‖ . (10)

These inequalities mean that roundoff error comes from two sources. One is the
natural sensitivity of the problem, measured by c. The other is the actual error δb
or δA. This was the basis of Wilkinson’s error analysis. Since elimination actually
produces approximate factors L′ and U ′, it solves the equation with the wrong matrix
A + δA = L′U ′ instead of the right matrix A = LU . He proved that partial pivoting
controls δA—so the burden of the roundoff error is carried by the condition number c.

A Formula for the Norm

The norm of A measures the largest amount by which any vector (eigenvector or not)
is amplified by matrix multiplication: ‖A‖= max(‖Ax‖/‖x‖). The norm of the identity
matrix is 1. To compute the norm, square both sides to reach the symmetric ATA:

‖A‖2 = max
‖Ax‖2

‖x‖2 = max
xTATAx

xTx
. (11)

7D ‖A‖ is the square root of the largest eigenvalue of ATA: ‖A‖2 = λmax(ATA).
The vector that A amplifies the most is the corresponding eigenvector of ATA:

xTATAx
xTx

=
xT(λmaxx)

xTx
= λmax(ATA) = ‖A‖2. (12)

Figure 7.1 shows an unsymmetric matrix with eigenvalues λ1 = λ2 = 1 and norm
‖A‖= 1.618. In this case A−1 has the same norm. The farthest and closest points Ax on
the ellipse come from eigenvectors x of ATA, not of A.

Note 1. The norm and condition number are not actually computed in practice, only
estimated, There is not time to solve an eigenvalue problem for λmax(ATA).

Note 2. In the least-squares equation ATAx = ATb, the condition number c(ATA) is the
square of c(A). Forming ATA can turn a healthy problem into a sick one. It may be
necessary to orthogonalize A by Gram-Schmidt, instead of computing with ATA.

Note 3. The singular values of A in the SVD are the square roots of the eigenvalues of
ATA. By equation (12), another formula for the norm is ‖A‖ = σmax. The orthogonal
U and V leave lengths unchanged in ‖Ax‖= ‖UΣV Tx‖. So the largest ‖Ax‖/‖x‖ comes
from the largest σ in the diagonal matrix Σ.
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norm

1

‖A−1
‖

A =

[

1 1

0 1

]

ATA =

[

1 1

1 2

]

ellipse of all Ax

circle ‖x‖ = 1

‖A‖ =
1 +

√

5

2

‖A‖

2 = λmax(A
TA) ≈ 2.618

1

‖A−1
‖
2

= λmin(ATA) ≈ 0.382

c(A) = ‖A‖‖A−1
‖ ≈ (1.618)2

Figure 7.1: The norms of A and A−1 come from the longest and shortest Ax.

Note 4. Roundoff error also enters Ax = λx. What is the condition number of the eigen-
value problem? The condition number of the diagonalizing S measures the sensitivity
of the eigenvalues. If µ is an eigenvalue of A + E, then its distance from one of the
eigenvalues of A is

|µ−λ | ≤ ‖S‖‖S−1‖‖E‖= c(S)‖E‖. (13)

With orthonormal eigenvectors and S = Q, the eigenvalue problem is perfectly condi-
tioned: c(Q) = 1. The change δλ in the eigenvalues is no greater than the change δA.
Therefore the best case is when A is symmetric, or more generally when AAT = ATA.
Then A is a normal matrix; its diagonalizing S is an orthogonal Q (Section 5.6).

If xk is the kth column of S and yk is the kth row of S−1, then λk changes by

δλk = ykExk + terms of order ‖E‖2. (14)

In practice, ykExk is a realistic estimate of δλ . The idea in every good algorithm is to
keep the error matrix E as small as possible—usually by insisting, as in the next section,
on orthogonal matrices at every step of the computation of λ .

Problem Set 7.2

1. For an orthogonal matrix Q, show that ‖Q‖ = 1 and also c(Q) = 1. Orthogonal
matrices (and their multiples αQ) are the only perfectly conditioned matrices.

2. Which “famous” inequality gives ‖(A+B)x‖≤ ‖Ax‖+‖Bx‖, and why does it follow
from equation (5) that ‖A+B‖ ≤ ‖A‖+‖B‖?

3. Explain why ‖ABx‖≤‖A‖‖B‖‖x‖, and deduce from equation (5) that ‖AB‖≤‖A‖‖B‖.
Show that this also implies c(AB)≤ c(A)c(B).
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4. For the positive definite A =
[ 2 −1
−1 2

]
, compute ‖A−1‖= 1/λ1, ‖A‖= λ2, and c(A) =

λ2/λ1. Find a right-hand side b and a perturbation δb so that the error is the worst
possible, ‖δx‖/‖x‖= c‖δb‖/‖b‖.

5. Show that if λ is any eigenvalue of A, Ax = λx, then |λ | ≤ ‖A‖.

6. The matrices in equation (4) have norms between 100 and 101. Why?

7. Comparing the eigenvalues of ATA and AAT, prove that ‖A‖= ‖AT‖.

8. For a positive definite A, the Cholesky decomposition is A = LDLT = RTR, where
R =

√
DLT. Show directly from equation (12) that the condition number of c(R) is

the square root of c(A). Elimination without row exchanges cannot hurt a positive
definite matrix, since c(A) = c(RT)c(R).

9. Show that max |λ | is not a true norm, by finding 2 by 2 counterexamples to λmax(A+
B)≤ λmax(A)+λmax(B) and λmax(AB)≤ λmax(A)λmax(B).

10. Show that the eigenvalues of B =
[ 0 A

AT 0

]
are ±σi, the singular values of A. Hint: Try

B2.

11. (a) Do A and A−1 have the same condition number c?

(b) In parallel with the upper bound (8) on the error, prove a lower bound:

‖δx‖
‖x‖ ≥ 1

c
‖δb‖
‖b‖ . (Consider A−1b = x instead of Ax = b.)

12. Find the norms λmax and condition numbers λmax/λmin of these positive definite
matrices: [

100 0
0 2

] [
2 1
1 2

] [
3 1
1 1

]
.

13. Find the norms and condition numbers from the square roots of λmax(ATA) and
λmin(ATA): [

−2 0
0 2

] [
1 1
0 0

] [
1 1
−1 1

]
.

14. Prove that the condition number ‖A‖‖A−1‖ is at least 1.

15. Why is I the only symmetric positive definite matrix that has λmax = λmin = 1? Then
the only matrices with ‖A‖ = 1 and ‖A−1‖ = 1 must have ATA = I. They are
matrices.

16. Orthogonal matrices have norm ‖Q‖= 1. If A = QR, show that ‖A‖ ≤ ‖R‖ and also
‖R‖ ≤ ‖A‖. Then ‖A‖= ‖Q‖‖R‖. Find an example of A = LU with ‖A‖< ‖L‖‖U‖.
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17. (Suggested by Moler and Van Loan) Compute b−Ay and b−Az when

b =

[
.217
.254

]
A =

[
.780 .563
.913 .659

]
y =

[
.341
−.087

]
z =

[
.999
−1.0

]
.

Is y closer than z to solving Ax = b? Answer in two ways: Compare the residual
b−Ay to b−Az. Then compare y and z to the true x = (1,−1), Sometimes we want
a small residual, sometimes a small δx.

Problems 18–20 are about vector norms other than the usual ‖x‖=
√

x · x.

18. The “`1 norm” is ‖x‖1 = |x|1 + · · ·+ |x|n. The “`∞ norm” is ‖x‖∞ = max |xi|. Compute
‖x‖, ‖x‖1 and ‖x‖∞ for the vectors

x = (1,1,1,1,1) and x = (.1, .7, .3, .4, .5).

19. Prove that ‖x‖∞ ≤ ‖x‖ ≤ ‖x‖1. Show from the Schwarz inequality that the ratios
‖x‖/‖x‖∞ and ‖x‖1/‖x‖ are never larger than

√
n. Which vector (x1, . . . ,xn) gives

ratios equal to
√

n?

20. All vector norms must satisfy the triangle inequality. Prove that

‖x+ y‖∞ ≤ ‖x‖∞ +‖y‖∞ and ‖x+ y‖1 ≤ ‖x‖1 +‖y‖1.

21. Compute the exact inverse of the Hilbert matrix A by elimination. Then compute
A−1 again by rounding all numbers to three figures:

In MATLAB : A = hilb(3) =




1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5


 .

22. For the same A, compute b = Ax for x = (1,1,1) and x = (0,6,−3.6). A small change
∆b produces a large change ∆x.

23. Compute λmax and λmin for the 8 by 8 Hilbert matrix ai j = 1/(i + j− 1). If Ax = b
with ‖b‖ = 1, how large can ‖x‖ be? If b has roundoff error less than 10−16, how
large an error can this cause in x?

24. If you know L, U , Q, and R, is it faster to solve LUx = b or QRx = b?

25. Choosing the largest available pivot in each column (partial pivoting), factor each A
into PA = LU :

A =

[
1 0
2 2

]
and A =




1 0 1
2 2 0
0 2 0


 .
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26. Find the LU factorization of A =
[ ε 1

1 1

]
. On your computer, solve by elimination

when ε = 10−3,10−6,10−9,10−12,10−15:
[

ε 1
1 1

][
x1

x2

]
=

[
1+ ε

2

]
.

The true x is (1,1). Make a table to show the error for each ε . Exchange the two
equations and solve again—the errors should almost disappear.

7.3 Computation of Eigenvalues

There is no one best way to find the eigenvalues of a matrix. But there are certainly
some terrible ways which should never be tried, and also some ideas that do deserve a
permanent place. We begin by describing one very rough and ready approach, the power
method, whose convergence properties are easy to understand. We added a graphic
animation (with sound) to the course page web.mit.edu/18.06, to show the power method
in action.

We move steadily toward a more sophisticated algorithm, which starts by making a
symmetric matrix tridiagonal and ends by making it virtually diagonal. That second step
is done by repeating Gram-Schmidt, so it is known as the QR method.

The ordinary power method operates on the principle of a difference equation. It
starts with an initial guess u0 and then successively forms u1 = Au0, u2 = Au1, and
in general uk+1 = Auk. Each step is a matrix-vector multiplication. After k steps it
produces uk = Aku0, although the matrix Ak will never appear. The essential thing is
that multiplication by A should be easy—if the matrix is large, it had better be sparse—
because convergence to the eigenvector is often very slow. Assuming A has a full set of
eigenvectors x1, . . . ,xn, the vector uk will be given by the usual formula:

Eigenvectors weighted by λ k uk = c1λ k
1 x1 + · · ·+ cnλ k

n xn.

Suppose the largest eigenvalue λn is all by itself; there is no other eigenvalue of the same
magnitude, and |λ1| ≤ · · · ≤ |λn−1|< |λn|. Then as long as the initial guess u0 contained
some component of the eigenvector xn, so that cn 6= 0, this component will gradually
dominate in uk:

uk

λ k
n

= c1

(
λ1

λn

)k

x1 + · · ·+ cn−1

(
λn−1

λn

)k

xn−1 + cnxn. (1)

The vectors uk point more and more accurately toward the direction of xn. Their conver-
gence factor is the ratio r = |λn−1|/|λn|. It is just like convergence to a steady state, for
a Markov matrix, except now λn may not equal 1. The scaling factor λ k

n in equation (1)
prevents uk from growing very large or very small, in case |λn|> 1 or |λn|< 1.
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Often we can just divide each uk by its first component αk before taking the next step.
With this simple scaling, the power method uk+1 = Auk/αk converges to a multiple of
xn. The scaling factors αk will approach λn.

Example 1. The uk approach the eigenvector
[

2/3
1/3

]
=

[
.667
.333

]
when A =

[
.9 .2
.1 .8

]
is the

matrix of population shifts in Section 1.3:

u0 =

[
1
0

]
, u1 =

[
.9
.1

]
, u2 =

[
.83
.17

]
, u3 =

[
.781
.219

]
, u4 =

[
.747
.253

]
.

If r = |λn−1|/|λn| is close to 1, then convergence is very slow. In many applications
r > .9, which means that more than 20 iterations are needed to achieve one more digit.
(The example had r = .7, and it was still slow.) If r = 1, which means |λn−1|= |λn|, then
convergence will probably not occur at all. That happens (in the applet with sound) for a
complex conjugate pair λn−1 = λ n. There are several ways to get around this limitation,
and we shall describe three of them:

1. The block power method works with several vectors at once, in place of uk. If we
multiply p orthonormal vectors by A, and then apply Gram-Schmidt to orthogonal-
ize them again—that is a single step of the method—the convergence ratio becomes
r′ = |λn−p|/|λn|. We will obtain approximations to p different eigenvalues and their
elgenvectors.

2. The inverse power method operates with A−1 instead of A. A single step is vk+1 =
A−1vk, which means that we solve the linear system Avk+1 = vk (and save the factors
L and U!). Now we converge to the smallest eigenvalue λ1 and its eigenvector x1,
provided |λ1| < |λ2|. Often it is λ1 that is wanted in the applications, and then
inverse iteration is an automatic choice.

3. The shifted inverse power method is best of all. Replace A by A−αI. Each eigen-
value is shifted by α , and the convergence factor for the inverse method will change
to r′′ = |λ1−α|/|λ2−α|. If α is a good approximation to λ1, r′′ will be very small
and the convergence is enormously accelerated. Each step of the method solves
(A−αI)wk+1 = wk:

wk =
c1x1

(λ1−α)k +
c2x2

(λ2−α)k + · · ·+ cnxn

(λn−α)k .

When α is close to λ1, the first term dominates after only one or two steps. If
λ1 has already been computed by another algorithm (such as QR), then α is this
computed value. One standard procedure is to factor A−αI into LU and to solve
Ux1 = (1,1, . . . ,1) by back-substitution.

If λ1 is not already approximated, the shifted inverse power method has to generate its
own choice of α . We can vary α = αk at every step if we want to, so (A−αkI)wk+1 = wk.
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When A is symmetric, a very accurate choice is the Rayleigh quotient:

shift by αk = R(wk) =
wT

k Awk

wT
k wk

.

This quotient R(x) has a minimum at the true eigenvector x1. Its graph is like the bottom
of a parabola, so the error λ1−αk is roughly the square of the error in the eigenvector.
The convergence factors |λ1−αk|/|λ2−αk| are themselves converging to zero. Then
these Rayleigh quotient shifts give cubic convergence of αk to λ1.2

Tridiagonal and Hessenberg Forms

The power method is reasonable only for a matrix that is large and sparse. When too
many entries are nonzero, this method is a mistake. Therefore we ask whether there is
any simple way to create zeros. That is the goal of the following paragraphs.

It should be said that after computing a similar matrix Q−1AQ with more zeros than
A, we do not intend to go back to the power method. There are much more powerful
variants, and the best of them seems to be the QR algorithm. (The shifted inverse power
method has its place at the very end, in finding the eigenvector.) The first step is to pro-
duce quickly as many zeros as possible, using an orthogonal matrix Q. If A is symmetric,
then so is Q−1AQ. No entry can become dangerously large because Q preserves lengths.

To go from A to Q−1AQ, there are two main possibilities: We can produce one zero at
every step (as in elimination), or we can work with a whole column at once. For a single
zero, it is easy to use a plane rotation as illustrated in equation (7), found near the end
of this section, that has cosθ and sinθ in a 2 by 2 block. Then we could cycle through
all the entries below the diagonal, choosing at each step a rotation θ that will produce a
zero; this is Jacobi’s method. It fails to diagonalize A after a finite number of rotations,
since the zeros from early steps will be destroyed when later zeros are created.

To preserve the zeros and stop, we have to settle for less than a triangular form.
The Hessenberg form accepts one nonzero diagonal below the main diagonal. If a
Hessenberg matrix is symmetric, it only has three nonzero diagonals.

A series of rotations in the right planes will produce the required zeros. Householder
found a new way to accomplish exactly the same thing. A Householder transformation
is a reflection matrix determined by one vector v:

Householder matrix H = I−2
vvT

‖v‖2 .

Often v is normalized to become a unit vector u = v/‖v‖, and then H becomes I−2uuT.
In either case H is both symmetric and orthogonal:

HTH = (I−2uuT)(I−2uuT) = I−4uuT +4uuTuuT = I.
2Linear convergence means that every step multiplies the error by a fixed factor r < 1. Quadratic convergence

means that the error is squared at every step, as in Newton’s method xk+1−xk =− f (xk)/ f ′(xk) for solving f (x) =
0. Cubic convergence takes 10−1 to 10−3 to 10−9.
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Thus H = HT = H−1. Householder’s plan was to produce zeros with these matrices, and
its success depends on the following identity Hx =−σz:

7E Suppose z is the column vector (1,0, . . . ,0), σ = ‖x‖, and v = x + σz.
Then Hx =−σz = (−σ ,0, . . . ,0). The vector Hx ends in zeros as desired.

The proof is to compute Hx and reach −σz:

Hx = x− 2vvTx
‖v‖2 = x− (x+σz)

2(x+σz)Tx
(x+σz)T(x+σz)

= x− (x+σz) (because xTx = σ2)

=−σz.

(2)

This identity can be used right away, on the first column of A. The final Q−1AQ is
allowed one nonzero diagonal below the main diagonal (Hessenberg form). Therefore
only the entries strictly below the diagonal will be involved:

x =




a21

a31
...

an1


 , z =




1
0
...
0


 , Hx =




−σ
0
...
0


 . (3)

At this point Householder’s matrix H is only of order n− 1, so it is embedded into the
lower right-hand corner of a full-size matrix U1:

U1 =




1 0 0 0 0
0
0 H
0
0




= U−1
1 , and U−1

1 AU1 =




a11 ∗ ∗ ∗ ∗
−σ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗




.

The first stage is complete, and U−1
1 AU1 has the required first column. At the second

stage, x consists of the last n− 2 entries in the second column (three bold stars). Then
H2 is of order n−2. When it is embedded in U2, it produces

U2 =




1 0 0 0 0
0 1 0 0 0
0 0
0 0 H2

0 0




= U−1
2 , U−1

2 (U−1
1 AU1)U2 =




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗




.

U3 will take care of the third column. For a 5 by 5 matrix, the Hessenberg form is
achieved (it has six zeros). In general Q is the product of all the matrices U1U2 · · ·Un−2,
and the number of operations required to compute it is of order n3.
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Example 2. (to change a13 = a31 to zero)

A =




1 0 1
0 1 1
1 1 0


 , x =

[
0
1

]
, v =

[
1
1

]
, H =

[
0 −1
−1 0

]
.

Embedding H into Q, the result Q−1AQ is tridiagonal:

Q =




1 0 0
0 0 −1
0 −1 0


 , Q−1AQ =




1 −1 0
−1 0 1
0 1 1


 .

Q−1AQ is a matrix that is ready to reveal its eigenvalues—the QR algorithm is ready to
begin—but we digress for a moment to mention two other applications of these same
Householder matrices H.

1. The Gram-Schmidt factorization A = QR. Remember that R is to be upper trian-
gular. We no longer have to accept an extra nonzero diagonal below the main one,
since no matrices are multiplying on the right to spoil the zeros. The first step in
constructing Q is to work with the whole first column of A:

x =




a11

a21
...

an1


 , z =




1
0
...
0


 , v = x+‖x‖z, H1 = I−2

vvT

‖v‖2 .

The first column of H1A equals −‖x‖z. It is zero below the main diagonal, and it
is the first column of R. The second step works with the second column of H1A,
from the pivot on down, and produces an H2H1A which is zero below that pivot.
(The whole algorithm is like elimination, but slightly slower.) The result of n− 1
steps is an upper triangular R, but the matrix that records the steps is not a lower
triangular L. Instead it is the product Q = H1H2 · · ·Hn−1, which can be stored in this
factored form (keep only the v’s) and never computed explicitly. That completes
Gram-Schmidt.

2. The singular value decomposition UTAV = Σ. The diagonal matrix Σ has the same
shape as A, and its entries (the singular values) are the square roots of the eigenval-
ues of ATA. Since Householder transformations can only prepare for the eigenvalue
problem, we cannot expect them to produce Σ. Instead, they stably produce a bidi-
agonal matrix, with zeros everywhere except along the main diagonal and the one
above.

The first step toward the SVD is exactly as in QR above: x is the first column of A,
and H1x is zero below the pivot. The next step is to multiply on the right by an H(1)
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which will produce zeros as indicated along the first row:

A→ H1A =



∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗


→ H1AH(1) =



∗ ∗ 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗


 . (4)

Then two final Householder transformations quickly achieve the bidiagonal form:

H2H1AH(1) =



∗ ∗ 0 0
0 ∗ ∗ ∗
0 0 ∗ ∗


 and H2H1AH(1)H(2) =



∗ ∗ 0 0
0 ∗ ∗ 0
0 0 ∗ ∗


 .

The QR Algorithm for Computing Eigenvalues

The algorithm is almost magically simple. It starts with A0, factors it by Gram-Schmidt
into Q0R0, and then reverses the factors: A1 = R0Q0. This new matrix A1 is similar to
the original one because Q−1

0 A0Q0 = Q−1
0 (Q0R0)Q0 = A1. So the process continues with

no change in the eigenvalues:

All Ak are similar Ak = QkRk and then Ak+1 = RkQk. (5)

This equation describes the unshifted QR algorithm, and almost always Ak approaches a
triangular form, Its diagonal entries approach its eigenvalues, which are also the eigen-
values of A0. If there was already some processing to obtain a tridiagonal form, then A0

is connected to the absolutely original A by Q−1AQ = A0.
As it stands, the QR algorithm is good but not very good. To make it special, it needs

two refinements: We must allow shifts to Ak −αkI, and we must ensure that the QR
factorization at each step is very quick.

1. The Shifted Algorithm. If the number αk is close to an eigenvalue, the step in
equation (5) should be shifted immediately by αk (which changes Qk and Rk):

Ak = αkI = QkRk and then Ak+1 = RkQk +αkI. (6)

This matrix Ak+1 is similar to Ak (always the same eigenvalues):

Q−1
k AkQk = Q−1

k (QkRk +αkI)Qk = Ak+1.

What happens in practice is that the (n,n) entry of Ak—the one in the lower right-hand
corner—is the first to approach an eigenvalue. That entry is the simplest and most pop-
ular choice for the shift αk. Normally this produces quadratic convergence, and in the
symmetric case even cubic convergence, to the smallest eigenvalue. After three or four
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steps of the shifted algorithm, the matrix Ak looks like this:

Ak =




∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ε λ ′1


 , with ε ¿ 1.

We accept the computed λ ′1 as a very close approximation to the true λ1. To find the
next eigenvalue, the QR algorithm continues with the smaller matrix (3 by 3, in the
illustration) in the upper left-hand corner. Its subdiagonal elements will be somewhat
reduced by the first QR steps, and another two steps are sufficient to find λ2. This gives
a systematic procedure for finding all the eigenvalues. In fact, the QR method is now
completely described. It only remains to catch up on the eigenvectors—that is a single
inverse power step—and to use the zeros that Householder created.

2. When A0 is tridiagonal or Hessenberg, each QR step is very fast. The Gram-Schmidt
process (factoring into QR) takes O(n3) operations for a full matrix A. For a Hessenberg
matrix this becomes O(n2), and for a tridiagonal matrix it is O(n). Fortunately, each new
Ak is again in Hessenberg or tridiagonal form:

Q0 is Hessenberg Q0 = A0R−1
0 =




∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗







∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗


 .

You can easily check that this multiplication leaves Q0 with the same three zeros as A0.
Hessenberg times triangular is Hessenberg. So is triangular times Hessenberg:

A1 is Hessenberg A1 = R0Q0 =




∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗







∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗


 .

The symmetric case is even better, since A1 = Q−1
0 A0Q0 = QT

0 A0Q0 stays symmetric. By
the reasoning just completed, A1 is also Hessenberg. So A1 must be tridiagonal. The
same applies to A2,A3, . . ., and every QR step begins with a tridiagonal matrix.

The last point is the factorization itself, producing the Qk and Rk from each Ak (or
really from Ak −αkI). We may use Householder again, but it is simpler to annihilate
each subdiagonal element in turn by a “plane rotation” Pi j. The first is P21:

Rotation to kill a21 P21Ak =




cosθ −sinθ
sinθ cosθ

1
1







a11 ∗ ∗ ∗
a21 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗


 (7)



406 Chapter 7 Computations with Matrices

The (2,1) entry in this product is a11 sinθ + a21 cosθ , and we choose the angle θ that
makes this combination zero. The next rotation P32 is chosen in a similar way, to remove
the (3,2) entry of P32P21Ak. After n−1 rotations, we have R0:

Triangular factor Rk = Pn n−1 · · ·P32P21Ak. (8)

Books on numerical linear algebra give more information about this remarkable algo-
rithm in scientific computing. We mention one more method—Arnoldi in ARPACK—
for large sparse matrices. It orthogonalizes the Krylov sequence x,Ax,A2x, . . . by Gram-
Schmidt. If you need the eigenvalues of a large matrix, don’t use det(A−λ I)!

Problem Set 7.3

1. For the matrix A =
[ 2 −1
−1 2

]
with eigenvalues λ1 = 1 and λ2 = 3, apply the power

method uk+1 = Auk three times to the initial guess u0 =
[

1
0

]
. What is the limiting

vector u∞?

2. For the same A and the initial guess u0 =
[

3
4

]
, compare three inverse power steps to

one shifted step with α = uT
0 Au0/uT

0 u0:

uk+1 = A−1uk =
1
3

[
2 1
1 2

]
uk or u = (A−αI)−1u0.

The limiting vector u∞ is now a multiple of the other eigenvector (1,1).

3. Explain why |λn/λn−1| controls the convergence of the usual power method. Con-
struct a matrix A for which this method does not converge.

4. The Markov matrix A =
[

.9 .3

.1 .7

]
has λ = 1 and .6, and the power method uk = Aku0

converges to
[

.75

.25

]
. Find the eigenvectors of A−1. What does the inverse power

method u−k = A−ku0 converge to (after you multiply by .6k)?

5. Show that for any two different vectors of the same length, ‖x‖ = ‖y‖, the House-
holder transformation with v = x− y gives Hx = y and Hy = x.

6. Compute σ = ‖x‖, v = x+σz, and H = I−2vvT/vTv, Verify Hx =−σz:

x =

[
3
4

]
and z =

[
1
0

]
.

7. Using Problem 6, find the tridiagonal HAH−1 that is similar to

A =




1 3 4
3 1 0
4 0 0
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8. Show that starting from A0 =
[ 2 −1
−1 2

]
, the unshifted QR algorithm produces only the

modest improvement A1 = 1
5

[ 14 −3
−3 6

]
.

9. Apply to the following matrix A a single QR step with the shift α = a22—which in
this case means without shift, since a22 = 0. Show that the off-diagonal entries go
from sinθ to −sin3θ , which is cubic convergence.

A =

[
cosθ sinθ
sinθ 0

]
.

10. Check that the tridiagonal A =
[

0 1
1 0

]
is left unchanged by the QR algorithm. It is one

of the (rare) counterexamples to convergence (so we shift).

11. Show by induction that, without shifts, (Q0Q1 · · ·Qk)(Rk · · ·R1R0) is exactly the QR
factorization of Ak+1. This identity connects QR to the power method and leads to
an explanation of its convergence. If |λ1|> |λ2|> · · ·> |λn|, these eigenvalues will
gradually appear on the main diagonal.

12. Choose sinθ and cosθ in the rotation P to triangularize A, and find R:

P21A =

[
cosθ −sinθ
sinθ cosθ

][
1 −1
3 5

]
=

[
∗ ∗
0 ∗

]
= R.

13. Choose sinθ and cosθ to make P21AP−1
21 triangular (same A). What are the eigen-

values?

14. When A is multiplied by Pi j (plane rotation), which entries are changed? When Pi jA
is multiplied on the right by P−1

i j , which entries are changed now?

15. How many multiplications and how many additions are used to compute PA? (A
careful organization of all the rotations gives 2

3n3 multiplications and additions, the
same as for QR by reflectors and twice as many as for LU .)

16. (Turning a robot hand) A robot produces any 3 by 3 rotation A from plane rotations
around the x, y, and z axes. If P32P31P21A = I, the three robot turns are in A =
P−1

21 P−1
31 P−1

32 . The three angles are Euler angles. Choose the first θ so that

P21A =




cosθ −sinθ 0
sinθ cosθ 0

0 0 1


 1

2



−1 2 2
2 −1 2
2 2 −1


 is zero in the (2,1) position.

7.4 Iterative Methods for Ax = b

In contrast to eigenvalues, for which there was no choice, we do not absolutely need
an iterative method to solve Ax = b. Gaussian elimination will reach the solution x in
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a finite number of steps (n3/3 for a full matrix, less than that for the large matrices we
actually meet), Often that number is reasonable. When it is enormous, we may have to
settle for an approximate x that can be obtained more quickly—and it is no use to go
part way through elimination and then stop.

Our goal is to describe methods that start from any initial guess x0, and produce an
improved approximation xk+1 from the previous xk. We can stop when we want to.

An iterative method is easy to invent, by splitting the matrix A. If A = S−T , then
the equation Ax = b is the same as Sx = T x+b. Therefore we can try

Iteration from xk to xk+1 Sxk+1 = T xk +b. (1)

There is no guarantee that this method is any good. A successful splitting S−T satisfies
two different requirements:

1. The new vector xk+1 should be easy to compute. Therefore S should be a simple
(and invertible!) matrix; it may be diagonal or triangular.

2. The sequence xk should converge to the true solution x. If we subtract the iteration
in equation (1) from the true equation Sx = T x+b, the result is a formula involving
only the errors ek = x− xk:

Error equation Sek+1 = Tek. (2)

This is just a difference equation. It starts with the initial error e0, and after k steps
it produces the new error ek = (S−1T )ke0. The question of convergence is exactly
the same as the question of stability: xk → x exactly when ek → 0.

7F The iterative method in equation (1) is convergent if and only if every
eigenvalue of S−1T satisfies |λ | < 1. Its rate of convergence depends on the
maximum size of |λ |:

Spectral radius “rho” ρ(S−1T ) = max
i
|λi|. (3)

Remember that a typical solution to ek+1 = S−1Tek is a combination of eigenvectors:

Error after k steps ek = c1λ k
1 x1 + · · ·+ cnλ k

n xn. (4)

The largest |λi|will eventually be dominant, so the spectral radius ρ = |λmax|will govern
the rate at which ek converges to zero. We certainly need ρ < 1.

Requirements 1 and 2 above are conflicting. We could achieve immediate conver-
gence with S = A and T = 0; the first and only step of the iteration would be Ax1 = b. In
that case the error matrix S−1T is zero, its eigenvalues and spectral radius are zero, and
the rate of convergence (usually defined as − logρ) is infinite. But Ax1 = b may be hard
to solve; that was the reason for a splitting. A simple choice of S can often succeed, and
we start with three possibilities:
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1. S = diagonal part of A (Jacobi’s method).

2. S = triangular pail of A (Gauss-Seidel method).

3. S = combination of 1 and 2 (successive overrelaxation or SOR).

S is also called a preconditioner, and its choice is crucial in numerical analysis.

Example 1 (Jacobi). Here S is the diagonal part of A:

A =

[
2 −1
−1 2

]
, S =

[
2

2

]
,T =

[
0 1
1 0

]
,S−1T =

[
0 1

2
1
2 0

]
.

If the components of x are v and w, the Jacobi step Sxk+1 = T xk +b is

2vk+1 = wk +b1

2wk+1 = vk +b2,
or

[
v
w

]

k+1

=

[
0 1

2
1
2 0

][
v
w

]

k

+

[
b1/2
b2/2

]
.

The decisive matrix S−1T has eigenvalues ±1
2 , which means that the error is cut in half

(one more binary digit becomes correct) at every step. In this example, which is much
too small to be typical, the convergence is fast.

For a larger matrix A, there is a very practical difficulty. The Jacobi iteration re-
quires us to keep all components of xk until the calculation of xk+1 is complete. A
much more natural idea, which requires only half as much storage, is to start using each
component of the new xk+1 as soon as it is computed; xk+1 takes the place of xk a com-
ponent at a time. Then xk can be destroyed as fast as xk+1 is created, The first component
remains as before:

New x1 a11(x1)k+1 = (−a12x2−a13x3−·· ·−a1nxn)k +b1.

The next step operates immediately with this new value of x1, to find (x2)k+1:

New x2 a22(x2)k+1 =−a21(x1)k+1 +(−a23x3−·· ·−a2nxn)k +b2.

And the last equation in the iteration step will use new values exclusively:

New xn ann(xn)k+1 = (−an1x1−an2x2−·· ·−ann−1xn−1)k+1 +bn.

This is called the Gauss-Seidel method, even though it was apparently unknown to
Gauss and not recommended by Seidel. That is a surprising bit of history, because it is
not a bad method. When the terms in xk+1 are moved to the left-hand side, S is seen as
the lower triangular part of A. On the right-hand side, T is strictly upper triangular.

Example 2 (Gauss-Seidel). Here S−1T has smaller eigenvalues:

A =

[
2 −1
−1 2

]
, S =

[
2 0
−1 2

]
, T =

[
0 1
0 0

]
, S−1T =

[
0 1

2
0 1

4

]
.
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A single Gauss-Seidel step takes the components vk and wk into

2vk+1 = wk +b1

2wk+1 = vk +b2,
or

[
2 0
−1 2

]
xk+1 =

[
0 1
0 0

]
xk +b.

The eigenvalues of S−1T are 1
4 and 0. The error is divided by 4 every time, so a sin-

gle Gauss-Seidel step is worth two Jacobi steps. Since both methods require the same
number of operations—we just use the new value instead of the old, and actually save
on storage—the Gauss-Seidel method is better.

This rule holds in many applications, even though there are examples in which Jacobi
converges and Gauss-Seidel fails (or conversely). The symmetric case is straightfor-
ward: When all aii > 0, Gauss-Seidel converges if and only if A is positive definite.

It was discovered during the years of hand computation (probably by accident) that
convergence is faster if we go beyond the Gauss-Seidel correction xk+1− xk. Roughly
speaking, those approximations stay on the same side of the solution x. An overrelax-
ation factor ω moves us closer to the solution. With ω = 1, we recover Gauss-Seidel;
with ω > 1, the method is known as successive overrelaxation (SOR). The optimal
choice of ω never exceeds 2. It is often in the neighborhood of 1.9.

To describe overrelaxation, let D, L, and U be the parts of A on, below, and above
the diagonal, respectively. (This splitting has nothing to do with the A = LDU of elim-
ination. In fact we now have A = L + D +U .) The Jacobi method has S = D on the
left-hand side and T = −L−U on the right-hand side. Gauss-Seidel chose S = D + L
and T =−U . To accelerate the convergence, we move to

Overrelaxation [D+ωL]xk+1 = [(1−ω)D−ωU ]xk +ωb. (5)

Regardless of ω , the matrix on the left is lower triangular and the one on the right is
upper triangular. Therefore xk+1 can still replace xk, component by component, as soon
as it is computed. A typical step is

aii(xi)k+1 = aii(xi)k +ω[(−ai1x1−·· ·−aii−1xi−1)k+1 +(−aiixi−·· ·−ainxn)k +bi].

If the old guess xk happened to coincide with the true solution x, then the new guess xk+1

would stay the same, and the quantity in brackets would vanish.

Example 3 (SOR). For the same A =
[ 2 −1
−1 2

]
, each overrelaxation step is

[
2 0
−ω 2

]
xk+1 =

[
2(1−ω) ω

0 2(1−ω)

]
xk +ωb.

If we divide by ω , these two matrices are the S and T in the splitting AS−T ; the iteration
is back to Sxk+1 = T xk +b. The crucial matrix L = S−1T is

L =

[
2 0
−ω 2

]−1 [
2(1−ω) ω

0 2(1−ω)

]
=

[
1−ω 1

2ω
1
2ω(1−ω) 1−ω + 1

4ω2

]
.
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The optimal ω makes the largest eigenvalue of L (its spectral radius) as small as possible.
The whole point of overrelaxation is to discover this optimal ω . The product of the
eigenvalues equals detL = detT/detS:

λ1λ2 = detL = (1−ω)2.

Always detS = detD because L lies below the diagonal, and detT = det(1−ω)D be-
cause U lies above the diagonal. Their product is detL = (1−ω)n. (This explains why
we never go as far as ω = 2. The product of the eigenvalues would be too large, and
the iteration could not converge.) We also get a clue to the behavior of the eigenvalues:
At the optimal ω the two eigenvalues are equal. They must both equal ω − 1 so their
product will match detL. This value of ω is easy to compute, because the sum of the
eigenvalues always agrees with the sum of the diagonal entries (the trace of L):

Optimal ω λ1 +λ2 = (ωopt−1)+(ωopt−1) = 2−2ωopt +
1
4

ω2
opt. (6)

This quadratic equation gives ωopt = 4(2−√3) ≈ 1.07. The two equal eigenvalues are
approximately ω − 1 = 1.07, which is a major reduction from the Gauss-Seidel value
λ = 1

4 at ω = 1. In this example, the right choice of ω has again doubled the rate of
convergence, because (1

4)
2 ≈ .07. If ω is further increased, the eigenvalues become a

complex conjugate pair—both have |λ |= ω−1, which is now increasing with ω .

The discovery that such an improvement could be produced so easily, almost as if by
magic, was the starting point for 20 years of enormous activity in numerical analysis.
The first problem was solved in Young’s 1950 thesis—a simple formula for the optimal
ω . The key step was to connect the eigenvalues λ of L to the eigenvalues µ of the
original Jacobi matrix D−1(−L−U). That connection is expressed by

Formula for ω (λ +ω−1)2 = λω2µ2. (7)

This is valid for a wide class of finite difference matrices, and if we take ω = 1 (Gauss-
Seidel) it yields λ 2 = λ µ2. Therefore λ = 0 and λ = µ2 as in Example 2, where µ =±1

2
and λ = 0, λ = 1

4 . All the matrices in Young’s class have eigenvalues µ that occur in
plus-minus pairs, and the corresponding λ are 0 and µ2. So Gauss-Seidel doubles the
Jacobi rate of convergence.

The important problem is to choose ω so that λmax will be minimized. Fortunately,
Young’s equation (7) is exactly our 2 by 2 example! The best ω makes the two roots λ
both equal to ω−1:

(ω−1)+(ω−1) = 2−2ω + µ2ω2, or ω =
2(1−

√
1−µ2)

µ2 .

For a large matrix, this pattern will be repeated for a number of different pairs±µi—and
we can only make a single choice of ω . The largest µ gives the largest value of ω and
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of λ = ω − 1. Since our goal is to make λmax as small as possible, that extremal pair
specifies the best choice ωopt:

Optimal ω ωopt =
2(1−

√
1−µ2

max)
µ2

max
and λmax = ωopt−1. (8)

7G The splittings of the −1, 2, −1 matrix of order n yield these eigenvalues
of B:

Jacobi (S = 0, 2, 0 matrix): S−1T has |λ |max = cos
π

n+1

Gauss-Seidel (S = −1, 2, 0 matrix): S−1T has |λ |max =
(

cos
π

n+1

)2

SOR (with the best ω): |λ |max =
(

cos
π

n+1

)2
/(

1+ sin
π

n+1

)2

.

This can only be appreciated by an example. Suppose A is of order 21, which is very
moderate. Then h = 1

22 , cosπh = .99, and the Jacobi method is slow; cos2 πh = .98
means that even Gauss-Seidel will require a great many iterations. But since sinπh =√

.02 = .14, the optimal overrelaxation method will have the convergence factor

λmax =
.86

1.14
= .75, with ωopt = 1+λmax = 1.75.

The error is reduced by 25% at every step, and a single SOR step is the equivalent of
30 Jacobi steps: (.99)30 = .75.

That is a striking result from such a simple idea. Its real applications are not in one-
dimensional problems like −uxx = f . A tridiagonal system Ax = b is already easy. It is
for partial differential equations that overrelaxation (and other ideas) will be important.
Changing to −uxx−uyy = f leads to the “five-point scheme.” The entries −1, 2, −1 in
the x direction combine with −1, 2, −1 in the y direction to give a main diagonal of
+4 and four off-diagonal entries of −1. The matrix A does not have a small bandwidth!
There is no way to number the N2 mesh points in a square so that each point stays
close to all four of its neighbors. That is the true curse of dimensionality, and parallel
computers will partly relieve it.

If the ordering goes a row at a time, every point must wait a whole row for the neigh-
bor above it to turn up. The “five-point matrix” has bandwidth N: This matrix has had
more attention, and been attacked in more different ways, than any other linear equa-
tion Ax = b. The trend now is back to direct methods, based on an idea of Golub and
Hockney; certain special matrices will fall apart when they are dropped the right way.
(It is comparable to the Fast Fourier Transform.) Before that came the iterative methods
of alternating direction, in which the splitting separated the tridiagonal matrix in the x
direction from the one in the y direction, A recent choice is S = L0U0, in which small
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N

A =
−1, 2, −1 in x and y

gives −1, −1, 4, −1, −1

entries of the true L and U are set to zero while factoring A. It is called incomplete LU
and it can be terrific.

We cannot close without mentioning the conjugate gradient method, which looked
dead hut is suddenly very much alive (Problem 33 gives the steps). It is direct rather
than iterative, but unlike elimination, it can be stopped part way. And needless to say,
a completely new idea may still appear and win. But it seems fair to say that it was the
change from .99 to .75 that revolutionized the solution of Ax = b.

Problem Set 7.4

1. This matrix has eigenvalues 2−√2, 2, and 2+
√

2:

A =




2 −1 0
−1 2 −1
0 −1 2


 .

Find the Jacobi matrix D−1(−L−U) and the Gauss-Seidel matrix (D + L)−1(−U)
and their eigenvalues, and the numbers ωopt and λmax for SOR.

2. For this n by n matrix, describe the Jacobi matrix J = D−1(−L−U):

A =




2 −1
−1 · ·

· · −1
−1 2


 .

Show that the vector x1 = (sinπh,sin2πh, . . . ,sinnπh) is an eigenvector of J with
eigenvalue λ1 = cosπh = cosπ/(n+1).

3. In Problem 2, show that xk = (sinkπh,sin2kπh, . . . ,sinnkπh) is an eigenvector of A.
Multiply xk by A to find the corresponding eigenvalue αk. Verify that in the 3 by 3
case these eigenvalues are 2−√2, 2, 2+

√
2.

Note. The eigenvalues of the Jacobi matrix J = 1
2(−L−U) = I− 1

2A are λk = 1−
1
2αk = coskπh. They occur in plus-minus pairs and λmax is cosπh.
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Problems 4–5 require Gershgorin’s “circle theorem”: Every eigenvalue of A lies in at
least one of the circles C1, . . . ,Cn, where Ci has its center at the diagonal entry aii. Its
radius ri = ∑i6= j |ai j| is equal to the absolute sum along the rest of the row.

Proof. Suppose xi is the largest component of x. Then Ax = λx leads to

(λ −aii)xi = ∑
j 6=i

ai jx j, or |λ −aii| ≤ ∑
j 6=i
|ai j| |x j|

|xi| ≤ ∑
j 6=i
|ai j|= ri.

4. The matrix

A =




3 1 1
0 4 1
2 2 5




is called diagonally dominant because every |aii| > ri. Show that zero cannot lie in
any of the circles, and conclude that A is nonsingular.

5. Write the Jacobi matrix J for the diagonally dominant A of Problem 4, and find the
three Gershgorin circles for J. Show that all the radii satisfy ri < 1, and that the
Jacobi iteration converges.

6. The true solution to Ax = b is slightly different from the elimination solution to
LUx0 = b; A−LU misses zero because of roundoff. One strategy is to do everything
in double precision, but a better and faster way is iterative refinement: Compute only
one vector r = b−Ax0 in double precision, solve LUy = r, and add the correction y to
x0. Problem: Multiply x1 = x0 +y by LU , write the result as a splitting Sx1 = T x0 +b,
and explain why T is extremely small. This single step brings us almost exactly to x.

7. For a general 2 by 2 matrix

A =

[
a b
c d

]
,

find the Jacobi iteration matrix S−1T = −D−1(L +U) and its eigenvalues µi. Find
also the Gauss-Seidel matrix−(D+L)−1U and its eigenvalues λi, and decide whether
λmax = µ2

max.

8. Change Ax = b to x = (I−A)x+b. What are S and T for this splitting? What matrix
S−1T controls the convergence of xk+1 = (1−A)xk +b?

9. If λ is an eigenvalue of A, then is an eigenvalue of B = I−A. The real eigen-
values of B have absolute value less than 1 if the real eigenvalues of A lie between

and .

10. Show why the iteration xk+1 = (I−A)xk +b does not converge for A =
[ 2 −1
−1 2

]
.
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11. Why is the norm of Bk never larger than ‖B‖k? Then ‖B‖ < 1 guarantees that the
powers Bk approach zero (convergence). This is no surprise, since |λ |max is below
‖B‖.

12. If A is singular, then all splittings A = S− T must fail. From Ax = 0, show that
S−1T x = x. So this matrix B = S−1T has λ = 1 and fails.

13. Change the 2s to 3s and find the eigenvalues of S−1T for both methods:

(J)

[
3 0
0 3

]
xk+1 =

[
0 1
1 0

]
xk +b (GS)

[
3 0
−1 3

]
xk+1 =

[
0 1
0 0

]
xk +b.

Does |λ |max for Gauss-Seidel equal |λ |2max for Jacobi?

14. Write a computer code (MATLAB or other) for Gauss-Seidel. You can define S and
T from A, or set up the iteration loop directly from the entries ai j. Test it on the −1,
2, −1 matrices A of order 10, 20, 50, with b = (1,0, . . . ,0).

15. The SOR splitting matrix S is the same as for Gauss-Seidel except that the diagonal
is divided by ω . Write a program for SOR on an n by n matrix. Apply it with ω = 1,
1.4, 1.8, 2.2 when A is the −1, 2, −1 matrix of order 10.

16. When A = AT, the Arnoldi-Lanczos method finds orthonormal q’s so that Aq j =
b j−1q j−1 +a jq j +b jq j+1 (with q0 = 0). Multiply by qT

j to find a formula for a j. The
equation says that AQ = QT where T is a matrix.

17. What bound on |λ |max does Gershgorin give For these matrices (see Problem 4)?
What are the three Gershgorin circles that contain all the eigenvalues?

A =




.3 .3 .2

.3 .2 .4

.2 .4 .1


 A =




2 −1 0
−1 2 −1
0 −1 2


 .

The key point for large matrices is that matrix-vector multiplication is much
faster than matrix-matrix multiplication. A crucial construction starts with a vec-
tor b and computes Ab,A2b, . . . (but never A2!). The first N vectors span the Nth
Krylov subspace. They are the columns of the Krylov matrix KN:

KN =
[
b Ab A2b · · · AN−1b

]
.

The Arnoldi-Lanczos iteration orthogonalizes the columns of KN , and the conjugate
gradient iteration solves Ax = b when A is symmetric positive definite.



416 Chapter 7 Computations with Matrices

Arnoldi Iteration Conjugate Gradient Iteration
q1 = b/‖b‖ x0 = 0, r0 = b, p0 = r0

for n = 1 to N−1 for n = 1 to N
v = Aqn αn = (rT

n−1rn−1)/(pT
n−1Apn−1) step length xn−1 to xn

for j = 1 to n xn = xn−1 +αn pn−1 approximate solution
h jn = qT

j v rn = rn−1−αnApn−1 new residual b−Axn

v = v−h jnq j βn = (rT
n rn)/(rT

n−1rn−1) improvement this step
hn+1,n = ‖v‖ pn = rn +βn pn−1 next search direction
qn+1 = v/hn+1,n Note: Only 1 matrix vector multiplication Aq and Ap

18. In Arnoldi, show that q2 is orthogonal to q1. The Arnoldi method is Gram-Schmidt
orthogonalization applied to the Krylov matrix: KN = QNRN . The eigenvalues of
QT

NAQN are often very close to those of A, even for N ¿ n. The Lanczos iteration is
Arnoldi for symmetric matrices (all coded in ARPACK).

19. In conjugate gradients, show that r1 is orthogonal to r0 (orthogonal residuals), and
pTAp0 = 0 (search directions are A-orthogonal). The iteration solves Ax = b by
minimizing the error eTAe in the Krylov subspace. It is a fantastic algorithm.



Chapter 8
Linear Programming and Game Theory

8.1 Linear Inequalities

Algebra is about equations, and analysis is often about inequalities. The line between
them has always seemed clear. But I have realized that this chapter is a counterexam-
ple: linear programming is about inequalities, but it is unquestionably a part of linear
algebra. It is also extremely useful—business decisions are more likely to involve linear
programming than determinants or eigenvalues.

There are three ways to approach the underlying mathematics: intuitively through
the geometry, computationally through the simplex method, or algebraically through
duality. These approaches are developed in Sections 8.1, 8.2, and 8.3. Then Section
8.4 is about problems (like marriage) in which the solution is an integer. Section 8.5
discusses poker and other matrix games. The MIT students in Bringing Down the House
counted high cards to win at blackjack (Las Vegas follows fixed rules, and a true matrix
game involves random strategies).

Section 8.3 has something new in this fourth edition. The simplex method is now
in a lively competition with a completely different way to do the computations, called
an interior point method. The excitement began when Karmarkar claimed that his
version was 50 times faster than the simplex method. (His algorithm, outlined in 8.2,
was one of the first to be patented—something we then believed impossible, and not
really desirable.) That claim brought a burst of research into methods that approach
the solution from the “interior” where all inequalities are strict: x ≥ 0 becomes x > 0.
The result is now a great way to get help from the dual problem in solving the primal
problem.

One key to this chapter is to see the geometric meaning of linear inequalities. An
inequality divides n-dimensional space into a halfspace in which the inequality is satis-
fied, and a halfspace in which it is not. A typical example is x + 2y ≥ 4. The boundary
between the two halfspaces is the line x+2y = 4, where the inequality is “tight.” Figure
8.1 would look almost the same in three dimensions. The boundary becomes a plane
like x + 2y + z = 4, and above it is the halfspace x + 2y + z ≥ 4. In n dimensions, the
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“plane” has dimension n−1.

b

b

x

y

x + 2y ≥ 4

x + 2y = 4

x + 2y = 0

(1, 2)

Figure 8.1: Equations give lines and planes. Inequalities give halfspaces.

Another constraint is fundamental to linear programming: x and y are required to be
nonnegative. This pair of inequalities x ≥ 0 and y ≥ 0 produces two more halfspaces.
Figure 8.2 is bounded by the coordinate axes: x ≥ 0 admits all points to the right of
x = 0, and y≥ 0 is the halfspace above y = 0.

The Feasible Set and the Cost Function

The important step is to impose all three inequalities at once. They combine to give the
shaded region in Figure 8.2. This feasible set is the intersection of the three halfspaces
x + 2y ≥ 4, x ≥ 0, and y ≥ 0. A feasible set is composed of the solutions to a family of
linear inequalities like Ax ≥ b (the intersection of m halfspaces). When we also require
that every component of x is nonnegative (the vector inequality x≥ 0), this adds n more
halfspaces. The more constraints we impose, the smaller the feasible set.

It can easily happen that a feasible set is bounded or even empty. If we switch our
example to the halfspace x +2y≤ 4, keeping x≥ 0 and y≥ 0, we get the small triangle
OAB. By combining both inequalities x+2y≥ 4 and x+2y≤ 4, the set shrinks to a line
where x+2y = 4. If we add a contradictory constraint like x+2y≤−2, the feasible set
is empty.

The algebra of linear inequalities (or feasible sets) is one part of our subject. But
linear programming has another essential ingredient: It looks for the feasible point that
maximizes or minimizes a certain cost function like 2x + 3y. The problem in linear
programming is to find the point that lies in the feasible set and minimizes the cost.

The problem is illustrated by the geometry of Figure 8,2. The family of costs 2x+3y
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gives a family of parallel lines. The minimum cost comes when the first line intersects
the feasible set. That intersection occurs at B, where x∗ = 0 and y∗ = 2; the minimum
cost is 2x∗+3y∗ = 6. The vector (0,2) is feasible because it lies in the feasible set, it is
optimal because it minimizes the cost function, and the minimum cost 6 is the value of
the program. We denote optimal vectors by an asterisk.

x

y

feasible set

x + 2y ≥ 4
x ≥ 0
y ≥ 0

B

A

cost 2x + 3y = 6

2x + 3y = 0

O

Figure 8.2: The feasible set with flat sides, and the costs 2x+3y, touching at B.

The optimal vector occurs at a corner of the feasible set. This is guaranteed by the
geometry, because the lines that give the cost function (or the planes, when we get to
more unknowns) move steadily up until they intersect the feasible set. The first contact
must occur along its boundary! The “simplex method” will go from one corner of the
feasible set to the next until it finds the corner with lowest cost. In contrast, “interior
point methods” approach that optimal solution from inside the feasible set.

Note. With a different cost function, the intersection might not be just a single point. If
the cost happened to be x+2y, the whole edge between B and A would be optimal. The
minimum cost is x∗+2y∗, which equals 4 for all these optimal vectors. On our feasible
set, the maximum problem would have no solution! The cost can go arbitrarily high and
the maximum cost is infinite.

Every linear programming problem falls into one of three possible categories:

1. The feasible set is empty.

2. The cost function is unbounded on the feasible set.

3. The cost reaches its minimum (or maximum) on the feasible set: the good case.

The empty and unbounded cases should be very uncommon for a genuine problem in
economics or engineering. We expect a solution.
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Slack Variables

There is a simple way to change the inequality x+2y≥ 4 to an equation. Just introduce
the difference as a slack variable w = x + 2y− 4. This is our equation! The old con-
straint x + 2y ≥ 4 is converted into w ≥ 0, which matches perfectly the other inequality
constraints x ≥ 0, y ≥ 0. Then we have only equations and simple nonnegativity con-
straints on x, y, w. The variables w that “take up the slack” are now included in the vector
unknown x:

Primal problem Minimize cx subject to Ax = b and x≥ 0.

The row vector c contains the costs; in our example, c = [2 3 0]. The condition x ≥ 0
puts the problem into the nonnegative part of Rn. Those inequalities cut back on the
solutions to Ax = b. Elimination is in danger, and a completely new idea is needed.

The Diet Problem and Its Dual

Our example with cost 2x + 3y can be put into words. It illustrates the “diet problem”
in linear programming, with two sources of protein—say steak and peanut butter. Each
pound of peanut butter gives a unit of protein, and each steak gives two units. At least
four units are required in the diet. Therefore a diet containing x pounds of peanut butter
and y steaks is constrained by x+2y≥ 4, as well as by x≥ 0 and y≥ 0. (We cannot have
negative steak or peanut butter.) This is the feasible set, and me p1001cm is to minimize
the cost. If a pound of peanut butter costs $2 and a steak is $3. then the cost of the whole
diet is 2x+3y. Fortunately, the optimal diet is two steaks: x∗ = 0 and y∗ = 2.

Every linear program, including this one, has a dual. If the original prohe1v a min-
imization, its dual is a maximization. The minimum in the given “primal problem”
equals the maximum in its dual. This is the key to linear programming, and it will be
explained in Section 8.3. Here we stay with the diet problem and try to interpret its dual.

In place of the shopper, who buys enough protein at minimal cost, the dual problem
is faced by a druggist. Protein pills compete with steak and peanut butter. Immediately
we meet the two ingredients of a typical linear program: The druggist maximizes the
pill price p, but that price is subject to linear constraints. Synthetic protein must not
cost more than the protein in peanut butter ($2 a unit) or the protein in steak ($3 for two
units). The price must be nonnegative or the druggist will not sell. Since four units of
protein are required, the income to the druggist will be 4p:

Dual problem Maximize 4p, subject to p≤ 2, 2p≤ 3, and p≥ 0.

In this example the dual is easier to solve than the primal; it has only one unknown
p. The constraint 2p ≤ 3 is the tight one that is really active, and the maximum price
of synthetic protein is p = $1.50. The maximum revenue is 4p = $6, and the shopper
ends up paying the same for natural and synthetic protein. That is the duality theorem:
maximum equals minimum.
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Typical Applications

The next section will concentrate on solving linear programs. This is the time to describe
two practical situations in which we minimize or maximize a linear cost function subject
to linear constraints.

1. Production Planning. Suppose General Motors makes a profit of $200 on each
Chevrolet, $300 on each Buick, and $500 on each Cadillac. These get 20, 17, and 14
miles per gallon, respectively, and Congress insists that the average car must get 18. The
plant can assemble a Chevrolet in 1 minute, a Buick in 2 minutes, and a Cadillac in 3
minutes. What is the maximum profit in 8 hours (480 minutes)?

Problem Maximize the profit 200x+300y+500z subject to

20x+17y+14z≥ 18(x+ y+ z), x+2y+3z≤ 480, x,y,z≥ 0.

2. Portfolio Selection. Federal bonds pay 5%, municipals pay 6%, and junk bonds pay
9%. We can buy amounts x, y, z not exceeding a total of $100,000. The problem is to
maximize the interest, with two constraints:

(i) no more than $20,000 can be invested in junk bonds, and

(ii) the portfolio’s average quality must be no lower than municipals, so x≥ z.

Problem Maximize 5x+6y+9z subject to

x+ y+ z≤ 100,000, z≤ 20,000, z≤ x, x,y,z≥ 0.

The three inequalities give three slack variables, with new equations like w = x− z and
inequalities w≥ 0.

Problem Set 8.1

1. Sketch the feasible set with constraints x + 2y ≥ 6, 2x + y ≥ 6, x ≥ 0, y ≥ 0. What
points lie at the three “corners” of this set?

2. (Recommended) On the preceding feasible set, what is the minimum value of the
cost function x+ y? Draw the line x+ y = constant that first touches the feasible set.
What points minimize the cost functions 3x+ y and x− y?

3. Show that the feasible set constrained by 2x+5y≤ 3, −3x+8y≤−5, x≥ 0, y≥ 0,
is empty.
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4. Show that the following problem is feasible but unbounded, so it has no optimal
solution: Maximize x+ y, subject to x≥ 0, y≥ 0, −3x+2y≤−1, x− y≤ 2.

5. Add a single inequality constraint to x ≥ 0, y ≥ 0 such that the feasible set contains
only one point.

6. What shape is the feasible set x ≥ 0, y ≥ 0, z ≥ 0, x + y + z = 1, and what is the
maximum of x+2y+3z?

7. Solve the portfolio problem at the end of the preceding section.

8. In the feasible set for the General Motors problem, the nonnegativity x,y,z≥ 0 leaves
an eighth of three-dimensional space (the positive octant). How is this cut by the two
planes from the constraints, and what shape is the feasible set? How do its corners
show that, with only these two constraints, there will be only two kinds of cars in the
optimal solution?

9. (Transportation problem) Suppose Texas, California, and Alaska each produce a mil-
lion barrels of oil; 800,000 barrels are needed in Chicago at a distance of 1000, 2000,
and 3000 miles from the three producers, respectively; and 2,200,000 barrels are
needed in New England 1500, 3000, and 3700 miles away. If shipments cost one
unit for each barrel-mile, what linear program with five equality constraints must be
solved to minimize the shipping cost?

8.2 The Simplex Method

This section is about linear programming with n unknowns x ≥ 0 and m constraints
Ax≥ b. In the previous section we had two variables, and one constraint x+2y≥ 4. The
full problem is not hard to explain, and not easy to solve.

The best approach is to put the problem into matrix form. We are given A, b, and c:

1. an m by n matrix A.

2. a column vector b with m components, and

3. a row vector c (cost vector) with n components.

To be “feasible,” the vector x must satisfy x≥ 0 and Ax≥ b. The optimal vector x∗ is the
feasible vector of least cost—and the cost is cx = c1x1 + · · ·+ cnxn.

Minimum problem Minimize the cost cx, subject to x≥ 0 and Ax≥ b.

The condition x ≥ 0 restricts x to the positive quadrant in n-dimensional space. In
R2 it is a quarter of the plane; it is an eighth of R3. A random vector has one chance
in 2n of being nonnegative. Ax ≥ b produces m additional halfspaces, and the feasible
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vectors meet all of the m + n conditions. In other words, x lies in the intersection of
m + n halfspaces. This feasible set has flat sides; it may be unbounded. and it may be
empty.

The cost function cx brings to the problem a family of parallel planes. One plane
cx = 0 goes through the origin. The planes cx = constant give all possible costs. As
the cost varies, these planes sweep out the whole n-dimensional space. The optimal x∗

(lowest cost) occurs at the point where the planes first touch the feasible set.
Our aim is to compute x∗. We could do it (in principle) by finding all the corners

of the feasible set, and computing their costs. In practice this is impossible. There
could be billions of corners, and we cannot compute them all. Instead we turn to the
simplex method, one of the most celebrated ideas in computational mathematics. It was
developed by Dantzig as a systematic way to solve linear programs, and either by luck
or genius it is an astonishing success. The steps of the simplex method are summarized
later, and first we try to explain them.

The Geometry: Movement Along Edges

I think it is the geometric explanation that gives the method away. Phase I simply locates
one corner of the feasible set. The heart of the method goes from corner to corner
along the edges of the feasible set. At a typical corner there are n edges to choose from.
Some edges lead away from the optimal but unknown x∗, and others lead gradually
toward it. Dantzig chose an edge that leads to a new corner with a lower cost. There
is no possibility of returning to anything more expensive. Eventually a special corner is
reached, from which all edges go the wrong way: The cost has been minimized. That
corner is the optimal vector x∗, and the method stops.

The next problem is to turn the ideas of corner and edge into linear algebra. A corner
is the meeting point of n different planes. Each plane is given by one equation—just
as three planes (front wall, side wall, and floor) produce a corner in three dimensions.
Each corner of the feasible set comes from turning n of the n + m inequalities Ax ≥ b
and x≥ 0 into equations, and finding the intersection of these n planes.

One possibility is to choose the n equations x1 = 0, . . . ,xn = 0, and end up at the
origin. Like all the other possible choices, this intersection point will only be a genuine
corner if it also satisfies the m remaining inequality constraints. Otherwise it is not even
in the feasible set, and is a complete fake. Our example with n = 2 variables and m = 2
constraints has six intersections, illustrated in Figure 8.3. Three of them are actually
corners P, Q, R of the feasible set. They are the vectors (0,6), (2,2), and (6,0), One
of them must be the optimal vector (unless the minimum cost is −∞). The other three,
including the origin, are fakes.

In general there are (n+m)!/n!m! possible intersections. That counts the number of
ways to choose n plane equations out of n + m. The size of that binomial coefficient
makes computing all corners totally impractical for large m and n. It is the task of Phase
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Figure 8.3: The corners P, Q, R, and the edges of the feasible set.

I either to find one genuine corner or to establish that the feasible set is empty. We
continue on the assumption that a corner has been found.

Suppose one of the n intersecting planes is removed. The points that satisfy the
remaining n− 1 equations form an edge that comes out of the corner. This edge
is the intersection of the n− 1 planes. To stay in the feasible set, only one direction is
allowed along each edge. But we do have a choice of n different edges, and Phase II
must make that choice.

To describe this phase, rewrite Ax ≥ b in a form completely parallel to the n simple
constraints x j ≥ 0. This is the role of the slack variables w = Ax− b. The constraints
Ax ≥ b are translated into w1 ≥ 0, . . . ,wm ≥ 0, with one slack variable for every row of
A. The equation w = Ax−b, or Ax−w = b, goes into matrix form:

Slack variables give m equations
[
A −I

][
x
w

]
= b.

The feasible set is governed by these m equations and the n+m simple inequalities x≥ 0,
w≥ 0. We now have equality constraints and nonnegativity.

The simplex method notices no difference between x and w, so we simplify:

[
A −I

]
is renamed A

[
x
w

]
is renamed x

[
c 0

]
is renamed c.

The equality constraints are now Ax = b. The n + m inequalities become just x ≥ 0.
The only trace left of the slack variable w is in the fact that the new matrix A is m by
n+m, and the new x has n+m components. We keep this much of the original notation
leaving m and n unchanged as a reminder of what happened. The problem has become:
Minimize cx, subject to x≥ 0 and Ax = b.
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Example 1. The problem in Figure 8.3 has constraints x+2y≥ 6, 2x+y≥ 6, and cost
x+ y. The new system has four unknowns (x, y, and two slack variables):

A =

[
1 2 −1 0
2 1 0 −1

]
b =

[
6
6

]
c =

[
1 1 0 0

]
.

The Simplex Algorithm

With equality constraints, the simplex method can begin. A corner is now a point where
n components of the new vector x (the old x and w) are zero. These n components of x
are the free variables in Ax = b. The remaining m components are the basic variables or
pivot variables. Setting the n free variables to zero, the m equations Ax = b determine
the m basic variables. This “basic solution” x will be a genuine corner if its m nonzero
components are positive. Then x belongs to the feasible set.

8A The corners of the feasible set are the basic feasible solutions of Ax = b.
A solution is basic when n of its m+n components are zero, and it is feasible
when it satisfies x≥ 0. Phase I of the simplex method finds one basic feasible
solution. Phase II moves step by step to the optimal x∗.

The corner point P in Figure 8.3 is the intersection of x = 0 with 2x+ y−6 = 0.

Corner
Basic
Feasible

(0,6,6,0)
(two zeros)
(positive nonzeros)

Ax =

[
1 2 −1 0
2 1 0 −1

]



0
6
6
0


 =

[
6
6

]
= b.

Which corner do we go to next? We want to move along an edge to an adjacent
corner. Since the two corners are neighbors, m− 1 basic variables will remain basic.
Only one of the 6s will become free (zero). At the same time, one variable will move up
from zero to become basic. The other m−1 basic components (in this case, the other 6)
will change but stay positive. The choice of edge (see Example 2 below) decides which
variable leaves the basis and which one enters. The basic variables are computed by
solving Ax = b. The free components of x are set to zero.

Example 2. An entering variable and a leaving variable move us to a new corner.

Minimize 7x3− x4−3x5 subject to
x1 + x3 +6x4 +2x5 = 8

x2 + x3 +3x5 = 9.

Start from the corner at which x1 = 8 and x2 = 9 are the basic variables. At that corner
x3 = x4 = x5 = 0. This is feasible, but the zero cost may not be minimal. It would
be foolish to make x3 positive, because its cost coefficient is +7 and we are trying to
lower the cost. We choose x5 because it has the most negative cost coefficient −3. The
entering variable will be x5.
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With x5 entering the basis, x1 or x2 must leave. In the first equation, increase x5 and
decrease x1 while keeping x1 + 2x5 = 8. Then x1 will be down to zero when x5 reaches
4. The second equation keeps x2 + 3x5 = 9. Here x5 can only increase as far as 3. To
go further would make x2 negative, so the leaving variable is x2. The new corner has
x = (2,0,0,0,3). The cost is down to −9.

Quick Way In Ax = b, the right sides divided by the coefficients of the entering
variable are 8

2 and 9
3 . The smallest ratio 9

3 tells which variable hits zero first, and must
leave. We consider only positive ratios, because if the coefficient of x5 were −3, then
increasing x5 would actually increase x2. (At x5 = 10 the second equation would give
x2 = 39.) The ratio 9

3 says that the second variable leaves. It also gives x5 = 3.
If all coefficients of x5 had been negative, this would be an unbounded case: we can

make x5 arbitrarily large, and bring the cost down toward −∞.
The current step ends at the new corner x = (2,0,0,0,3). The next step will only be

easy if the basic variables x1 and x5 stand by themselves (as x1 and x2 originally did).
Therefore, we “pivot” by substituting x5 = 1

3(9− x2− x3) into the cost function and the
first equation. The new problem, starting from the new corner, is:

Minimize the cost 7x3− x4− (9− x2− x3) = x2 +8x3− x4−9

with constraints
x1− 2

3x2 + 1
3x3 +6x4 = 2

1
3x2 + 1

3x3 + x5 = 3.

The next step is now easy. The only negative coefficient −1 in the cost makes x4 the
entering variable. The ratios of 2

6 and 3
0 , the right sides divided by the x4 column, make

x1 the leaving variable. The new corner is x∗ = (0,0,0, 1
3 ,3). The new cost −91

3 is the
minimum.

In a large problem, a departing variable might reenter the basis later on. But the cost
keeps going down—except in a degenerate case—so the m basic variables can’t be the
same as before. No corner is ever revisited! The simplex method must end at the optimal
corner (or at −∞ if the cost turns out to be unbounded). What is remarkable is the speed
at which x∗ is found.

Summary The cost coefficients 7, −1, −3 at the first corner and 1, 8, −1 at the
second corner decided the entering variables. (These numbers go into r, the crucial vec-
tor defined below. When they are all positive we stop.) The ratios decided the leaving
variables.

Remark on Degeneracy A corner is degenerate if more than the usual n com-
ponents of x are zero. More than n planes pass through the corner, so a basic variable
happens to vanish. The ratios that determine the leaving variable will include zeros, and
the basis might change without actually moving from the corner. In theory, we could
stay at a corner and cycle forever in the choice of basis.
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Fortunately, cycling does not occur. It is so rare that commercial codes ignore it.
Unfortunately, degeneracy is extremely common in applications—if you print the cost
after each simplex step you see it repeat several times before the simplex method finds a
good edge. Then the cost decreases again.

The Tableau

Each simplex step involves decisions followed by row operations—the entering and
leaving variables have to be chosen, and they have to be made to come and go. One
way to organize the step is to fit A, b, c into a large matrix, or tableau:

Tableau is m+1 by m+n+1 T =

[
A b
c 0

]
.

At the start, the basic variables may be mixed with the free variables. Renumbering if
necessary, suppose that x1, . . . ,xm are the basic (nonzero) variables at the current corner.
The first m columns of A form a square matrix B (the basis matrix for that corner). The
last n columns give an m by n matrix N. The cost vector c splits into [cB cN], and the
unknown x into (xB,xN).

At the corner, the free variables are xN = 0. There, Ax = b turns into BxB = b:

Tableau at corner T =

[
B N b
cB cN 0

]
xN = 0 xB = B−1b cost = cBB−1b.

The basic variables will stand alone when elimination multiplies by B−1:

Reduced tableau T ′ =

[
I B−1N B−1b

cB cN 0

]
.

To reach the fully reduced row echelon form R = rref(T ), subtract cB times the top
block row from the bottom row:

Fully reduced R =

[
I B−1N B−1b
0 cN −cBB−1N −cBB−1b

]
.

Let me review the meaning of each entry in this tableau, and also call attention to Ex-
ample 3 (following, with numbers). Here is the algebra:

Constraints xB +B−1NxN = B−1b Corner xB = B−1b, xN = 0. (1)

The cost cBxB + cNxN has been turned into

Cost cx = (cN − cBB−1N)xN + cBB−1b Cost at this corner = cBB−1b. (2)

Every important quantity appears in the fully reduced tableau R. We can decide whether
the corner is optimal by looking at r = cN−cBB−1N in the middle of the bottom row. If
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any entry in r is negative, the cost can still be reduced. We can make rxN negative,
at the start of equation (2), by increasing a component of xN . That will be our next step.
But if r ≥ 0, the best corner has been found. This is the stopping test, or optimality
condition:

8B The corner is optimal when r = cN − cBB−1N ≥ 0. Its cost is cBB−1b.
Negative components of r correspond to edges on which the cost goes down.
The entering variable xi corresponds to the most negative component of r.

The components of r are the reduced costs—the cost in cN to use a free variable
minus what it saves. Computing r is called pricing out the variables. If the direct cost
(in cN) is less than the saving (from reducing basic variables), then ri < 0, and it will pay
to increase that free variable.

Suppose the most negative reduced cost is ri. Then the ith component of xN is the
entering variable, which increases from zero to a positive value α at the next corner
(the end of the edge).

As xi is increased, other components of x may decrease (to maintain Ax = b). The xk

that reaches zero first becomes the leaving variable—it changes from basic to free. We
reach the next corner when a component of xB drops to zero.

That new corner is feasible because we still have x ≥ 0. It is basic because we again
have n zero components. The ith component of xN went from zero to α . The kth com-
ponent of xB dropped to zero (the other components of xB remain positive). The leaving
xk that drops to zero is the one that gives the minimum ratio in equation (3):

8C Suppose xi is the entering variable and u is column i of N:

At new corner xi = α = smallest ratio
(B−1b) j

(B−1u) j
=

(B−1b)k

(B−1u)k
. (3)

This minimum is taken only over positive components of B−1u. The kth col-
umn of the old B leaves the basis (xk becomes 0) and the new column u enters.

B−1u is the column of B−1N in the reduced tableau R, above the most negative entry in
the bottom row r, If B−1u ≤ 0, the next corner is infinitely far away and the minimal
cost is −∞ (this doesn’t happen here). Our example will go from the corner P to Q, and
begin again at Q.

Example 3. The original cost function x+ y and constraints Ax = b = (6,6) give

[
A b
c 0

]
=




1 2 −1 0 6
2 1 0 −1 6
1 1 0 0 0


 .

At the corner P in Figure 8.3, x = 0 intersects 2x+y = 6. To be organized, we exchange
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columns 1 and 3 to put basic variables before free variables:

Tableau at P T =



−1 2 1 0 6
0 1 2 −1 6
0 1 1 0 0


 .

Then, elimination multiplies the first row by−1, to give a unit pivot, and uses the second
row to produce zeros in the second column:

Fully reduced at P R =




1 0 3 −2 6
0 1 2 −1 6
0 0 −1 1 −6


 .

Look first at r = [−1 1] in the bottom row. It has a negative entry in column 3, so the
third variable will enter the basis. The current corner P and its cost +6 are not optimal.
The column above that negative entry is B−1u = (3,2); its ratios with the last column
are 6

3 and 6
2 . Since the first ratio is smaller, the first unknown w (and the first column of

the tableau) is pushed out of the basis. We move along the feasible set from corner P to
corner Q in Figure 8.3.

The new tableau exchanges columns 1 and 3, and pivoting by elimination gives




3 0 1 −2 6
2 1 0 −1 6
−1 0 0 1 −6


→




1 0 1
3 −2

3 2

0 1 −2
3

1
3 2

0 0 1
3

1
3 −4


 .

In that new tableau at Q, r = [1
3

1
3 ] is positive. The stopping test is passed. The corner

x = y = 2 and its cost +4 are optimal.

The Organization of a Simplex Step

The geometry of the simplex method is now expressed in algebra—“corners” are “basic
feasible solutions.” The vector r and the ratio α are decisive. Their calculation is the
heart of the simplex method, and it can be organized in three different ways:

1. In a tableau, as above.

2. By updating B−1 when column u taken from N replaces column k of B.

3. By computing B = LU , and updating these LU factors instead of B−1.

This list is really a brief history of the simplex method, In some ways, the most
fascinating stage was the first—the tableau—which dominated the subject for so many
years. For most of us it brought an aura of mystery to linear programming, chiefly
because it managed to avoid matrix notation almost completely (by the skillful device of
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writing out all matrices in full !). For computational purposes (except for small problems
in textbooks), the day of the tableau is over.

To see why, remember that after the most negative coefficient in r indicates which
column u will enter the basis, none of the other columns above r will be used. It was
a waste of time to compute them. In a larger problem, hundreds of columns would be
computed time and time again, just waiting for their turn to enter the basis. It makes
the theory clear to do the eliminations so completely and reach R. But in practice this
cannot be justified.

It is quicker, and in the end simpler, to see what calculations are really necessary.
Each simplex step exchanges a column of N for a column of B. Those columns are
decided by r and α . This step begins with the current basis matrix B and the current
solution xB = B−1b.

A Step of the Simplex Method

1. Compute the row vector λ = cBB−1 and the reduced costs r = cN −λN.

2. If r ≥ 0, stop: the current solution is optimal. Otherwise, if ri is the most
negative component, choose u = column i of N to enter the basis.

3. Compute the ratios of B−1b to B−1u, admitting only positive components
of B−1u. (If B−1u < 0, the minimal cost is −∞.) When the smallest ratio
occurs at component k, the kth column of the current B will leave.

4. Update B, B−1, or LU , and the solution xB = B−1b. Return to step 1.

This is sometimes called the revised simplex method to distinguish it from the oper-
ations on a tableau. It is really the simplex method itself, boiled down.

This discussion is finished once we decide how to compute steps 1, 3, and 4:

λ = cBB−1, v = B−1u, and xB = B−1b. (4)

The most popular way is to work directly with B−1, calculating it explicitly at the first
corner. At succeeding corners, the pivoting step is simple. When column k of the identity
matrix is replaced by u, column k of B−1 is replaced by v = B−1u. To recover the identity
matrix, elimination will multiply the old B−1 by

E−1 =




1 v1

· ·
vk

· ·
vn 1




−1

=




1 −v1/vk

· ·
1/vk

· ·
−vn/vk 1




(5)

Many simplex codes use the product form of the inverse, which saves these simple
matrices E−1 instead of directly updating B−1. When needed, they are applied to b and
cB. At regular intervals (maybe every 40 simplex steps), B−1 is recomputed and the E−1

are erased. Equation (5) is checked in Problem 9 at the end of this section.
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A newer approach uses the ordinary methods of numerical linear algebra, regarding
equation (4) as three equations sharing the same matrix B:

λB = cB, Bv = u, BxB = b. (6)

The usual factorization B = LU (or PB = LU , with row exchanges for stability) leads to
the three solutions. L and U can be updated instead of recomputed.

One question remains: How many simplex steps do we have to take? This is impos-
sible to answer in advance. Experience shows that the method touches only about 3m/2
different corners, which means an operation count of about m2n. That is comparable to
ordinary elimination for Ax = b, and is the reason for the simplex method’s success. But
mathematics shows that the path length cannot always be bounded by any fixed multiple
or power of m. The worst feasible sets (Klee and Minty invented a lopsided cube) can
force the simplex method to try every corner—at exponential cost.

It was Khachian’s method that showed that linear programming could be solved in
polynomial time.1 His algorithm stayed inside the feasible set, and captured x∗ in a series
of shrinking ellipsoids. Linear programming is in the nice class P, not in the dreaded
class NP (like the traveling salesman problem). For NP problems it is believed (but not
proved) that all deterministic algorithms must take exponentially long to finish, in the
worst case.

All this time, the simplex method was doing the job—in an average time that is now
proved (for variants of the usual method) to be polynomial. For some reason, hidden in
the geometry of many-dimensional polyhedra, bad feasible sets are rare and the simplex
method is lucky.

Karmarkar’s Method

We come now to the most sensational event in the recent history of linear programming.
Karmarkar proposed a method based on two simple ideas, and in his experiments it
defeated the simplex method. The choice of problem and the details of the code are both
crucial, and the debate is still going on. But Karmarkar’s ideas were so natural, and fit
so perfectly into the framework of applied linear algebra, that they can be explained in a
few paragraphs.

The first idea is to start from a point inside the feasible set—we will suppose it is
x0 = (1,1, . . . ,1). Since the cost is cx, the best cost-reducing direction is toward −c.
Normally that takes us off the feasible set; moving in that direction does not maintain
Ax = b. If Ax0 = b and Ax1 = b, then ∆x = x1− x0 has to satisfy A∆x = 0. The step ∆x
must lie in the nullspace of A. Therefore we project −c onto the nullspace, to find the
feasible direction closest to the best direction. This is the natural but expensive step in
Karmarkar’s method.

1The number of operations is bounded by powers of m and n, as in elimination. For integer programming and
factoring into primes, all known algorithms can take exponentially long. The celebrated conjecture “P 6= NP” says
that such problems cannot have polynomial algorithms.
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The step ∆x is a multiple of the projection −Pc. The longer the step, the more the
cost is reduced—but we cannot go out of the feasible set. The multiple of−Pc is chosen
so that x1 is close to, but a little inside, the boundary at which a component of x reaches
zero.

That completes the first idea—the projection that gives the steepest feasible descent.
The second step needs a new idea. since to continue in the same direction is useless.

Karmarkar’s suggestion is to transform x1 back to (1,1, . . . ,1) at the center. His
change of variables was nonlinear, but the simplest transformation is just a rescaling by
a diagonal matrix D. Then we have room to move. The rescaling from x to X = D−1x
changes the constraint and the cost:

Ax = b becomes ADX = b cTx becomes cTDX .

Therefore the matrix AD takes the place of A, and the vector cTD takes the place of cT.
The second step projects the new c onto the nullspace of the new A. All the work is in
this projection, to solve the weighted normal equations:

(AD2AT)y = AD2c. (7)

The normal way to compute y is by elimination. Gram-Schmidt will orthogonalize the
columns of DAT, which can be expensive (although it makes the rest of the calculation
easy). The favorite for large sparse problems is the conjugate gradient method, which
gives the exact answer y more slowly than elimination, but you can go part way and then
stop. In the middle of elimination you cannot stop.

Like other new ideas in scientific computing, Karmarkar’s method succeeded on some
problems and not on others. The underlying idea was analyzed and improved. Newer
interior point methods (staying inside the feasible set) are a major success—mentioned
in the next section. And the simplex method remains tremendously valuable. like the
whole subject of linear programming—which was discovered centuries after Ax = b, but
shares the fundamental ideas of linear algebra. The most far-reaching of those ideas is
duality, which comes next.

Problem Set 8.2

1. Minimize x1 + x2− x3, subject to

2x1−4x2 + x3 + x4 = 4

3x1 +5x2 + x3 + x5 = 2.

Which of x1, x2, x3 should enter the basis, and which of x4, x5 should leave? Compute
the new pair of basic variables, and find the cost at the new corner.

2. After the preceding simplex step, prepare for and decide on the next step.
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3. In Example 3, suppose the cost is 3x + y. With rearrangement, the cost vector is
c = (0,1,3,0). Show that r ≥ 0 and, therefore, that corner P is optimal.

4. Suppose the cost function in Example 3 is x− y, so that after rearrangement c =
(0,−1,1,0) at the corner P. Compute r and decide which column u should enter the
basis. Then compute B−1u and show from its sign that you will never meet another
corner. We are climbing the y-axis in Figure 8.3, and x− y goes to −∞.

5. Again in Example 3, change the cost to x+3y. Verify that the simplex method takes
you from P to Q to R, and that the corner R is optimal.

6. Phase I finds a basic feasible solution to Ax = b (a corner). After changing signs
to make b ≥ 0, consider the auxiliary problem of minimizing w1 + w2 + · · ·+ wm,
subject to x ≥ 0, w ≥ 0, Ax + w = b. Whenever Ax = b has a nonnegative solution,
the minimum cost in this problem will be zero—with w∗ = 0.

(a) Show that, for this new problem, the corner x = 0, w = b is both basic and fea-
sible. Therefore its Phase I is already set, and the simplex method can proceed
to find the optimal pair x∗, w∗. If w∗ = 0, then x∗ is the required corner in the
original problem.

(b) With A = [1 1] and b = [3], write out the auxiliary problem, its Phase I vector
x = 0, w = b, and its optimal vector. Find the corner of the feasible set x1−x2 = 3,
x1 ≥ x2 ≥ 0, and draw a picture of this set.

7. If we wanted to maximize instead of minimize the cost (with Ax = b and x ≥ 0),
what would be the stopping test on r, and what rules would choose the column of N
to make basic and the column of B to make free?

8. Minimize 2x1 + x2, subject to x1 + x2 ≥ 4, x1 +3x2 ≥ 12, x1− x2 ≥ 0, x≥ 0.

9. Verify the inverse in equation (5), and show that BE has Bv = u in its kth column.
Then BE is the correct basis matrix for the next stop, E−1B−1 is its inverse, and E−1

updates the basis matrix correctly.

10. Suppose we want to minimize cx = x1− x2, subject to

2x1−4x2 + x3 = 6

3x1 +6x2 + x4 = 12
(all x1,x2,x3,x4 ≥ 0).

Starting from x = (0,0,6,12), should x1 or x2 be increased from its current value of
zero? How far can it be increased until the equations force x3 or x4 down to zero? At
that point, what is the new x?

11. For the matrix P = I−AT(AAT)−1A, show that if x is in the nullspace of A, then
Px = x. The nullspace stays unchanged under this projection.

12. (a) Minimize the cost cTx = 5x1 +4x2 +8x3 on the plane x1 +x2 +x3 = 3, by testing
the vertices P, Q, R, where the triangle is cut off by the requirement x≥ 0.
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(b) Project c = (5,4,8) onto the nullspace of A = [1 1 1], and find the maximum
step s that keeps e− sPc nonnegative.

8.3 The Dual Problem

Elimination can solve Ax = b, but the four fundamental subspaces showed that a different
and deeper understanding is possible. It is exactly the same for linear programming. The
mechanics of the simplex method will solve a linear program, but duality is really at the
center of the underlying theory. Introducing the dual problem is an elegant idea, and
at the same time fundamental for the applications. We shall explain as much as we
understand.

The theory begins with the given primal problem:

Primal (P) Minimize cx, subject to x≥ 0 and Ax≥ b.

The dual problem starts from the same A, b, and c, and reverses everything. In the
primal, c is in the cost function and b is in the constraint, In the dual, b and c are
switched, The dual unknown y is a row vector with m components, and the feasible set
has yA≤ c instead of Ax≥ b.

In short, the dual of a minimum problem is a maximum problem. Now y≥ 0:

Dual (D) Maximize yb, subject to y≥ 0 and yA≤ c.

The dual of this problem is the original minimum problem. There is complete symmetry
between the primal and dual problems. The simplex method applies equally well to a
maximization—anyway, both problems get solved at once.

I have to give you some interpretation of all these reversals. They conceal a competi-
tion between the minimizer and the maximizer. In the diet problem, the minimizer has n
foods (peanut butter and steak, in Section 8.1). They enter the diet in the (nonnegative)
amounts x1, . . . ,xn. The constraints represent m required vitamins, in place of the one
earlier constraint of sufficient protein. The entry ai j measures the ith vitamin in the jth
food, and the ith row of Ax≥ b forces the diet to include at least bi of that vitamin. If ci

is the cost of the jth food, then c1x1 + · · ·+ cnxn = cx is the cost of the diet. That cost is
to be minimized.

In the dual, the druggist is selling vitamin pills at prices yi ≥ 0. Since food j
contains vitamins in the amounts ai j, the druggist’s price for the vitamin equivalent
cannot exceed the grocer’s price c j. That is the jth constraint in yA≤ c. Working within
this constraint on vitamin prices, the druggist can sell the required amount bi of each
vitamin for a total income of y1b1 + · · ·+ ymbm = yb—to be maximized.

The feasible sets for the primal and dual problems look completely different. The
first is a subset of Rn, marked out by x ≥ 0 and Ax ≥ b. The second is a subset of Rm,
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determined by y ≥ 0 and AT and c. The whole theory of linear programming hinges on
the relation between primal and dual. Here is the fundamental result:

8D Duality Theorem When both problems have feasible vectors, they have
optimal x∗ and y∗. The minimum cost cx∗ equals the maximum income y∗b.

If optimal vectors do not exist, there are two possibilities: Either both feasible sets are
empty, or one is empty and the other problem is unbounded (the maximum is +∞ or the
minimum is −∞).

The duality theorem settles the competition between the grocer and the druggist. The
result is always a tie. We will find a similar “minimax theorem” in game theory. The
customer has no economic reason to prefer vitamins over food, even though the druggist
guarantees to match the grocer on every food—and even undercuts on expensive foods
(like peanut butter). We will show that expensive foods are kept out of the optimal diet,
so the outcome can be (and is) a tie.

This may seem like a total stalemate, but I hope you will not be fooled. The optimal
vectors contain the crucial information. In the primal problem, x∗ tells the purchaser
what to buy. In the dual, y∗ fixes the natural prices (shadow prices) at which the economy
should run. Insofar as our linear model reflects the true economy. x∗ and y∗ represent
the essential decisions to be made.

We want to prove that c∗x = y∗b. It may seem obvious that the druggist can raise
the vitamin prices y∗ to meet the grocer, hut only one thing is truly clear: Since each
food can be replaced by its vitamin equivalent, with no increase in cost, all adequate
food diets must cost at least as much as vitamins. This is only a one-sided inequality,
druggist’s price ≤ grocer’s price. It is called weak duality, and it is easy to prove for
any linear program and its dual:

8E If x and y are feasible in the primal and dual problems, then yb≤ cx.

Proof. Since the vectors are feasible, they satisfy Ax ≥ b and yA ≤ c. Because feasi-
bility also includes x ≥ 0 and y ≥ 0, we can take inner products without spoiling those
inequalities (multiplying by negative numbers would reverse them):

yAx≥ yb and yAx≤ cx. (1)

Since the left-hand sides are identical, we have weak duality yb≤ cx.

This one-sided inequality prohibits the possibility that both problems are unbounded.
If yb is arbitrarily large, a feasible x would contradict yb ≤ cx. Similarly, if cx can go
down to −∞, the dual cannot admit a feasible y.

Equally important, any vectors that achieve yb = cx must be optimal. At that point
the grocer’s price equals the druggist’s price. We recognize an optimal food diet and
optimal vitamin prices by the fact that the consumer has nothing to choose:

8F If the vectors x and y are feasible and cx = yb, then x and y are optimal.
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Since no feasible y can make yb larger than cx, our y that achieves this value is opti-
mal. Similarly, any x that achieves the cost cx = yb must be an optimal x∗.

We give an example with two foods and two vitamins. Note how AT appears when
we write out the dual, since yA≤ c for row vectors means ATyT ≤ cT for columns.

Primal Minimize x1 +4x2 Dual Maximize 6y1 +7y2

subject to x1 ≥ 0, x2 ≥ 0 subject to y1 ≥ 0, y2 ≥ 0
2x1 + x2 ≥ 6 2y1 +5y2 ≤ 1

5x1 +3x2 ≥ 7. y1 +3x2 ≤ 4.

Solution x1 = 3 and x2 = 0 are feasible, with cost x1 +4x2 = 3. In the dual, y1 = 1
2 and

y2 = 0 give the same value 6y1 +7y2 = 3. These vectors must be optimal.

Please look closely to see what actually happens at the moment when yb = cx. Some
of the inequality constraints are tight, meaning that equality holds. Other constraints are
loose, and the key rule makes economic sense:

(i) The diet has x∗j = 0 when food j is priced above its vitamin equivalent.

(ii) The price is y∗i = 0 when vitamin i is oversupplied in the diet x∗.

In the example, x2 = 0 because the second food is too expensive. Its price exceeds the
druggist’s price, since y1 + 3y2 ≤ 4 is a strict inequality 1

2 + 0 < 4. Similarly, the diet
required seven units of the second vitamin, but actually supplied 5x1 +3x2 = 15. So we
found y2 = 0, and that vitamin is a free good. You can see how the duality has become
complete.

These optimality conditions are easy to understand in matrix terms. From equation
(1) we want y∗Ax∗ = y∗b at the optimum. Feasibility requires Ax∗ ≥ b, and we look for
any components in which equality fails. This corresponds to a vitamin that is oversup-
plied, so its price is y∗i = 0.

At the same time, we have y∗A ≤ c. All strict inequalities (expensive foods) corre-
spond to x∗j = 0 (omission from the diet). That is the key to y∗Ax∗ = cx∗, which we
need. These are the complementary slackness conditions of linear programming, and
the Kuhn-Tucker conditions of nonlinear programming:

8G The optimal vectors x∗ and y∗ satisfy complementary slackness:

If (Ax∗)i > bi then y∗i = 0 If (y∗A) j > c j then x∗j = 0. (2)

Let me repeat the proof. Any feasible vectors x and y satisfy weak duality:

yb≤ y(Ax) = (yA)x≤ cx. (3)

We need equality, and there is only one way in which y∗b can equal y∗(Ax∗). Any time
bi < (Ax∗)i, the factor y∗i that multiplies these components must be zero.
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Similarly, feasibility gives yAx≤ cx. We get equality only when the second slackness
condition is fulfilled. If there is an overpricing (y∗A) j < c j, it must be canceled through
multiplication by x∗j = 0. This leaves us with y∗b = cx∗ in equation (3). This equality
guarantees the optimality of x∗ and y∗.

The Proof of Duality

The one-sided inequality yb ≤ cx was easy to prove; it gave a quick test for optimal
vectors (they turn it into an equality); and now it has given the slackness conditions in
equation (2). The only thing it has not done is to show that y∗b = cx∗ is really possible.
Until those optimal vectors are actually produced, the duality theorem is not complete.

To produce y∗ we return to the simplex method—which has already computed x∗. Our
problem is to show that the method stopped in the right place for the dual problem (even
though it was constructed to solve the primal). Recall that the m inequalities Ax ≥ b
were changed to equations by introducing the slack variables w = Ax−b:

Primal feasibility
[
A −I

][
x
w

]
= b and

[
x
w

]
≥ 0. (4)

Every simplex step picked m columns of the long matrix [A − I] to be basic, and shifted
them (theoretically) to the front. This produced [B N]. The same shift reordered the
long cost vector [c 0] into [cB cN]. The stopping condition, which brought the simplex
method to an end, was r = cN − cBB−1N ≥ 0.

This condition r ≥ 0 was finally met, since the number of corners is finite. At that
moment the cost was as low as possible:

Minimum cost cx∗ =
[
cB cN

][
B−1b

0

]
= cBB−1b. (5)

If we can choose y∗ = cBB−1 in the dual, we certainly have y∗b = cx∗. The minimum
and maximum will be equal. We have to show that this y∗ satisfies the dual constraints
yA≤ c and y≥ 0:

Dual feasibility y
[
A −I

]
≤

[
c 0

]
. (6)

When the simplex method reshuffles the long matrix and vector to put the basic variables
first, this rearranges the constraints in equation (6) into

y
[
B N

]
≤

[
cB cN

]
. (7)

For y∗ = cBB−1, the first half is an equality and the second half is cBB−1N ≤ cN . This is
the stopping condition r ≥ 0 that we know to be satisfied! Therefore our y∗ is feasible,
and the duality theorem is proved. By locating the critical m by m matrix B, which is
nonsingular as long as degeneracy is forbidden, the simplex method has produced the
optimal y∗ as well as x∗.
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Shadow Prices

In calculus, everybody knows the condition for a maximum or a minimum: The first
derivatives are zero. But this is completely changed by constraints. The simplest exam-
ple is the line y = x. Its derivative is never zero, calculus looks useless, and the largest
y is certain to occur at the end of the interval. That is exactly the situation in linear pro-
gramming! There are more variables, and an interval is replaced by a feasible set, but
still the maximum is always found at a corner of the feasible set (with only m nonzero
components).

The problem in linear programming is to locate that cornet For this, calculus is not
completely helpless. Far from it, because “Lagrange multipliers” will bring back zero
derivatives at the maximum and minimum. The dual variables y are exactly the La-
grange multipliers. And they answer the key question: How does the minimum cost
cx∗ = y∗b change, if we change b or c?

This is a question in sensitivity analysis. It allows us to squeeze extra information out
of the dual problem. For an economist or an executive, these questions about marginal
cost are the most important.

If we allow large changes in b or c, the solution behaves in a very jumpy way. As
the price of eggs increases, there will be a point at which they disappear from the diet.
The variable xegg will jump from basic to free. To follow it properly, we would have
to introduce “parametric” programming. But if the changes are small, the corner that
was optimal remains optimal. The choice of basic variables does not change; B and N
stay the same. Geometrically, we shifted the feasible set a little (by changing b), and we
tilted the planes that come up to meet it (by changing c). When these changes are small,
contact occurs at the same (slightly moved) corner.

At the end of the simplex method, when the right basic variables are known, the
corresponding m columns of A make up the basis matrix B. At that corner, a shift of size
∆b changes the minimum cost by y∗∆b. The dual solution y∗ gives the rate of change
of minimum cost (its derivative) with respect to changes in b. The components of y∗

are the shadow prices. If the requirement for a vitamin goes up by ∆, and the druggist’s
price is y∗1, then the diet cost (from druggist or grocer) will go up by y∗1∆. In the case
that y∗1 is zero, that vitamin is a free good and the small change has no effect. The diet
already contained more than b1.

We now ask a different question. Suppose we insist that the diet contain some small
edible amount of egg. The condition xegg ≥ 0 is changed to xegg ≥ δ . How does this
change the cost?

If eggs were in the diet x∗, there is no change. But if x∗egg = 0, it will cost extra to add
in the amount δ . The increase will not be the full price ceggδ , since we can cut down on
other foods. The reduced cost of eggs is their own price, minus the price we are paying
for the equivalent in cheaper foods. To compute it we return to equation (2) of Section
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8.2:
cost = (cN − cBB−1N)xN + cBB−1b = rxN + cBB−1b.

If egg is the first free variable, then increasing the first component of xN to δ will increase
the cost by r1δ . The real cost of egg is r1. This is the change in diet cost as the zero lower
bound (nonnegativity constraint) moves upwards. We know that r ≥ 0, and economics
tells us the same thing: The reduced cost of eggs cannot be negative or they would have
entered the diet.

Interior Point Methods

The simplex method moves along edges of the feasible set, eventually reaching the opti-
mal corner x∗. Interior point methods start inside the feasible set (where the constraints
are all inequalities). These methods hope to move more directly to x∗ (and also find y∗).
When they are very close to the answer, they stop.

One way to stay inside is to put a barrier at the boundary. Add an extra cost in the
form of a logarithm that blows up when any variable x or any slack variable w = Ax−b
touches zero. The number θ is a small parameter to be chosen:

Barrier problem P(θ) Minimize cx−θ

(
n

∑
1

lnxi +
m

∑
1

lnwi

)
. (8)

This cost is nonlinear (but linear programming is already nonlinear, from inequalities).
The notation is simpler if the long vector (x,w) is renamed x and [A − I] is renamed A.
The primal constraints are now x ≥ 0 and Ax = b. The sum of lnxi in the barrier now
goes to m+n.

The dual constraints are yA ≤ c. (We don’t need y ≥ 0 when we have Ax = b in
the primal.) The slack variable is s = c− yA, with s ≥ 0. What are the Kuhn-Tucker
conditions for x and y to be the optimal x∗ and y∗? Along with the constraints we require
duality: cx∗ = y∗b.

Including the barrier gives an approximate problem P(θ). For its Kuhn-Tucker op-
timality conditions, the derivative of lnxi gives 1/xi. If we create a diagonal matrix X
from those positive numbers xi, and use e = [1 · · · 1] for the row vector of n+m ones,
then optimality in P(θ) is as follows:

Primal (column vectors) Ax = b with x≥ 0 (9a)

Dual (row vectors) yA+θeX−1 = c (9b)

As θ → 0, we expect those optimal x and y to approach x∗ and y∗ for the original no-
barrier problem, and θeX−1 will stay nonnegative. The plan is to solve equations (9a–
9b) with smaller and smaller barriers, given by the size of θ .

In reality, those nonlinear equations are approximately solved by Newton’s method
(which means they are linearized). The nonlinear term is s = θeX−1. To avoid 1/xi,
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rewrite that as sX = θe. Creating the diagonal matrix S from s, this is eSX = θe. If we
change e, y, c, and s to column vectors, and transpose, optimality now has three parts:

Primal Ax = b, x≥ 0. (10a)

Dual ATy+ s = c. (10b)

Nonlinear XSe−θe = 0. (10c)

Newton’s method takes a step ∆x, ∆y, ∆s from the current x, y, s. (Those solve equa-
tions (10a) and (10b), but not (10c).) By ignoring the second-order term ∆X∆Se, the
corrections come from linear equations!

A∆x = 0. (11a)

Newton step AT∆y+∆s = 0. (11b)

S∆x+X∆s = θe−XSe. (11c)

Robert Freund’s notes for his MIT class pin down the (quadratic) convergence rate and
the computational complexity of this algorithm. Regardless of the dimensions m and n,
the duality gap sx is generally below 10−8 after 20–80 Newton steps. This algorithm
is used almost “as is” in commercial interior-point software, and for a large class of
nonlinear optimization problems as well.

The Theory of Inequalities

There is more than one way to study duality. We quickly proved yb ≤ cx, and then
used the simplex method to get equality. This was a constructive proof ; x∗ and y∗ were
actually computed. Now we look briefly at a different approach, which omits the simplex
algorithm and looks more directly at the geometry. I think the key ideas will be just as
clear (in fact, probably clearer) if we omit some of the details.

The best illustration of this approach came in the Fundamental Theorem of Linear
Algebra. The problem in Chapter 2 was to find b in the column space of A. After elim-
ination and the four subspaces, this solvability question was answered in a completely
different way by Problem 11 in Section 3.1:

8H Ax = b has a solution or there is a y such that yA = 0 and yb 6= 0.

This is the theorem of the alternative, because to find both x and y is impossible: If Ax =
b then yAx = yb 6= 0, and this contradicts yAx = 0x = 0. In the language of subspaces,
either b is in the column space, or it has a component sticking into the left nullspace.
That component is the required y.

For inequalities, we want to find a theorem of exactly the same kind. Start with the
same system Ax = b, but add the constraint x≥ 0. When does there exist a nonnegative
solution to Ax = b?

In Chapter 2, b was anywhere in the column space. Now we allow only nonnegative
combinations, and the b’s no longer fill out a subspace. Instead, they fill a cone-shaped
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Figure 8.4: The cone of nonnegative combinations of the columns: b = Ax with x≥ 0. When b is outside the cone,
it is separated by a hyperplane (perpendicular to y).

region. For n columns in Rm, the cone becomes an open-ended pyramid. Figure 8.4 has
four vectors in R2, and A is 2 by 4. If b lies in this cone, there is a nonnegative solution
to Ax = b; otherwise not.

What is the alternative if b lies outside the cone? Figure 8.4 also shows a “separating
hyperplane,” which has the vector b on one side and the whole cone on the other side.
The plane consists of all vectors perpendicular to a fixed vector y. The angle between
y and b is greater than 90°, so yb < 0. The angle between y and every column of A is
less than 90°, so yA ≥ 0. This is the alternative we are looking for. This theorem of the
separating hyperplane is fundamental to mathematical economics.

8I Ax = b has a nonnegative solution or there is a y with yA ≥ 0 and
yb < 0.

Example 1. The nonnegative combinations of the columns of A = I fill the positive
quadrant b≥ 0. For every other b, the alternative must hold for some y:

Not in cone If b =

[
2
−3

]
, then y =

[
0 1

]
gives yI ≥ 0 but yb =−3.

The x-axis, perpendicular to y = [0 1], separates b from the cone = quadrant.

Here is a curious pair of alternatives. It is impossible for a subspace S and its or-
thogonal complement S⊥ both to contain positive vectors. Their inner product would
be positive, not zero. But S might be the x-axis and S⊥ the y-axis, in which case they
contain the “semipositive” vectors [1 0] and [0 1]. This slightly weaker alternative does
work: Either S contains a positive vector x > 0, or S⊥ contains a nonzero y≥ 0. When S
and S⊥ are perpendicular lines in the plane, one or the other must enter the first quadrant.
I can’t see this clearly in three or four dimensions.
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For linear programming, the important alternatives come when the constraints are
inequalities. When is the feasible set empty (no x)?

8J Ax≥ b has a solution x≥ 0 or there is a y≤ 0 with yA≥ 0 and yb < 0.

Proof. The slack variables w = Ax−b change Ax≥ b into an equation. Use 8I:

First alternative
[
A −I

][
x
w

]
= b for some

[
x
w

]
≥ 0.

Second alternative y
[
A −I

]
≥

[
0 0

]
for some y with yb < 0.

It is this result that leads to a “nonconstructive proof” of the duality theorem.

Problem Set 8.3

1. What is the dual of the following problem: Minimize x1 + x2, subject to x1 ≥ 0,
x2 ≥ 0, 2x1 ≥ 4, x1 + 3x2 ≥ 11? Find the solution to both this problem and its dual,
and verify that minimum equals maximum.

2. What is the dual of the following problem: Maximize y2 subject to y1 ≥ 0, y2 ≥ 0,
y1 + y2 ≤ 3? Solve both this problem and its dual.

3. Suppose A is the identity matrix (so that m = n), and the vectors b and c are nonnega-
tive. Explain why x∗ = b is optimal in the minimum problem, find y∗ in the maximum
problem, and verify that the two values are the same. If the first component of b is
negative, what are x∗ and y∗?

4. Construct a 1 by 1 example in which Ax≥ b, x≥ 0 is unfeasible, and the dual problem
is unbounded.

5. Starting with the 2 by 2 matrix A =
[

1 0
0 −1

]
, choose b and c so that both of the feasible

sets Ax≥ b, x≥ 0 and yA≤ c, y≥ 0 are empty.

6. If all entries of A, b, and c are positive, show that both the primal and the dual are
feasible.

7. Show that x = (1,1,1,0) and y = (1,1,0,1) are feasible in the primal and dual, with

A =




0 0 1 0
0 1 0 0
1 1 1 1
1 0 0 1


 , b =




1
1
1
1


 , c =




1
1
1
3


 .

Then, after computing cx and yb, explain how you know they are optimal.
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8. Verify that the vectors in the previous exercise satisfy the complementary slackness
conditions in equation (2), and find the one slack inequality in both the primal and
the dual.

9. Suppose that A =
[

1 0
0 1

]
, b =

[
1
−1

]
, and c =

[
1
1

]
. Find the optimal x and y, and verify

the complementary slackness conditions (as well as yb = cx).

10. If the primal problem is constrained by equations instead of inequalities—Minimize
cx subject to Ax = b and x ≥ 0—then the requirement y ≥ 0 is left out of the dual:
Maximize yb subject to yA ≤ c. Show that the one-sided inequality yb ≤ cx still
holds. Why was y≥ 0 needed in equation (1) but not here? This weak duality can be
completed to full duality.

11. (a) Without the simplex method, minimize the cost 5x1 +3x2 +4x3, subject to x1 +
x2 + x3 ≥ 1, x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(b) What is the shape of the feasible set?

(c) What is the dual problem, and what is its solution y?

12. If the primal has a unique optimal solution x∗, and then c is changed a little, explain
why x∗ still remains the optimal solution.

13. Write the dual of the following problem: Maximize x1 +x2 +x3 subject to 2x1 +x2 ≤
4, x3 ≤ 6. What are the optimal x∗ and y∗ (if they exist!)?

14. If A =
[

1 1
0 1

]
, describe the cone of nonnegative combinations of the columns. If b lies

inside that cone, say b = (3,2), what is the feasible vector x? If b lies outside, say
b = (0,1), what vector y will satisfy the alternative?

15. In three dimensions, can you find a set of six vectors whose cone of nonnegative
combinations fills the whole space? What about four vectors?

16. Use 8H to show that the following equation has no solution, because the alternative
holds: [

2 2
4 4

]
x =

[
1
1

]
.

17. Use 8I to show that there is no solution x≥ 0 (the alternative holds):
[

1 3 −5
1 −4 −7

]
x =

[
2
3

]
.

18. Show that the alternatives in 8J (Ax ≥ b, x ≥ 0, yA ≥ 0, yb < 0, y ≤ 0) cannot both
hold. Hint: yAx.
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8.4 Network Models

Some linear problems have a structure that makes their solution very quick. Band ma-
trices have all nonzeros close to the main diagonal, and Ax = b is easy to solve. In linear
programming, we are interested in the special class for which A is an incidence matrix.
Its entries are −1 or +1 or (mostly) zero, and pivot steps involve only additions and
subtractions. Much larger problems than usual can be solved.

Networks enter all kinds of applications. Traffic through an intersection satisfies
Kirchhoff’s current law: flow in equals flow out. For gas and oil, network programming
has designed pipeline systems that are millions of dollars cheaper than the intuitive (not
optimized) designs. Scheduling pilots and crews and airplanes has become a significant
problem in applied mathematics! We even solve the marriage problem—to maximize
the number of marriages when brides have a veto. That may not be the real problem, but
it is the one that network programming solves.

The problem in Figure 8.5 is to maximize the flow from the source to the sink. The
flows cannot exceed the capacities marked on the edges, and the directions given by
the arrows cannot be reversed. The flow on the two edges into the sink cannot exceed
6+1 = 7. Is this total of 7 achievable? What is the maximal flow from left to right?

The unknowns are the flows xi j from node i to node j. The capacity constraints are
xi j ≤ ci j. The flows are nonnegative: xi j ≥ 0 going with the arrows. By maximizing the
return flow x61 (dotted line), we maximize the total flow into the sink.

Figure 8.5: A 6-node network with edge capacities: the maximal flow problem.

Another constraint is still to be heard from. It is the “conservation law,” that the flow
into each node equals the flow out. That is Kirchhoff’s current law:

Current law ∑
i

xi j−∑
k

x jk = 0 for j = 1,2, . . . ,6. (12)

The flows xi j enter node j from earlier nodes i. The flows x jk leave node j to later
nodes k. The balance in equation (1) can be written as Ax = 0, where A is a node-edge
incidence matrix (the transpose of Section 2.5). A has a row for every node and a +1,
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−1 column for every edge:

Incidence
Matrix

A =




1 1 −1
−1 1 1

−1 1 1
−1 −1 1

−1 −1 1
−1 −1 1




node 1
2
3
4
5
6

edge 12 13 24 25 34 35 46 56 61

Maximal Flow Maximize x61 subject to Ax = 0 and 0≤ xi j ≤ ci j.

A flow of 2 can go on the path 1-2-4-6-1. A flow of 3 can go along 1-3-4-6-1. An
additional flow of 1 can take the lowest path 1-3-5-6-1. The total is 6, and no more is
possible. How do you prove that the maximal flow is 6 and not 7?

Trial and error is convincing, but mathematics is conclusive: The key is to find a cut in
the network, across which all capacities are filled. That cut separates nodes 5 and 6 from
the others. The edges that go forward across the cut have total capacity 2+3+1 = 6—
and no more can get across! Weak duality says that every cut gives a bound to the total
flow, and full duality says that the cut of smallest capacity (the minimal cut) is filled by
the maximal flow.

8K Max flow-min cut theorem. The maximal flow in a network equals the
total capacity across the minimal cut.

A “cut” splits the nodes into two groups S and T (source in S and sink in T ). Its capacity
is the sum of the capacities of all edges crossing the cut (from S to T ). Several cuts
might have the same capacity. Certainly the total flow can never be greater than the total
capacity across the minimal cut. The problem, here and in all of duality, is to show that
equality is achieved by the right flow and the right cut.

Proof that max flow = min cut. Suppose a flow is maximal. Some nodes might still be
reached from the source by additional flow, without exceeding any capacities. Those
nodes go with the source into the set S. The sink must lie in the remaining set T , or it
could have received more flow! Every edge across the cut must he filled, or extra flow
could have gone further forward to a node in T . Thus the maximal flow does fill this cut
to capacity. and equality has been achieved.

This suggests a way to construct the maximal flow: Check whether any path has
unused capacity. If so, add flow along that “augmenting path.” Then compute the re-
maining capacities and decide whether the sink is cut off from the source, or additional
flow is possible. If you label each node in S by the previous node that flow could come
from, you can backtrack to find the path for extra flow.
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The Marriage Problem

Suppose we have four women and four men. Some of those sixteen couples are compat-
ible, others regrettably are not. When is it possible to find a complete matching, with
everyone married? If linear algebra can work in 20-dimensional space, it can certainly
handle the trivial problem of marriage.

There are two ways to present the problem—in a matrix or on a graph. The matrix
contains ai j = 0 if the ith woman and jth man are not compatible, and ai j = 1 if they are
willing to try. Thus row i gives the choices of the ith woman, and column j corresponds
to the jth man:

Compatibility
matrix

A =




1 0 0 0
1 1 1 0
0 0 0 1
0 0 0 1


 has 6 compatible pairs.

The left graph in Figure 8.6 shows two possible marriages. Ignoring the source s and
sink t, it has four women on the left and four men on the right. The edges correspond
to the 1s in the matrix, and the capacities are 1 marriage. There is no edge between the
first woman and fourth man, because the matrix has a14 = 0.

Figure 8.6: Two marriages on the left, three (maximum) on the right. The third is created by adding two new
marriages and one divorce (backward flow).

It might seem that node M2 can’t be reached by more flow—but that is not so! The
extra flow on the right goes backward to cancel an existing marriage. This extra flow
makes 3 marriages, which is maximal. The minimal cut is crossed by 3 edges.

A complete matching (if it is possible) is a set of four is in the matrix. They would
come from four different rows and four different columns, since bigamy is not allowed.
It is like finding a permutation matrix within the nonzero entries of A. On the graph, this
means four edges with no nodes in common. The maximal flow is less than 4 exactly
when a complete matching is impossible.

In our example the maximal flow is 3, not 4. The marriages 1–1, 2–2, 4–4 are allowed
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(and several other sets of three marriages), but there is no way to reach four. The minimal
cut on the right separates the two women at the bottom from the three men at the top.
The two women have only one man left to choose—not enough. The capacity across the
cut is only 3.

Whenever there is a subset of k women who among them like fewer than k men, a
complete matching is impossible.

That test is decisive. The same impossibility can be expressed in different ways:

1. (For Chess) It is impossible to put four rooks on squares with 1s in A, so that no
rook can take any other rook.

2. (For Marriage Matrices) The 1s in the matrix can be covered by three horizontal
or vertical lines. That equals the maximum number of marriages.

3. (For Linear Algebra) Every matrix with the same zeros as A is singular.

Remember that the determinant is a sum of 4! = 24 terms. Each term uses all four rows
and columns. The zeros in A make all 24 terms zero.

A block of zeros is preventing a complete matching! The 2 by 3 submatrix in rows 3,
4 and columns 1, 2, 3 of A is entirely zero. The general rule for an n by n matrix is that
a p by q block of zeros prevents a matching if p+q > n. Here women 3, 4 could marry
only the man 4. If p women can marry only n−q men and p > n−q (which is the same
as a zero block with p+q > n), then a complete matching is impossible.

The mathematical problem is to prove the following: If every set of p women does
like at least p men, a complete matching is possible. That is Hall’s condition. No block
of zeros is too large. Each woman must like at least one man, each two women must
between them like at least two men, and so on, to p = n.

8L A complete matching is possible if (and only if) Hall’s condition holds.

The proof is simplest if the capacities are n, instead of 1, on all edges across the
middle. The capacities out of the source and into the sink are still 1. If the maximal flow
is n, all those edges from the source and into the sink are filled—and the flow produces
n marriages. When a complete matching is impossible, and the maximal flow is below
n, some cut must be responsible.

That cut will have capacity below n, so no middle edges cross it. Suppose p nodes on
the left and r nodes on the right are in the set S with the source. The capacity across that
cut is n− p from the source to the remaining women, and r from these men to the sink.
Since the cut capacity is below n, the p women like only the r men and no others. But
the capacity n− p+ r is below n exactly when p > r, and Hall’s condition fails.



448 Chapter 8 Linear Programming and Game Theory

Spanning Trees and the Greedy Algorithm

A fundamental network model is the shortest path problem—in which the edges have
lengths instead of capacities. We want the shortest path from source to sink. If the edges
are telephone lines and the lengths are delay times, we are finding the quickest route
for a call, If the nodes are computers, we are looking for the perfect message-passing
protocol.

A closely related problem finds the shortest spanning tree—a set of n− 1 edges
connecting all the nodes of the network. Instead of getting quickly between a source
and a sink, we are now minimizing the cost of connecting all the nodes. There are no
loops, because the cost to close a loop is unnecessary. A spanning tree connects the
nodes without loops, and we want the shortest one. Here is one possible algorithm:

1. Start from any node s and repeat the following step:

Add the shortest edge that connects the current tree to a new node.

In Figure 8.7, the edge lengths would come in the order 1, 2, 7, 4, 3, 6. The last step
skips the edge of length 5, which closes a loop. The total length is 23—but is it minimal?
We accepted the edge of length 7 very early, and the second algorithm holds out longer.

Figure 8.7: A network and a shortest spanning tree of length 23.

2. Accept edges in increasing order of length, rejecting edges that complete a loop.

Now the edges come in the order 1, 2, 3, 4, 6 (again rejecting 5), and 7. They are the
same edges—although that will not always happen. Their total length is the same—and
that does always happen. The spanning tree problem is exceptional, because it can be
solved in one pass.

In the language of linear programming, we are finding the optimal corner first. The
spanning tree problem is being solved like back-substitution, with no false steps. This
general approach is called the greedy algorithm. Here is another greedy idea:

3. Build trees from all n nodes, by repeating the following step:

Select any tree and add the minimum-length edge going out from that tree.

The steps depend on the selection order of the trees. To stay with the same tree is
algorithm 1. To take the lengths in order is algorithm 2. To sweep through all the trees
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in turn is a new algorithm. It sounds so easy, but for a large problem the data structure
becomes critical, With a thousand nodes, there might be nearly a million edges, and you
don’t want to go through that list a thousand times.

Further Network Models

There are important problems related to matching that are almost as easy:

1. The optimal assignment problem: ai j measures the value of applicant i in job j.
Assign jobs to maximize the total value—the sum of the ai j on assigned jobs. (If
all ai j are 0 or 1, this is the marriage problem.)

2. The transportation problem: Given supplies at n points and demands at n markets
choose shipments xi j from suppliers to markets that minimize the total cost ∑Ci jxi j.
(If all supplies and demands are 1, this is the optimal assignment problem—sending
one person to each job.)

3. Minimum costflow: Now the routes have capacities ci j as well as costs Ci j, mixing
the maximal flow problem with the transportation problem. What is the cheapest
flow, subject to capacity constraints?

A fascinating part of this subject is the development of algorithms. Instead of a
theoretical proof of duality, we use breadth-first search or depth-first search to find
the optimal assignment or the cheapest flow. It is like the simplex method, in starting
from a feasible flow (a corner) and adding a new flow (to move to the next corner), The
algorithms are special because network problems involve incidence matrices.

The technique of dynamic programming rests on a simple idea: If a path from source
to sink is optimal, then each part of the path must be optimal. The solution is built
backwards from the sink, with a multistage decision process. At each stage, the distance
to the sink is the minimum of a new distance plus an old distance:

Bellman equation x-t distance = minimum over y of (x-y + y-t distances).

I wish there were space for more about networks. They are simple but beautiful.

Problem Set 8.4

1. In Figure 8.5, add 3 to every capacity. Find by inspection the maximal flow and
minimal cut.

2. Find a maximal flow and minimal cut for the following network:
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3. If you could increase the capacity of any one pipe in the network above, which
change would produce the largest increase in the maximal flow?

4. Draw a 5-node network with capacity |i− j| between node i and node j. Find the
largest possible flow from node 1 to node 4.

5. In a graph, the maximum number of paths from s to t with no common edges equals
the minimum number of edges whose removal disconnects s from t. Relate this to
the max flow-min cut theorem.

6. Find a maximal set of marriages (a complete matching, if possible) for

A =




0 0 1 0 0
1 1 0 1 1
0 1 1 0 1
0 0 1 1 0
0 0 0 1 0




and B =




1 1 0 0 0
0 1 0 1 0
0 0 1 0 1
1 1 1 0 0
1 0 0 0 0




.

Sketch the network for B, with heavier lines on the edges in your matching.

7. For the matrix A in Problem 6, which rows violate Hall’s condition—by having all
their 1s in too few columns? Which p by q submatrix of zeros has p+q > n?

8. How many lines (horizontal and vertical) are needed to cover all the 1s in A in Prob-
lem 6? For any matrix, explain why weak duality is true: If k marriages are possible,
then it takes at least k lines to cover all the 1s.

9. (a) Suppose every row and every column contains exactly two 1s. Prove that a com-
plete matching is possible. (Show that the 1s cannot be covered by less than n
lines)

(b) Find an example with two or more is in each row and column, for which a com-
plete matching is impossible.

10. If a 7 by 7 matrix has 15 1s, prove that it allows at least 3 marriages.

11. For infinite sets, a complete matching may be impossible even if Hail’s condition is
passed. If the first row is all 1s and then every ai i−1 = 1, show that any p rows have
1s in at least p columns—and yet there is no complete matching.
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12. If Figure 8.5 shows lengths instead of capacities, find the shortest path from s to t,
and a minimal spanning tree.

13. Apply algorithms 1 and 2 to find a shortest spanning tree for the network of Problem
2.

14. (a) Why does the greedy algorithm work for the spanning tree problem?

(b) Show by example that the greedy algorithm could fail to find the shortest path
from s to t, by starting with the shortest edge.

15. If A is the 5 by 5 matrix with is just above and just below the main diagonal, find

(a) a set of rows with 1s in too few columns.

(b) a set of columns with is in too few rows.

(c) a p by q submatrix of zeros with p+q > 5.

(d) four lines that cover all the 1s.

16. The maximal flow problem has slack variables wi j = ci j− xi j for the difference be-
tween capacities and flows. State the problem of Figure 8.5 as a linear program.

8.5 Game Theory

The best way to explain a two-person zero-sum game is to give an example. It has two
players X and Y , and the rules are the same for every turn:

X holds up one hand or two, and so does Y . If they make the same decision, Y
wins $10. If they make opposite decisions, X wins $10 for one hand and $20
for two:

Payoff matrix
(payments to X)

A =

[
−10 20
10 −10

]
one hand by Y
two hands by Y

one hand
by X

two hands
by X

If X does the same thing every time, Y will copy him and win. Similarly Y cannot stick
to a single strategy, or X will do the opposite. Both players must use a mixed strategy,
and the choice at every turn must be independent of the previous turns. If there is some
historical pattern, the opponent can take advantage of it. Even the strategy “stay with
the same choice until you lose” is obviously fatal. After enough plays, your opponent
would know exactly what to expect.

In a mixed strategy, X can put up one hand with frequency x1 and both hands with
frequency x2 = 1− x1. At every turn this decision is random. Similarly Y can pick
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probabilities y1 and y2 = 1− y1. None of these probabilities should be 0 or 1; otherwise
the opponent adjusts and wins. If they equal 1

2 , Y would be losing $20 too often. (He
would lose $20 a quarter of the time, $10 another quarter of the time, and win $10 half
the time—an average loss of $2.50. This is more than necessary.) But the more Y moves
toward a pure two-hand strategy, the more X will move toward one hand.

The fundamental problem is to find the best mixed strategies. Can X choose probabil-
ities x1 and x2 that present Y with no reason to move his own strategy (and vice versa)?
Then the average payoff will have reached a saddle point: It is a maximum as far as X
is concerned, and a minimum as far as Y is concerned. To find such a saddle point is to
solve the game.

X is combining the two columns with weights x1 and 1−x1 to produce a new “mixed”
column. Weights 3

5 and 2
5 would produce this column:

Mixed column
3
5

[
−10
10

]
+

2
5

[
20
−10

]
=

[
2
2

]
.

Against this mixed strategy, Y will always lose $2. This does not mean that all
strategies are optimal for Y ! If Y is lazy and stays with one hand, X will change and
start winning $20. Then Y will change, and then X again. Finally, since we assume they
are both intelligent, they settle down to optimal mixtures. Y will combine the rows with
weights y1 and 1− y1, trying to produce a new row which is as small as possible:

Mixed row y1

[
−10 20

]
+(1− y1)

[
10 −10

]
=

[
10−20y1 −10+30y1

]
.

The right mixture makes the two components equal, at y1 = 2
5 . Then both components

equal 2; the mixed row becomes [2 2]. With this strategy Y cannot lose more than $2.
Y has minimized the maximum loss, and that minimax agrees with the maximin found
by X . The value of the game is minimax = maximin = $2.

The optimal mixture of rows might not always have equal entries! Suppose X is
allowed a third strategy of holding up three hands to win $60 when Y puts up one hand
and $80 when Y puts up two. The payoff matrix becomes

A =

[
−10 20 60
10 −10 80

]
.

X will choose the three-hand strategy (column 3) every time, and win at least $60. At
the same time, Y always chooses the first row; the maximum loss is $60. We still have
maximin = minimax = $60, but the saddle point is over in the corner.

In Y ’s optimal mixture of rows, which was purely row 1, $60 appears only in the
column actually used by X . In X’s optimal mixture of columns, which was column 3,
$60 appears in the row that enters Y ’s best strategy. This rule corresponds exactly to the
complementary slackness condition of linear programming.
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Matrix Games

The most general “m by n matrix game” is exactly like our example. X has n possible
moves (columns of A). Y chooses from the m rows. The entry ai j is the payment when
X chooses column j and Y chooses row i. A negative entry means a payment to Y . This
is a zero-sum game. Whatever one player loses, the other wins.

X is free to choose any mixed strategy x = (x1, . . . ,xn). These x1 give the frequencies
for the n columns and they add to 1. At every turn X uses a random device to produce
strategy i with frequency xi. Y chooses a vector y = (y1, . . . ,ym), also with yi ≥ 0 and
∑yi = 1, which gives the frequencies for selecting rows.

A single play of the game is random. On the average, the combination of column j
for X and row i for Y will turn up with probability xiyi. When it does come up, the payoff
is ai j. The expected payoff to X from this combination is ai jx jyi, and the total expected
payoff from each play of the same game is ∑∑ai jx jyi = yAx:

yAx =
[
y1 · · · ym

]



a11 a12 · · · a1n
...

...
...

am1 am2 · · · amn







x1

x2
...

xn




= a11x1y1 + · · ·+amnxnym

= average payoff.

It is this payoff yAx that X wants to maximize and Y wants to minimize.

Example 1. Suppose A is the n by n identity matrix, A = I. The expected payoff be-
comes yIx = x1y1 + · · ·+xnyn. X is hoping to hit on the same choice as Y , to win aii = $1.
Y is trying to evade X , to pay ai j = $0. If X chooses any column more often than another,
Y can escape more often. The optimal mixture is x∗ = (1/n,1/n, . . . ,1/n). Similarly Y
cannot overemphasize any row—the optimal mixture is y∗ = (1/n,1/n, . . . ,1/n). The
probability that both will choose strategy i is (1/n)2, and the sum over i is the expected
payoff to X . The total value of the game is n times (1/n)2, or 1/n:

y∗Ax∗ =
[
1/n · · · 1/n

]



1
. . .

1







1/n
...

1/n


 =

(
1
n

)2

+ · · ·+
(

1
n

)2

=
1
n
.

As n increases, Y has a better chance to escape. The value 1/n goes down.
The symmetric matrix A = I did not make the game fair. A skew-symmetric matrix,

AT = −A, means a completely fair game. Then a choice of strategy j by X and i by Y
wins ai j for X , and a choice of j by Y and i by X wins the same amount for Y (because
a ji =−ai j). The optimal strategies x∗ and y∗ must be the same, and the expected payoff
must be y∗Ax∗ = 0. The value of the game, when AT = −A, is zero. But the strategy is
still to be found.
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Example 2.

Fair game A =




0 −1 −1
1 0 −1
1 1 0


 .

In words, X and Y both choose a number between 1 and 3. The smaller choice wins $1.
(If X chooses 2 and Y chooses 3, the payoff is a32 = $1; if they choose the same number,
we are on the diagonal and nobody wins.) Neither player can choose a strategy involving
2 or 3. The pure strategies x∗ = y∗ = (1,0,0) are optimal—both players choose 1 every
time. The value is y∗Ax∗ = a11 = 0.

The matrix that leaves all decisions unchanged has mn equal entries, say α . This
simply means that X wins an additional amount α at every turn. The value of the game
is increased by α , but there is no reason to change x∗ and y∗.

The Minimax Theorem

Put yourself in the place of X , who chooses the mixed strategy x = (x1, . . . ,xn). Y will
eventually recognize that strategy and choose y to minimize the payment yAx. An intel-
ligent player X will select x∗ to maximize this minimum:

X wins at least min
y

yAx∗ = max
x

min
y

yAx. (1)

Player Y does the opposite. For any chosen strategy y, X will maximize yAx. There-
fore Y will choose the mixture y∗ that minimizes this maximum:

Y loses no more than max
x

y∗Ax = min
y

max
x

yAx. (2)

I hope you see what the key result will be, if it is true. We want the amount in
equation (1) that X is guaranteed to win to equal the amount in equation (2) that Y must
be satisfied to lose. Then the game will be solved: X can only lose by moving from x∗

and Y can only lose by moving from y∗, The existence of this saddle point was proved
by von Neumann:

8M For any matrix A, the minimax over all strategies equals the maximin:

Minimax theorem max
x

min
y

yAx = min
y

max
x

yAx = value of the game.

(3)
If the maximum on the left is attained at x∗, and the minimum on the right is
attained at y∗, this is a saddle point from which nobody wants to move:

y∗Ax≤ y∗Ax∗ ≤ yAx∗ for all x and y. (4)

At this saddle point, x∗ is at least as good as any other x (since y∗Ax ≤ y∗Ax∗). And the
second player Y could only pay more by leaving y∗.
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As in duality theory, maximin≤minimax is easy. We combine the definition in equa-
tion (1) of x∗ and the definition in equation (2) of y∗:

max
x

min
y

yAx = min
y

yAx∗ ≤ y∗Ax∗ ≤max
x

y∗Ax = min
y

max
x

yAx. (5)

This only says that if X can guarantee to win at least α , and Y can guarantee to lose no
more than β , then α ≤ β . The achievement of von Neumann was to prove that α = β .
The minimax theorem means that equality must hold throughout equation (5).

For us, the striking thing about the proof is that it uses exactly the same mathematics
as the theory of linear programming. X and Y are playing “dual” roles. They are both
choosing strategies from the “feasible set” of probability vectors: xi ≥ 0, ∑xi = 1, yi ≥ 0,
∑yi = 1. What is amazing is that even von Neumann did not immediately recognize the
two theories as the same. (He proved the minimax theorem in 1928, linear programming
began before 1947, and Gale, Kuhn, and Tucker published the first proof of duality
in 1951—based on von Neumann’s notes!) We are reversing history by deducing the
minimax theorem from duality.

Briefly, the minimax theorem can be proved as follows. Let b be the column vector
of m 1s, and c be the row vector of n 1s. These linear programs are dual:

(P) minimize cx (D) maximize yb
subject to Ax≥ b, x≥ 0 subject to yA≤ c, y≥ 0.

To make sure that both problems are feasible, add a large number α to all entries of
A. This cannot affect the optimal strategies, since every payoff goes up by α . For the
resulting matrix, which we still denote by A, y = 0 is feasible in the dual and any large x
is feasible in the primal.

The duality theorem of linear programming guarantees optimal x∗ and y∗ with cx∗ =
y∗b. Because of the 1s in b and c, this means that ∑x∗i = ∑y∗i = S. Division by S changes
the sums to 1—and the resulting mixed strategies x∗/S and y∗/S are optimal. For any
other strategies x and y,

Ax∗ ≥ b implies yAx∗ ≥ yb = 1 and y∗A≤ c implies y∗Ax≤ cx = 1.

The main point is that y∗Ax ≤ 1 ≤ yAx∗. Dividing by S, this says that player X cannot
win more than 1/S against the strategy y∗/S, and player Y cannot lose less than 1/S
against x∗/S. Those strategies give maximin = minimax = 1/S.

Real Games

This completes the theory, but it leaves a natural question: Which ordinary games are
actually equivalent to “matrix games”? Do chess and bridge and poker fit into von
Neumann’s theory?

I think chess does not fit very well, for two reasons. A strategy for black must include
a decision on how to respond to white’s first play, and second play, and so on to the end
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of the game. X and Y have billions of pure strategies. I do not see much of a role for
chance. If white can find a winning strategy or if black can find a drawing strategy—
neither has ever been found—that would effectively end the game of chess. You could
play it like tic-tac-toe, but the excitement would go away.

Bridge does contain some deception—as in a finesse. It counts as a matrix game, but
m and n are again fantastically big. Perhaps separate parts of bridge could be analyzed
for an optimal strategy. The same is true in baseball, where the pitcher and batter try
to outguess each other on the choice of pitch. (Or the catcher tries to guess when the
runner will steal. A pitchout every time will walk the batter, so there must be an optimal
frequency—depending on the base runner and on the situation.) Again a small part of
the game could be isolated and analyzed.

On the other hand, blackjack is not a matrix game (in a casino) because the house
follows fixed rules. My friend Ed Thorp found a winning strategy by counting high
cards—forcing more shuffling and more decks at Las Vegas. There was no element of
chance, and no mixed strategy x∗. The best-seller Bringing Down the House tells how
MIT students made a lot of money (while not doing their homework).

There is also the Prisoner’s Dilemma, in which two accomplices are separately of-
fered the same deal: Confess and you are free, provided your accomplice does not con-
fess (the accomplice then gets 10 years). If both confess, each gets 6 years. If neither
confesses, only a minor crime (2 years each) can be proved. What to do? The temptation
to confess is very great, although if they could depend on each other they would hold
out. This is not a zero-sum game; both can lose.

One example of a matrix game is poker. Bluffing is essential, and to be effective it has
to be unpredictable. (If your opponent finds a pattern, you lose.) The probabilities for
and against bluffing will depend on the cards that are seen, and on the bets. In fact, the
number of alternatives again makes it impractical to find an absolutely optimal strategy
x∗. A good poker player must come pretty close to x∗, and we can compute it exactly if
we accept the following enormous simplification of the game:

X is dealt a jack or a king, with equal probability, and Y always gets a queen. X can
fold and lose the $1 ante, or bet an additional $2. If X bets, Y can fold and lose $1, or
match the extra $2 and see if X is bluffing. Then the higher card wins the $3 from the
opponent. So Y has two possibilities, reacting to X (who has four strategies):

Strategies (Row 1) If X bets, Y folds.
for Y (Row 2) If X bets, Y matches the extra $2.

(1) Bet the extra $2 on a king and fold on a jack.
Strategies (2) Bet the extra $2 in either case (bluffing).

for X (3) Fold in either case, and lose $1 (foolish).
(4) Fold on a king and bet on a jack (foolish).
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The payoff matrix A requires a little patience to compute:

a11 = 0: X loses $1 half the time on a jack and wins on a king (Y folds).
a21 = 1: Both bets X loses $1 half the time and wins $3 half the time.
a12 = 1: X bets and Y folds (the bluff succeeds).
a11 = 0: X wins $3 with the king and loses $3 with the jack (the bluff fails).

Poker payoff matrix A =

[
0 1 −1 0
1 0 −1 −2

]
.

The optimal strategy for X is to bluff half the time, x∗ = (1
2 ,

1
2 ,0,0). The underdog Y

must choose y∗ = (1
2 ,

1
2). The value of the game is fifty cents to X .

That is a strange way to end this book, by teaching you how to play watered-down
poker (blackjack pays a lot better). But I guess even poker has its place within linear
algebra and its applications. I hope you have enjoyed the book.

Problem Set 8.5

1. How will the optimal strategies in the game that opens this section be affected if the
$20 is increased to $70? What is the value (the average win for X) of this new game?

2. With payoff matrix A =
[

1 2
3 4

]
, explain the calculation by X of the maximin and by Y

of the minimax. What strategies x∗ and y∗ are optimal?

3. If ai j is the largest entry in its row and the smallest in its column, why will X always
choose column j and Y always choose row i (regardless of the rest of the matrix)?
Show that the preceding problem had such an entry, and then construct an A without
one.

4. Compute Y ’s best strategy by weighting the rows of A =
[

3 4 1
2 0 3

]
with y and 1− y. X

will concentrate on the largest of the components 3y+2(1−y), 4y, and y+3(1−y).
Find the largest of those three (depending on y) and then find the y∗ between 0 and 1
that makes this largest component as small as possible.

5. With the same A as in Problem 4, find the best strategy for X . Show that X uses only
the two columns (the first and third) that meet at the minimax point in the graph.

6. Find both optimal strategies, and the value, if

A =

[
1 0 −1
−2 −1 2

]
.

7. Suppose A =
[

a b
c d

]
. What weights x1 and 1− x1 will give a column of the form

[u u]T, and what weights y1 and 1− y1 on the two rows will give a new row [v v]?
Show that u = v.
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8. Find x∗, y∗ and the value v for

A =




1 0 0
0 2 0
0 0 3


 .

9. Compute
min
yi≥0

y1+y2=1

max
x1≥0

x1+x2=1

(x1y1 + x2y2).

10. Explain each of the inequalities in equation (5). Then, once the minimax theorem
has turned them into equalities, derive (again in words) the saddle point equations
(4).

11. Show that x∗ = (1
2 ,

1
2 ,0,0) and y∗ = (1

2 ,
1
2) are optimal strategies in our simplified

version of poker, by computing yAx∗ and y∗Ax and verifying the conditions (4) for a
saddle point.

12. Has it been proved that no chess strategy always wins for black? This is certainly
true when the players are given two moves at a time; if black had a winning strategy,
white could move a knight out and back and then follow that strategy, leading to the
impossible conclusion that both would win.

13. If X chooses a prime number and simultaneously Y guesses whether it is odd or even
(with gain or loss of $1), who has the advantage?

14. If X is a quarterback, with the choice of run or pass, and Y can defend against a run
or a pass, suppose the payoff (in yards) is

A =

[
2 8
6 −6

]
defense against run
defense against pass.

run pass

What are the optimal strategies and the average gain on each play?



Appendix A
Intersection, Sum, and Product of Spaces

A.1 The Intersection of Two Vector Spaces

New questions arise from considering two subspaces V and W, not just one. We look
first at the vectors that belong to both subspaces. This “intersection” V∩W is a subspace
of those subspaces:

If V and W are subspaces of one vector space, so is their intersection V∩W.
The vectors belonging to both V and W form a subspace.

Suppose x and y are vectors in V and also in W. Because V and W are vector spaces
in their own right, x + y and cx are in V and in W. The results of addition and scalar
multiplication stay within the intersection.

Two planes through the origin (or two “hyperplanes” in Rn) meet in a subspace. The
intersection of several subspaces, or infinitely many, is again a subspace.

Example 1. The intersection of two orthogonal subspaces V and W is the one-point
subspace V∩W = {0}. Only the zero vector is orthogonal to itself.

Example 2. Suppose V and W are the spaces of n by n upper and lower triangular
matrices. The intersection V∩W is the set of diagonal matrices—belonging to both
triangular subspaces. Adding diagonal matrices, or multiplying by c, leaves a diagonal
matrix.

Example 3. Suppose V is the nullspace of A, and W is the null space of B. Then V∩W
is the smaller nullspace of the larger matrix C:

Intersection of nullspaces N(A)∩N(B) is the nullspace of C =

[
A
B

]
.

Cx = 0 requires both Ax = 0 and Bx = 0. So x has to be in both nullspaces.
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A.2 The Sum of Two Vector Spaces

Usually, after discussing the intersection of two sets, it is natural to look at their Union.
With vector spaces, this is not natural. The union V∪W of two subspaces will not in
general be a subspace. If V and W are the x-axis and the y-axis in the plane, the two
axes together are not a subspace. The sum of (1,0) and (0,1) is not on either axis.

We do want to combine V and W. In place of their union we turn to their sum.

Definition. If V and W are both subspaces of a given space, so is their sum. V + W
contains all combinations v+w, where v is in V and w is in W.

V + W is the smallest vector space that contains both V and W. The sum of the
x-axis and the y-axis is the whole x-y plane. So is the sum of any two different lines,
perpendicular or not. If V is the x-axis and W is the 45° line x = y, then any vector like
(5,3) can be split into v+w = (2,0)+(3,3). Thus V+W is all of R2.

Example 4. Suppose V and W are orthogonal complements in Rn. Then their sum is
V+W = Rn. Every x is the sum of its projections in V and W.

Example 5. If V is the space of upper triangular matrices, and W is the space of lower
triangular matrices, then V+W is the space of all matrices. Every n by n matrix can be
written as the sum of an upper and a lower triangular matrix—in many ways, because
the diagonals are not uniquely determined.

These triangular subspaces have dimension n(n+1)/2. The space V+W of all matri-
ces has dimension n2. The space V∩W of diagonal matrices has dimension n. Formula
(3) below becomes n2 +n = n(n+1)/2+n(n+1)/2.

Example 6. If V is the column space of A, and W is the column space of B, then V+W
is the column space of the larger matrix [A B]. The dimension of V + W may be less
than the combined dimensions of V and W (because these two spaces might overlap):

Sum of column spaces dim(V+W) = rank of [A B]. (1)

The computation of V∩W is more subtle. For the intersection of column spaces, a
good method is to put bases for V and W in the columns of A and B. The nullspace
of [A B] leads to V∩W (see Problem 9). Those spaces have the same dimension (the
nullity of [A B]). Combining with dim(V+W) gives

dim(V+W)+dim(V∩W) = rank of [A B]+nullity of [A B]. (2)

We know that the rank plus the nullity (counting pivot columns plus free columns) al-
ways equals the total number of columns. When [A B] has k+` columns, with k = dimV
and ` = dimW, we reach a neat conclusion:

Dimension formula dim(V+W)+dim(V∩W) = dim(V)+dim(W). (3)

Not a bad formula. The overlap of V and W is in V∩W.
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A.3 The Cartesian Product of Two Vector Spaces

If V has dimension n, and W has dimension q, their Cartesian product V×W has di-
mension n+q.

Definition. V×W contains all pairs of vectors x = (v,w).

Adding (v,w) to (v∗,w∗) in this product space gives (v + v∗,w + w∗). Multiplying by c
gives (cv,cw). All operations in V×W are a component at a time.

Example 7. The Cartesian product of R2 and R3 is very much like R5. A typical vector
x in R2×R3 is ((1,2),(4,6,5)): one vector from R2 and one from R3. That looks like
(1,2,4,6,5) in R5.

Cartesian products go naturally with block matrices. From R5 to R5, we have ordinary
5 by 5 matrices. On the product space R2×R3, the natural form of a matrix is a 5 by 5
block matrix M:

M =

[
R2 to R2 R3 to R2

R2 to R3 R3 to R3

]
=

[
2 by 2 2 by 3
3 by 2 3 by 3

]
=

[
A B
C D

]
.

Matrix-vector multiplication produces (Av+Bw,Cv+Dw). Not too fascinating.

A.4 The Tensor Product of Two Vector Spaces

Somehow we want a product space that has dimension n times q. The vectors in this
“tensor product” (denoted ⊗) will look like n by q matrices. For the tensor product
R2⊗R3, the vectors will look like 2 by 3 matrices. The dimension of R2×R3 is 5, but
the dimension of R2⊗R3 is going to be 6.

Start with v = (1,2) and w = (4,6,5) in R2 and R3. The Cartesian product just puts
them next to each other as (v,w). The tensor product combines v and w into the rank 1
matrix vwT:

Column times row v⊗w = vwT

[
1
2

][
4 6 5

]
=

[
4 6 5
8 12 10

]
.

All the special matrices vwT belong to the tensor product R2⊗R3. The product space
is spanned by those vectors v⊗w. Combinations of rank-1 matrices give all 2 by 3
matrices, so the dimension of R2⊗R3 is 6. Abstractly: The tensor product V⊗W is
identified with the space of linear transformations from V to W.

If V is only a line in R2, and W is only a line in R3, then V⊗W is only a “line in
matrix space.” The dimensions are now 1×1 = 1. All the rank-1 matrices vwT will be
multiples of one matrix.
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Basis for the Tensor Product. When V is R2 and W is R3, we have a standard
basis for all 2 by 3 matrices (a six-dimensional space):

Basis

[
1 0 0
0 0 0

] [
0 1 0
0 0 0

] [
0 0 1
0 0 0

] [
0 0 0
1 0 0

] [
0 0 0
0 1 0

] [
0 0 0
0 0 1

]
.

That basis for R2⊗R3 was constructed in a natural way. I started with the standard
basis v1 = (1,0) and v2 = (0,1) for R2. Those were combined with the basis vectors
w1 = (1,0,0), w2 = (0,1,0), and w3 = (0,0,1) in R3. Each pair vi⊗w j corresponds to
one of the six basis vectors (2 by 3 matrices above) in the tensor product V⊗W. This
construction succeeds for subspaces too:

Basis: Suppose V and W are subspaces of Rm and Rp with bases v1, . . . ,vn

and w1, . . . ,wq. Then the nq rank-1 matrices viwT
j are a basis for V⊗W.

V⊗W is an nq-dimensional subspace of m by p matrices, An algebraist would match
this matrix construction to the abstract definition of V⊗W. Then tensor products can
go beyond the specific case of column vectors.

A.5 The Kronecker Product A⊗B of Two Matrices

An m by n matrix A transforms any vector v in Rn to a vector Av in Rm, Similarly, a p
by q matrix B transforms w to Bw. The two matrices together transform vwT to AvwTBT.
This is a linear transformation (of tensor products) and it must come from a matrix.

What is the size of that matrix A⊗B? It takes the nq-dimensional space Rn⊗Rq to
the mp-dimensional space Rm⊗Rp. Therefore the matrix has shape mp by nq. We will
write this Kronecker product (also called tensor product) as a block matrix:

Kronecker product
mp rows, nq columns

A⊗B =




a11B a12B · · · a1nB
a21B a22B · · · a2nB
· · · · · ·

am1B am2B · · · amnB


 . (4)

Notice the special structure of this matrix! A lot of important block matrices have that
Kronecker form. They often come from two-dimensional applications, where A is a
“matrix in the x-direction” and B is acting in the y-direction (examples below). If A and
B are square, so m = n and p = q, then the big matrix A⊗B is also square.

Example 8. (Finite differences in the x and y directions) Laplace’s partial differen-
tial equation −∂ 2u/∂x2− ∂ 2u/∂y2 = 0 is replaced by finite differences, to find values
for u on a two-dimensional grid. Differences in the x-direction add to differences in the
y-direction, connecting five neighboring values of u:
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A 5-point equation is centered at each of the nine meshpoints. The 9 by 9 matrix (call
it A2D) is constructed from the 3 by 3 “1D” matrix for differences along a line:

Difference matrix
in one direction

A =




2 −1 0
−1 2 −1
0 −1 2


 Identity matrix

in other direction
I =




1 0 0
0 1 0
0 0 1


 .

Kronecker products produce three 1D differences along three lines, up or across:

One direction A⊗ I =




2I −I 0
−I 2I −I
0 −I 2I


 .

Other direction I⊗A =




A 0 0
0 A 0
0 0 A


 .

Both directions A2D = (A⊗ I)+(I⊗A) =




A+2I −I 0
−I A+2I −I
0 −I A+2I


 .

The sum (A⊗I)+(I⊗A) is the 9 by 9 matrix for Laplace’s five-point difference equation
(Section 1.7 was for 1D and Section 7.4 mentioned 2D). The middle row of this 9 by 9
matrix shows all five nonzeros from the five-point molecule:

Away from boundary Row 5 of A2D =
[
0 −1 0 −1 4 −1 0 −1 0

]
.

Example 9. (The Fourier matrix in 2D) The one-dimensional Fourier matrix F is
the most important complex matrix in the world. The Fast Fourier Transform in Section
3.5 is a quick way to multiply by that matrix F . So the FFT transforms “time domain to
frequency domain” for a 1D audio signal. For images we need the 2D transform:

Fourier matrix in 2D F2D = F⊗F =
Transform along each row,
then down each column

The image is a two-dimensional array of pixel values. It is transformed by F2D into a two-
dimensional array of Fourier coefficients. That array can be compressed and transmitted
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and stored. Then the inverse transform brings us back from Fourier coefficients to pixel
values. We need to know the inverse rule for Kronecker products:

The inverse of the matrix A⊗B is the matrix A−1⊗B−1.

The FFT also speeds up the 2D inverse transform! We just invert in one direction fol-
lowed by the other direction. We are adding ∑∑ck`eikxei`y over k and then `.

The Laplace difference matrix A2D = (A⊗ I)+(I⊗A) has no simple inverse formula.
That is why the equation A2Du = b has been studied so carefully. One of the fastest
methods is to diagonalize A2D by using its eigenvector matrix (which is the Fourier sine
matrix S⊗S, very similar to F2D). The eigenvalues of A2D come immediately from the
eigenvalues of A1D:

The n2 eigenvalues of (A⊗ I)+(I⊗B) are all the sums λi(A)+λ j(B).

The n2 eigenvalues of A⊗B are all the products λi(A)λ j(B).

If A and B are n by n, the determinant of A⊗ B (the product of its eigenvalues) is
(detA)n(detB)n. The trace of A⊗B is (trace A)(trace B). This appendix illustrates both
“pure linear algebra” and its crucial applications!

Problem Set A

1. Suppose S and T are subspaces of R13, with dimS = 7 and dimT = 8.

(a) What is the largest possible dimension of S∩T?

(b) What is the smallest possible dimension of S∩T?

(c) What is the smallest possible dimension of S+T?

(d) What is the largest possible dimension of S+T?

2. What are the intersections of the following pairs of subspaces?

(a) The x-y plane and the y-z plane in R3,

(b) The line through (1,1,1) and the plane through (1,0,0) and (0,1,1).

(c) The zero vector and the whole space R3.

(d) The plane S perpendicular to (1,1,0) and perpendicular to (0,1,1) in R3.

What are the sums of those pairs of subspaces?

3. Within the space of all 4 by 4 matrices, let V be the subspace of tridiagonal matrices
and W the subspace of upper triangular matrices. Describe the subspace V + W,
whose members are the upper Hessenberg matrices. What is V∩W? Verify formula
(3).
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4. If V∩W contains only the zero vector, then equation (3) becomes dim(V + W) =
dimV + dimW. Check this when V is the row space of A, W is the nullspace of A,
and the matrix A is m by n of rank r. What are the dimensions?

5. Give an example in R3 for which V∩W contains only the zero vector, but V is not
orthogonal to W.

6. If V∩W = {0}, then V + W is called the direct sum of V and W, with the special
notation V⊕W. If V is spanned by (1,1,1) and (1,0,1), choose a subspace W so
that V⊕W = R3, Explain why any vector x in the direct sum V⊕W can be written
in one and only one way as x = v+w (with v in V and w in W).

7. Find a basis for the sum V + W of the space V spanned by v1 = (1,1,0,0), v2 =
(1,0,1,0) and the space W spanned by w1 = (0,1,0,1), w2 = (0,0,1,1). Find also
the dimension of V∩W and a basis for it.

8. Prove from equation (3) that rank(A+B) = rank(A)+ rank(B).

9. The intersection C(A)∩C(B) matches the nullspace of [A B]. Each y = Ax1 = Bx2

in the column spaces of both A and B matches x = (x1,−x2) in the nullspace, because
[A B]x = Ax1−Bx2 = 0. Check that y = (6,3,6) matches x = (1,1,−2,−3), and find
the intersection C(A)∩C(B), for

A =




1 5
3 0
2 4


 B =




3 0
0 1
0 2


 .

10. Multiply A⊗B times A−1⊗B−1 to get AA−1⊗BB−1 = I⊗ I = I2D.

11. What is the 4 by 4 Fourier matrix F2D = F⊗F for F =
[

1 1
1 −1

]
?

12. Suppose Ax = λ (A)x and By = λ (B)y. Form a long column vector z with n2 compo-
nents, x1y, then x2y, and eventually xny. Show that z is an eigenvector for (A⊗ I)z =
λ (A)z and (A⊗B)z = λ (A)λ (B)z.

13. What would be the seven-point Laplace matrix for−uxx−uyy−uzz = 0? This “three-
dimensional” matrix is built from Kronecker products using I and A1D.



Appendix B
The Jordan Form

Given a square matrix A, we want to choose M so that M−1AM is as nearly diagonal as
possible. In the simplest case, A has a complete set of eigenvectors and they become
the columns of M—otherwise known as S. The Jordan form is J = M−1AM = Λ; it is
constructed entirely from 1 by 1 blocks Ji = λi, and the goal of a diagonal matrix is
completely achieved. In the more general and more difficult case, some eigenvectors are
missing and a diagonal form is impossible. That case is now our main concern.

We repeat the theorem that is to be proved:

If a matrix A has s linearly independent eigenvectors, then it is similar to a
matrix J that is in Jordan form, with s square blocks on the diagonal:

J = M−1AM =




J1
. . .

Js


 .

Each block has one eigenvector, one eigenvalue, and is just above the diagonal:

Ji =




λi 1
· ·
· 1

λi


 .

An example of such a Jordan matrix is

J =




8 1 0 0 0
0 8 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0




=




[
8 1
0 8

]

[
0 1
0 0

]

[
0
]




=




J1

J2

J3




.

The double eigenvalue λ = 8 has only a single eigenvector, in the first coordinate direc-
tion e1 = (1,0,0,0,0); as a result, λ = 8 appears only in a single block J1. The triple
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eigenvalue λ = 0 has two eigenvectors, e3 and e5, which correspond to the two Jordan
blocks J2 and J3. If A had 5 eigenvectors, all blocks would be 1 by 1 and J would be
diagonal.

The key question is this: If A is some other 5 by 5 matrix, under what conditions will
its Jordan form be this same J? When will there exist an M such that M−1AM = J? As a
first requirement, any similar matrix A must share the same eigenvalues 8, 8, 0, 0, 0. But
the diagonal matrix with these eigenvalues is not similar to J—and our question really
concerns the eigenvectors.

To answer it, we rewrite M−1AM = J in the simpler form AM = MJ:

A




x1 x2 x3 x4 x5




=




x1 x2 x3 x4 x5







8 1
0 8

0 1
0 0

0




.

Carrying out the multiplications a column at a time,

Ax1 = 8x1 and Ax2 = 8x2 + x1 (1)

Ax3 = 0x3 and Ax4 = 0x4 + x3 and Ax5 = 0x5. (2)

Now we can recognize the conditions on A. It must have three genuine eigenvectors,
just as J has. The one with λ = 8 will go into the first column of M, exactly as it would
have gone into the first column of S: Ax1 = 8x1, The other two, which will be named
x3 and x5, go into the third and fifth columns of M: Ax3 = Ax5 = 0. Finally there must
be two other special vectors, the generalized eigenvectors x2 and x4. We think of x2 as
belonging to a string of vectors, headed by x1 and described by equation (1). In fact,
x2 is the only other vector in the string, and the corresponding block J1 is of order 2.
Equation (2) describes two different strings, one in which x4 follows x3, and another in
which x5 is alone; the blocks J2 and J3 are 2 by 2 and 1 by 1.

The search for the Jordan form of A becomes a search for these strings of vectors,
each one headed by an eigenvector: For every i,

either Axi = λixi or Axi = λixi + xi−1. (3)

The vectors xi go into the columns of M, and each string produces a single block in J.
Essentially, we have to show how these strings can be constructed for every matrix A.
Then if the strings match the particular equations (1) and (2), our J will be the Jordan
form of A.

I think that Filippov’s idea makes the construction as clear and simple as possible1.
It proceeds by mathematical induction, starting from the fact that every 1 by 1 matrix

1A. F, Filippov, A short proof of the reduction to Jordan form, Moscow Univ. Math. Bull., volume 26 (1971)
pp. 70–71.
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is already in its Jordan form. We may assume that the construction is achieved for all
matrices of order less than n—this is the “induction hypothesis”—and then explain the
steps for a matrix of order n. There are three steps, and after a general description we
apply them to a specific example.

Step 1. If we assume A is singular, then its column space has dimension r < n. Looking
only within this smaller space, the induction hypothesis guarantees that a Jordan
form is possible—there must be r independent vectors wi in the column space
such that

either Awi = λiwi or Awi = λiwi +wi−1. (4)

Step 2. Suppose the nullspace and the column space of A have an intersection of dimen-
sion p. Of course, every vector in the nullspace is an eigenvector corresponding
to λ = 0. Therefore, there must have been p strings in step 1 that started from
this eigenvalue, and we are interested in the vectors wi that come at the end of
these strings. Each of these p vectors is in the column space, so each one is a
combination of the columns of A: wi = Ayi for some yi.

Step 3. The nullspace always has dimension n− r. Therefore, independent from its
p-dimensional intersection with the column space, it must contain n− r− p
additional basis vectors zi lying outside that intersection.

Now we put these steps together to give Jordan’s theorem:

The r vectors wi, the p vectors yi, and the n− r− p vectors zi form Jordan
strings for the matrix A, and these vectors are linearly independent. They go
into the columns of M, and J = M−1AM is in Jordan form.

If we want to renumber these vectors as x1, . . . ,xn, and match them to equation (3),
then each yi should be inserted immediately after the wi it came from; it completes a
string in which λi = 0. The z’s come at the very end, each one alone in its own string;
again the eigenvalue is zero, since the z’s lie in the nullspace. The blocks with nonzero
eigenvalues are already finished at step 1, the blocks with zero eigenvalues grow by one
row and column at step 2, and step 3 contributes any 1 by 1 blocks Ji = [0].

Now we try an example, and to stay close to the previous pages we take the eigenval-
ues to be 8, 8, 0, 0, 0:

A =




8 0 0 8 8
0 0 0 8 8
0 0 0 0 0
0 0 0 0 0
0 0 0 0 8




.

Step 1. The column space has dimension r = 3, and is spanned by the coordinate vectors
e1,e2,e5. To look within this space we ignore the third and fourth rows and
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columns of A; what is left has eigenvalues 8, 8, 0, and its Jordan form comes
from the vectors

w1 =




8
0
0
0
0




, w2 =




0
1
0
0
1




, w3 =




0
8
0
0
0




.

The wi are in the column space, they complete the string for λ = 8, and they
start the string for λ = 0:

Aw1 = 8w1, Aw2 = 8w2 +w1, Aw3 = 0w3. (5)

Step 2. The nullspace of A contains e2 and e3, so its intersection with the column space
is spanned by e2. Therefore p = 1 and, as expected, there is one string in equa-
tion (3) corresponding to λ = 0. The vector w3 comes at the end (as well as the
beginning) of that string, and w3 = A(e4− e1). Therefore y = e4− e1.

Step 3. The example has n− r− p = 5− 3− 1 = 1, and z = e3 is in the nullspace but
outside the column space. It will be this z that produces a 1 by 1 block in J.

If we assemble all five vectors, the full strings are

Aw1 = 8w1, Aw2 = 8w2 +w1, Aw3 = 0w3, Ay = 0y+w3, Az = 0z.

Comparing with equations (1) and (2), we have a perfect match—the Jordan form of our
example will be exactly the J we wrote earlier. Putting the five vectors into the columns
of M must give AM = MJ, or M−1AM = J:

M =




8 0 0 −1 0
0 1 8 0 0
0 0 0 0 1
0 0 0 1 0
0 1 0 0 0




.

We are sufficiently trustful of mathematics (or sufficiently lazy) not to multiply out
M−1AM.

In Filippov’s construction, the only technical point is to verify the independence of
the whole collection wi, yi, and zi. Therefore, we assume that some combination is zero:

∑ciwi +∑diyi +∑gizi = 0. (6)

Multiplying by A, and using equations (4) for the wi as well as Azi = 0,

∑ci




λiwi

or
λiwi +wi−1


+∑diAyi = 0. (7)
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The Ayi are the special wi at the ends of strings corresponding to λi = 0, so they cannot
appear in the first sum. (They are multiplied by zero in λiwi.) Since equation (7) is
some combination of the wi, which were independent by the induction hypothesis—they
supplied the Jordan form within the column space—we conclude that each di must be
zero. Returning to equation (6), this leaves ∑ciwi =−∑gizi, and the left-hand side is in
the column space. Since the z’s were independent of that space, each gi must be zero.
Finally, ∑ciwi = 0, and the independence of the wi produces ci = 0.

If the original A had not been singular, the three steps would have been applied instead
to A′ = A−cI. (The constant c is chosen to make A′ singular, and it can be any one of the
eigenvalues of A.) The algorithm puts A′ into its Jordan form M−1A′M = J′ by producing
the strings xi from the wi, yi and zi. Then the Jordan form for A uses the same strings
and the same M:

M−1AM = M−1A′M +M−1cM = J′+ cI = J.

This completes the proof that every A is similar to some Jordan matrix J. Except for a
reordering of the blocks, it is similar to only one such J; there is a unique Jordan form
for A. Thus, the set of all matrices is split into a number of families, with the following
property: All the matrices in the same family have the same Jordan form, and they are
all similar to each other (and to J), but no matrices in different families are similar. In
every family, J is the most beautiful—if you like matrices to be nearly diagonal. With
this classification into families, we stop.

Example 1.

A =




0 1 2
0 0 1
0 0 0


 with λ = 0,0,0.

This matrix has rank r = 2 and only one eigenvector. Within the column space, there is
a single string w1, w2, which happens to coincide with the last two columns:

A




1
0
0


 = 0 and A




2
1
0


 =




1
0
0


 ,

or
Aw1 = 0 and Aw2 = 0w2 +w1.

The nullspace lies entirely within the column space, and it is spanned by w1. Therefore
p = 1 in step 2, and the vector y comes from the equation

Ay = w2 =




2
1
0


 , where solution is y =




0
0
1


 .
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Finally, the string w1, w2, y goes into the matrix M:

M =




1 2 0
0 1 0
0 0 1


 , and M−1AM =




0 1 0
0 0 1
0 0 0


 = J.

Application to du/dt = Au

As always, we simplify the problem by uncoupling the unknowns. This uncoupling is
complete only when there is a full set of eigenvectors, and u = Sv; the best change of
variables in the present case is u = Mv. This produces the new equation Mdv/dt = AMv,
or dv/dt = Jv, which is as simple as the circumstances allow. It is coupled only by the
off-diagonal 1s within each Jordan block. In the preceding example, which has a single
block, du/dt = Au becomes

dv
dt

=




0 1 0
0 0 1
0 0 0


v or

da/dt = b
db/dt = c
dc/dt = 0

or
a = a0 +b0t + c0t2/2
b = b0 + c0t
c = c0.

The system is solved by working upward from the last equation, and a new power of t
enters at every step. (An ` by ` block has powers as high as t`−1.) The exponentials of
J, in this case and in the earlier 5 by 5 example, are

eJt =




1 t t2/2
0 1 t
0 0 1


 and




e8t te8t 0 0 0
0 e8t 0 0 0
0 0 1 t 0
0 0 0 1 0
0 0 0 0 1




.

You can see how the coefficients of a, b, and c appear in the first exponential. And in the
second example, you can identify all five of the “special solutions” to du/dt = Au. Three
of them are the pure exponentials u1 = e8tx1, u3 = e0tx3, and u5 = e0tx5, formed as usual
from the three eigenvectors of A. The other two involve the generalized eigenvectors x2

and x4:
u2 = e8t(tx1 + x2) and u4 = e0t(tx3 + x4). (8)

The most general solution to du/dt = Au is a combination c1u1 + · · ·+ c5u5, and the
combination that matches u0 at time t = 0 is again

u0 = c1x1 + · · ·+ c5x5, or u0 = Mc, or c = M−1u0.

This only means that u = MeJtM−1u0, and that the S and Λ in the old formula SeΛtS−1u0

have been replaced by M and J.



472 Appendix B The Jordan Form

Problem Set B

1. Find the Jordan forms (in three steps!) of

A =

[
1 1
1 1

]
and B =




0 1 2
0 0 0
0 0 0


 .

2. Show that the special solution u2 in equation (17) does satisfy du/dt = Au, exactly
because of the string Ax1 = 8x1, Ax7 = 8x7 + x1.

3. For the matrix B in Problem 1, use MeJtM−1 to compute the exponential eBt , and
compare it with the power series I +Bt +(Bt)2/2!+ · · · .

4. Show that each Jordan block Ji is similar to its transpose, JT
i = P−1JiP, using the

permutation matrix P with 1s along the cross-diagonal (lower left to upper right).
Deduce that every matrix is similar to its transpose.

5. Find “by inspection” the Jordan forms of

A =




1 2 3
0 4 5
0 0 6


 and B =

[
1 1
−1 −1

]
.

6. Find the Jordan form J and the matrix M for A and B (B has eigenvalues 1, 1, 1, −1).
What is the solution to du/dt = Au, and what is eAt?

A =




0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0




and B =




1 −1 0 −1
0 2 0 1
−2 1 −1 1
2 −1 2 0


 .

7. Suppose that A2 = A. Show that its Jordan form J = M−1AM satisfies J2 = J. Since
the diagonal blocks stay separate, this means J2

i = Ji for each block; show by direct
computation that Ji can only be a 1 by 1 block, Ji = [0] or Ji = [1]. Thus, A is similar
to a diagonal matrix of 0s and 1s.

Note. This is a typical case of our closing theorem: The matrix A can be diagonalized if
and only if the product (A−λ1I)(A−λ2I) · · ·(A−λpI), without including any repetitions
of the λ ’s, is zero. One extreme case is a matrix with distinct eigenvalues; the Cayley-
Hamilton theorem says that with n factors A−λ I we always get zero. The other extreme
is the identity matrix, also diagonalizable (p = 1 and A− I = 0). The nondiagonalizable
matrix A =

[
1 1
0 1

]
satisfies not (A− I) = 0 but only (A− I)2 = 0—an equation with a

repeated root.



Solutions to Selected [xercises 

Problem Set 1.2, page 9 

1. The lines intersect at (x, y) = (3, 1). Then 3 (column 1) + 1 (column 2) = (4,4). 

3. These "planes" intersect in a line in four-dimensional space. The fourth plane nor
mally intersects that line in a point. An inconsistent equation like u + w = 5 leaves 

no solution (no intersection). 

5. The two points on the plane are (1,0, 0, 0) and (0, 1,0, 0). 

7. Solvable for (3,5,8) and (1,2,3); not solvable for b = (3,5,7) or b = (1,2,2). 

9. Column 3 = 2(column 2) - column 1. Ifb = (0, 0, 0), then (u, v, w) = (c, -2c, c) 

11. Both a = 2 and a = -2 give a line of solutions. All other a give x = 0, y = 0. 

13. The row picture has two lines meeting at (4, 2). The column picture has 4( 1, 1) + 

2(-2, 1) = 4(column 1) + 2(column 2) = right-hand side (0, 6). 

15. The row picture shows four lines. The column picture is in/our-dimensional space. 

No solution unless the right-hand side is a combination of the two columns. 

17. If x, y, z satisfy the first two equations, they also satisfy the third equation. The line 

L of solutions contains v = (1,1,0), W = (!, 1, !), and u = �v + !w, and all 

combinations cv + d w with c + d == 1. 

19. Column 3 == column 1; solutions (x, y, z) = (1,1,0) or (0,1,1) and you can add 
any multiple of (-1,0, 1); b = (4,6, c) needs c = 10 for solvability. 

21. The second plane and row 2 of the matrix and all columns of the matrix are changed. 

The solution is not changed. 

23. u = 0, v = 0; w = 1, because 1 (column 3) = b. 

Problem Set 1a3, page 15 

1. Multiply by f = �o = 5, and subtract to find 2x + 3y = 1 and -6y = 6. Pivots 

2, -6. 

3. Subtract -! times equation 1 (or add ! times equation 1). The new second equation 
is 3y = 3. Then y = 1 and x = 5. If the right-hand side changes sign, so does the 

solution: (x, y) = (-5, -1). 

5. 6x + 4y is 2 times 3x + 2y. There is no solution unless the right-hand side is 

2 . 1 ° = 20. Then all points on the line 3x + 2 y = 10 are solutions, including (0, 5) 
and (4, -1). 

7. If a = 2, elimination must fail. The equations have no solution. If a = 0, elimination 
stops for a row exchange. Then 3y = -3 gives y = -1 and 4x + 6y = 6 gives 
x = 3. 

9. 6x - 4y is 2 times (3x - 2y). Therefore, we need b2 = 2b1• Then there will be 
lnflnltAlu rrHlnu C'Al11t1AnC' Thi3 r-nl111'l'1nC' f� A) �nrl f_'J _Lt.) <:lri3 An thi3 C'f".l1"Y\O 111'113 
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11. 2x - 3y = 3 2x - 3y = 3 x = 3 Subtract 2 x row 1 from row 2 
y + z = 1 gives y + z = 1 and y = 1 Subtract 1 x row 1 from row 3 

. 2y - 32: = 2 - 5z = ° z = ° Subtract 2 x row 2 from row 3 
13. The second pivot position will contain -2 - h. If b = -2, we exchange with row 

3 .  If b = -1 (singular case) , the second equation is -y - z = 0. A solution is 
(1,1, -1). 

15. If row 1 = row 2, then row 2 is zero after the first step; exchange the zero row with 
row 3 and there is no third pivot. If column 1 = column 2, there is no second pivot. 

17. Row 2 becomes 3y - 4z = 5 ,  then row 3 becomes (q + 4)z = t - 5. If q = -4, 
the system is singular - no third pivot. Then, if t = 5, the third equation is ° = 0. 
Choosing z = 1, the equation 3y - 4z = 5 gives y = 3 and equation 1 gives 
x = -9. 

19. The system is singular if row 3 is a combination of rows 1 and 2. From the end view, 
the three planes fonn a triangle. This happens if rows 1 + 2 = row 3 on the left-hand 
side but not the right-hand side: for example, x + y ,+  z = 0, x - 2y - Z = 1, 
2x - y = 9. No two planes are parallel, but still no solution. 

21. The fifth pivot is �. The nth pivot is (n�l) . 

23. Triangular system 
u +  v +  W =  2 

2 v  + 2w = -2 
2w = 2 

u = 3 
Solution v = -2 . 

w = 1 
25. (u , v, w) = (3/2, 1 /2,. -3) . Change to + l would make the system singular (2 equal 

columns) . 
27. a = ° requires a row exchange, but the system is nonsingular: a = 2 makes it singular 

(one pivot, infinity of solutions); a = -2 makes it singular (one pivot, no solution). 
29. The second term bc + ad is (a + b) (c + d) - "ac - bd (only 1 additional 

multiplication) . 
31. Elimination fails for a = 2 (equal columns), a = 4 (equal rows) , a = ° (zero 

column) . 

Problem Set 1 m4, page 26 

17 5 [2] 
1. 4 ,  -2 , 4 . With sides to (2 , 1 )  and (0 , 3) ,  the parallelogram goes to (2, 4) . 

17 3 
3 5 1 

3. Inner products 54 and 0, column times row gives -6 -10 -2 . 
2 1  35 7 

5. Ax = (0 , 0 ,  0), so x = (2, 1 ,  1) is a solution; other solutions are cx = (2c , c , c) . 
1 ° ° 1 3 4 1 3 4 

7. Examples: Diagonal 0 2 0 , symmetric 3 2 0 , triangular 0 2 0 
0 ° 7 4 0 7 ° 0 7 

0 3 4 .>:��: 

skew-symmetric -3 0 0 . 
-4 0 ° 

, 
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a'l 
9. (a) all (b) iil = ail/all (c) newaij is aij - -l-alj 

all a21 (d) second pivot a22 - --a12' 
all 

11. The coefficients of rows of B are 2, 1,4 from A. The first row of AB is [6 3]. 

13. A = [_� �} B = [� �J. c = [� �J. D = A, E = F = U =n 
15. AB1 = BlA gives b = c = O. AB2 = B2A gives a = d. So A = al. 

17. A(A + B) + B(A + B), (A + B)(B + A), A2 + AB + BA + B2 always equal 
(A + B) 2 . 

19. [: !] [� �] = [:] [p q] 
+ [!] [r 

s] 
= [:;�!� 

21. An = A; Bn = [� (-�t l c = [� �] = zero matrix. 

aq + bS] 
cq + ds . 

23. E32E21b = (1, -5 , - 35) but E21E32b = (1, -5,0). Then row 3 feels no effect 
froin row 1. 

25. Changing a33 from 7 to 11 will change the third pivot from 5 to 9. Changing a33 
from 7 to 2 will change the pivot from 5 to no pivot. 

1 0 0  
27. To reverse E31, add 7 times row 1 to row 3. The matrix is R31 = 0 1 O. 

7 0 1 
1 0 1 2 0  1 1 0 1 

29. E13 = 0 1 0 
0 0 1  

; 0 1 0; E31E13 = 0 1 O. Test on the identity matrix ! 
1 0 1  1 0 1  

31. E21 has .e21 = -!, E32 has .e32 = - �, E43 has .e43 = -%. Otherwise the E's match I. 

a+b+c= 4 a=2 
33. a + 2b + 4c = 8 gives b = 1. 

a + 3b + 9c = 14 c = 1 

35. (a) Each column is E times a column of B. 

(b) EB = U �] U ; :] = [� ; :l 
Rows of E B are combinations of rows of B, so they are multiples of [ 1 2 4], 

37. (row 3)· x is I: a3jXj, and (A2) 11 = (row 1) · (column 1) = I: a1jaj1. 

39. BA = 31 is 5 by 5, AB = 51 is 3 by 3, AB D = 5D is 3 by 1, AB D: No, A(B + C): 
No. 

0 0 1  
41. (a) B = 41. (b) B = O. (c) B = 0 1 O .  

1 0 0 
(d) Every row of B is 1, 0, O. 

43. (a) mn (every entry) . (b) mnp. (c) n3 (this is n2 dot products) .  
1 0 3 3 0 0 0 0 

45. 2 [3 3 OJ + 4 [ 1 2 1 J = 6 6 0 + 4 8 4 
2 1 6 6 0 1 2 1 

3 3 0 
10 14 4 . 

7 8 1 
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47. A times B is A [ l [ ] B, [ ][ l [ ][ l 
49. The (2, 2) block S == D - C A -1 B is the Schur complement: blocks in d - (cb j a). 
51. A times X == [Xl X2 X3] will be the identity matrix I == [AXI AX2 AX3]' [a+b a+b] . [a+c b+d] 
53. c + d c + d agrees WIth a + c b + d when b == c and a = d. 

55. 2x + 3y + z + 5t = 8 is Ax = b with the 1 by,4 matrix A == [2 3 1 5] . The 
solutions x fill a 3D "plane" in four dimensions . 

x 
57. The dot product [1 4 5] Y == ( 1 by 3) (3 by 1 ) is zero for points (x , y, z) on a 

z 
plane x + 4 Y + 5z = 0 in three dimensions. The columns of A are one-dimensional 
vectors. 

59. A * v == [3 4 5]' and v' * v = 50; v * A gives an error message. 
8 3 4 5+u 5 - u + v 5- v 

61. M = 1 5 9 = 5 - u - v 5 5 + u + v ; 
6 7 2 5+ v 5+u - v  5 -· u 

M3(1 , 1 , 1 ) == ( 15 , 15 , 1 5) ;  M4 (1 , 1 , 1 , 1 )  == (34, 34 , 34, 34) because the numbers 
1 to 16 add to 1 36, which is 4(34) . . 

l' 

Problem Set 1.56 page 39 
1. U is nonsingular'when no entry on the main diagonal is zero. 

3. 
1 0 0 1 0 0 1 0 0 1 0 0 
2 ,  1 0 -2 1 0 == 0 1 0 ;  -2 1 0 

1 
2 

o 0 
1 0 = I also. \ 

- 1  \ - 1 1 -1 1 1 0 0 1 - 1  1 1 - 1  - 1  1 
(E-1 p\ IG-1)(G P E) I E-1 p-1 P E = E-1 E = I; also (GP E) (E-1 p-1G-1) = I. 

1 0 0 '2 3 3 2 3 3 u 2 
5. LU == 1 0 0 5' 7 ;  after elimination, 0 5 7 v 2 . 

o 1 0 0 - 1  0 0 -1 w -1 

7. FGH == 

1 0 0 0  
2 1 0 0 
o 2 1 0 ; HGF == 

0 0 2  1 
9. (a) Nonsingular when d1d2d3 i= O. 

o 
downward: Lc = b gives c = 0 

1 
Ijd3 

X = Ijd3 • 
Ijd3 

1 0 0 0  
2 1 0 0 
4 2 1 O ' 
8 4 2 1 
(b) Suppose d3 i= 0 :  Solve Lc == b going 

d1 -d1 0 U 0 
. Then 0 d2 -d2 V 0 gives 

o 0 d3 W 1 
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2 5 
11. Lc = b going downward gives c = -2; U x == c upward gives x = -2 . 

13 
Permutation 

• rows 2 and 3 

permutation 
rows 1 and 2 

1 
0 
0 

0 
1 
0 

0 0 
0 1 , 

1 0 

1 0 
0 0 , 
0 0 

u 
v -
w 

u 
v 
w 

o 0 

2 
-3 4 

1 
-1 

1 

. 
, 

1 0 0 1 0 0 1 0 1  0 1 0  
15. P A = LDU is 1 0 0 

0 0 1 

O i l 
1 0 1  
2 3 4 

- 0 1 0 
2 3 1 

o 1 0 o 1 1 ·  , 

1 0 0 
P A = LDU is 0 0 1 

0 1 0  

1 0 0 

1 2 1 
2 4 2 
1 1 1  

1 0 0 
1 1 0 
2 0 1 

o 0 -1 

1 0 0 
o -1 0 
0 0 0 

17. L becomes 1 1 O .  MATLAB and other codes use P A = LU. 
2 0 1 

0 0 1 

1 2 1  
o 1 O .  
0 0 0  

19. a = 4 leads to a row exchange; 3b + lOa == 4 0  leads to a singular matrix; c = 0 
leads to a row exchange; c = 3 leads to a singular matrix. 

21. £31 == 1 and £32 = 2 (£33 = 1): reverse steps to recover x + 3y + 6z = 11 from 
U x = c: 1 times (x + y + z == 5) + 2 times (y + 2z == 2) + 1 times (z = 2) gives 
x+3y+6z=11. 

23. 

25. 

1 1 1 1 1 

0 1 -2 1 A= 0 2 3 
o -2 1 0 0 1 .0  o -6 

1 
A= 2 

0 

0 
1 
2 

0 
0 
1 

U = E211 E321U = LU. 

2 by 2: d = 0 not allowed; 
1 1 
1 1 
1 2 

0 1 d e g 
2 - .e 1 f h -
1 1 

. m n 1 

2 4 8 2 

-U - . 

d = 1, e = 1 , then.e = 1 
f == 0 is not allowed 
no pivot in row 2. 

27. A = 0 3 9 has L = I and D = 3 

0 0 7  
; A = L U has U == A (pivots on 

7 

1 2 4 
the diagonal); A = LDU has U == D-1 A = 0 1 3 with Is on the diagonal. 

0 0 1 



a a a a 1 . 
29. 

a b b b 1 1 
b 1 1 1 a c c 

a b c d 1 1 1 1 
1 1 1 0 

31. 1 1 1 1 = LIU; 

0 1 1 1 
(same U). 

1 0 0 4 
33. 1 1 0 5 

. 
c =  gIves c = 

1 1 1 6 ,-
A = LU. 

a a a 
b-a b-a 

c-b 

a a 0 
a a+b b 
0 b b + c 

4 1 1 1 
1 0 1 1 x =  
1 0 0 1 

a a�O 
b-a 
c-b 

b�a . Need 
c =1= b 

d-c d =F c. 

a 
= (same L) b 

4 3 
1 . 0 gIves x = . 
1 1 

c 

35. The 2 by 2 upper submatrix B has the first two pivots 2, 7. Reason: Elimination on 
A starts in the upper left corner with elimination on B. 

1 1 
1 2 

37. 1 3 
1 4 
1 5 

,;, 

1 1 1 
3 4 5 
6 10  15  

10 20 35 
1 5  35 70 

1 1 1 1 1 1 Pascal's triangle in L and U. 
1 1 1 2 3 4 MATLAB's lu code will wreck 
1 2 1 1 3 "  6 the pattern. chal does no row 

\ 1 3 3 1 1 4 exchanges for symmetric 
1 4 6 4 1 1 matrices with positive pivots. 

39. Each new right-hand side costs only n2 steps compared to n3/3 for full elimination 
A\b. 

41. 2 exchanges; 3 exchanges ; 50 exchanges and then 51. 

0 1 0  1 0 0 0 0 1 
43. P = 0 0 1 ; Pi = 0 O l and P2 = 0 1 0 

1 0 0 0 1 0  1 0 0 
( P2 gives a column exchange). 

45. There are n! permutation matrices of order n. Eventually two powers of P must be 
the same: If pr = ps then pr-s = 1. Certainly r - s < n! 

47. The solution is x = (1, 1 ,  . . .  , 1 ). Then x = Px . 

Problem Set 1.6, page 52 

1. Ail = [� !} A2l = [-i �l A3l = [_���: 
3. A-I = Be-I; A-I = U-IL-1p. 

o 1 
o 0 
1 0 

Sine] 
cose . 

o C 
1 , and P6� 
o 
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5. A(AB) = (move parentheses) = (A2) (B)  = I. 

[-J3/2 1 /2] [--J3/2 1 /2 ] [0 1 ] all have A2 = I. 7. 1 /2 --J3/2 ' 1 /2 -J3/2 ' 1 0 
9. If row 3 of A-I were (a , b ,  c, d), then A -1 A = I would give 2a = 0, a + 3b = 0, 

4a + 8b == 1 .  This has no solution. 
11. (a) [� �] + [-� _�] = [� �l (b) [� �] + [� �] = [� �l 

(c) [� �] + [_� b] = [_� � l (B-1 + A-l )- 1 = B (A + B)-I A. 

13. ATB=8; BTA=8; ABT= [� �l BAT= [�n 
15. (a) n (n + 1 ) /2 entries on and above diagonal. (b) (n - l)n/2 entries above 

diagonal . 
17. (a) The inverse of a lower (upper) triangular matrix is still lower (upper) triangu

lar. Multiplying lower (upper) triangular ,matrices gives a lower (upper) triangular 
matrix. (b) The main diagonals of LI1 L2D2 and D1 U1 U;l are the same as those 
of D2 and D1 respectively. LI1 L2D2 = D1 U1 U:;l , so we have D1 == D2 . By com
,paring the off-diagonals of LI1 L2D2 = D1 U1 U:;l , both matrices must be diagonal . 
LI1 L2D2 == D2, D1U1 U:;1 == D1 , D1 is invertible so LI1 L2 == I, U1 U2-1 == I. 
Then Ll = L2, U1 == U2• 

1 0 0 1 0 0 1 3 5 
19. 3 1 0 0 3 0 0 1 1 ;  

5 1 1 0 0 2  0 0 1 

[b�a �] [� d _ �2/a)] [� bia] = LDLT. 
21. From B(l - AB) = (I - BA) B we get (I - BA)-l = B (I - AB)-l B-1 , an 

explicit inverse provided B and I - AB are invertible. Second approach: If I - BA 
is not invertible, then BAx = x for some nonzero x .  Therefore ABAx = Ax, or 
ABy = y ,  and I - AB could not be invertible. (Note that y = Ax is nonzero, from 
BAx=x .) , 

23. [�] = [-:;J. [�] = [-:7] SO A-I = 
1
1
0 [-� -7]. 

25. 

27. 

29. 

31. 

(a) In Ax = ( 1 , 0, 0) , equation 1 + equation 2 - equation 3 is 0 = 1. (b) The 
right-hand sides must satisfy b 1 + b2 == b3• (c) Row 3 becomes a row of zeros-no 
third pivot. 
If B exchanges rows 1 and 2 of A,  then B-1 exchanges columns 1 and 2 of A-I . 
If A has a column of zeros, so does B A .  So BA == I is impossible. There is no A-I 

1 1 1 1 
1 1 -1 1 - 1  1 

-1 1 -1 1 1 0 -1 1 

1 

- E' - , 

then 1 1 is L == E -1 , after reversing the order of these 3 elementary matrice 
1 1 1  

and changing - 1  to + 1 .  
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33. A * ones( 4,1) gives the zero vector, so A cannot be invertible. 

35. [; 3 1 �] -+ [� 3 1 �] -+ [� 0 7 -3] - [ I  7 0 1 -2 1 -2 1 -

[� 3 1 �] -+ [� 0 - 8 -iJ = [ I  A-I ] .  8 0 1 3 

1 a b 1 0 0 1 a 0 1 0 -b 
37. 0 1 c 0 1 0 � 0 1 '0 0 1 -c 

0 0 1 0 0 1 0 0 1 0 0 1 

1 0 0 1 -a ac-b 
� 0 1 0 0 1 -c . 

0 0 1 0 0 1 

A-I ] ; 

39. [� 2 0 1] [2 < 0 -1 �] -+ [� o -1/2 1/�] = [I A-I ] .  2 1 o -+ 0 2 1 1 1/2 
41. Not invertible for c =: 7 (equal columns), c == 2 (equal rows), c == 0 (zero column). 

1 1 O �  0 
o 1 10 ) 

43. A�l = 0 0 1 l '  The 5 by 5 A-1 als� has I s  on the diagonal and super-
000 1 

diagonal . 

[ I 0] [ A-I 
45. - c I' -D-1 CA-1 

'0 ] [ D I ] D-1 , a�d 1 O · 
47. For Ax == b with A == ones(4, 4) == singular matrix and b == ones(4, 1), A\b 

will pick x == (1,0,0,0) and pinv(A) * b will pick the shortest solution x == 
(1,1,1,1)/4. 

49. AT = [� �l A-1 = [_; 1/�]' (A-1)T = (AT)-l = [� D;]; AT = A and 

then A-I == � [0 c] = (A-1)T = (AT)-l. 
c2 c - 1  

51. ( (AB)-l ) T == (B-1 A-l) T = (A -1) T (B-1) T ; (U-1) T is lower triangular. 

53. (a) xT Ay = an = 5. (b) xT A = [4 5 6]. (c) Ay = [�]. 

55. (Px)T(py) == xTpTpy = xTy because pTp = I ;  usually Px · y = X·pTy =j:. 
X · Py : 

010 
001 
100 

1 1 1 010 1 
2 . 1 =1= 2 . 0 0 1 1 
32 31002 

57. P ApT recovers the symmetry. 
59. (a) The transpose,of RT AR is RT AT RTT = RT AR = n by n. 

(b) (RT R) jj == (column j of R) . (column j of R) = length squared of column j. 
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1 0 1 YBC YBe + YBS 
61. Total currents are A T Y = -1 1 0 Ycs -YBC + Yes 

o - 1  - 1  YBS -Yes - YBS 

Either way (A X)T Y := xT(ATy) := XBYBC +XBYBS -XCYBC +xcYcs - XsYcs -XSYBS. 

63. 

65. 

67. 

69. 

71. 

Ax . Y is the cost of inputs, whereas x . AT Y is the value of outputs . 
These are groups : Lower triangular with diagonal 1 s, diagonal invertible D, and 
permutations P .  Two more: Even permutations, all nonsingular matrices. 
Reordering the rows and/or columns of [� �] will move entry a ,  not giving [� �]. 
Random matrices are almost surely invertible. 
The - 1 , 2, - 1  matrix in Section 1 .7 has A := LDLT with fi i-I = 1 - �. , l 

Prob lem Set 1w7, page 63 
2 - 1  

1. 
- 1  2 -1 

- 1 2 -1 
- 1  2 

1 2 1 1 
2 1 1 3 1 2 

2 2 3 = LDLT 2 1 4 1 3 -
3 3 4 det = 5 .  3 1 5 1 -

4 4 

1 - 1  c 0 
- 1  2 -1 c 0 

3. Ao = - 1  2 - 1 . Each row adds to 1 ,  so Ao c 0 
-1 2 - 1  c 0 

- 1  1 c 0 
5. (Ul, U2, U3.) = (n2/8, 0, - n 2/8) instead of the true values ( 1 , 0, - 1 ) .  

9 -36 30 
7. H-1 = -36 1 92 - 180 . 

30 - 1 80 1 80 
9. The 10  by 1 0  Hilbert matrix is very ill-conditioned. 

11. A large pivot is multiplied by less than 1 in eliminating each entry below it. An 
1 /2 1 /2 1 

extreme case, with multipliers = 1 and pivots := �, �, 4, is A = - 1/2 0 1 .  
-1/2 -1 1 

Problem Set 2�1, page 73 
1. (a) The set of all (u , v) , where u and v are ratios p /q of integers. (b) The set of 

all (u , v) ,  where u = 0 or v = o. 
3. C (A) is the x-axis; N(A) is the line through ( 1, 1 ) ;  C (B)  is R2; N(B) is the line 

through (-2, 1 , 0) ; C(C) is the point (0, 0) in R2; the nullspace'iv (C) is R3. 



�.' Broken rules : (a) 7 , 8 (b) 1 (c) 1 , 2, 8 .  
, 
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7. (b) ,  (d), (e) are subspaces. Can't multiply by - 1  in (a) and (c) . Can't add in (t). 
9. The sum of two nonsingular matrices may be singular (A + (-A)) .  The sum of two 

singular matrices may be nonsingular. 
11. (a) One possibility: The matrices cA form a subspace not containing B. 

(b) Yes: the subspace must contain A - B = I .  
( c) The subspace of matrices whose main diagonal is all zero. 

13. If (f + g) (x) is the usual f (g(x)) , then (g + f)x is g(l(x)) ,  which is different. In 
rule 2 both sides are 1 (g (h (x) ) ) . Rule 4 is broken because there might be no inverse 
function 1-1 (x) such that f (1-1 (x)) = x .  If the inverse function exists, it will be 
the vector -f. 

15. The sum of (4, 0, 0) and (0, 4, 0) is not on the plane; it has x + y - 2z = 8 .  
17. - (a) The subspaces of R2 are R2 itself, lines through (0, 0) , and the point (0, 0) . 

(b) The subspaces of R4 are R4 itself, three-dimensional planes n . v = 0, two
dimensional subspaces (n 1 . V = ° and n2 . v = 0), one-dimensional lines through 
(0, 0, 0, 0), and (0, 0, 0, 0) alone. 

19. The smallest�ubspace containing P and L is either P or R3 . 
..., 

21. The column space of A is the x-axis= all vectors (x , 0, 0) . The column space of B 
is the x - y plane = all vectors (x , y , 0) . The column space of C is the line of vectors 

( (x , 2x , 0) . 
23. A combination of the columns of C is also a combination of the columns of A (same 

column space; B has a different c0lumn space) . 
25. The extra column b enlarges the column space, unless b is alre,ady in that space: 

[A b] = [1 ° 1] __ (larger column space) 
° ° 1 (no solution to Ax = b). 

(b already in column space) 
(Ax = b has a solution) . 

27. Column space = R8. Every b is a combination of the columns, since Ax = b is 
solvable. 

1 1 ° 
29. A = 1 ° ° or 

0 1 0  

1 1 2 1 2 0 
1 ° 1 ; A = 2 4 ° (columns on 1 1ine) . 
0 1 1 3 6 0 

31. R2 contains vectors with two components-they don't belong to R3. 

Problem Set 2.2, page 85 

1. x + y + z = 1 , x + y + z = 0. Changing 1 to O, (x , y, z) = c(-l, 1 , 0) + d(-I, 0, 1 ) .  

3. Echelon form U = [� � � �l free variables Xl, X3, X4; special solutions 
( 1 , 0, 0, 0) ,  (0, 0, 1 , 0) , and (0, -3, 0, 1 ) .  Consistent when b2 = 2bI • Complete 
solution (0, bI , 0, 0) plus any combination of special solutions. 
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5. 
u 
V 
W 

-2v -3 
V 
2 

-2 
== V 1 + 

o 

-3  
o ; no solution! 
2 

7. c == 7 allows u = 1, v == 1, w == O. The column space is a plane. 
2 

9. (a) x == X2 

-2 
1 

o +X4 

1 2 0 -2 
o 

-2 , for any X2, X4· Row-reduced R == 0 0 1 2 . 

1 0 0 0 0 o 

(b) Complete solution x = 

a - 3b 
o 
b 
o 

-2 2 
1 0 

o + X4 -2' for any X2, X4· 
o 1 

11. has nullspace == line through (-1, 1) but no solution. Any [11 1
1] [

X
X21] [0

1] 

b = [�] has many particular solutions to Ax p = b .  

1 1 1 1 1 0 1 0 

13. R == 0 0 0 0 . R-, - 0 
0 

1 0 
0 0 

1 
0 

. R-' -
0 0 0 0 0 0 0 0 

15. A nullspace matrix N = [-�] is n by n - r .  

17. I think this is true. 

19. The special solutions are the columns of N = 

1 
0 
0 

-2 
-4 
1 

0 

-1 1 -1 (a) r == 1. 
0 0 0 . (b) r == 

2 . 
0 0 0 (c) r = 1. 

-3 1 0 -5 and N =  0 -2 
0 . 

0 1 1 
21. The r pivot columns of A form an m by r submatrix of rank r ,  so that matrix A * 

has r independent pivot rows, giving an r by r invertible submatrix of A. (The pivot 
rows of A * and A are the same, since elimination is done in the same order-we 
just don't  see for A * the "free" columns of zeros that appear for A. )  

23. (uVT) (WZT) = u(VTW)ZT has rank 1 unless vTw = O. 
25. We are given AB = I which has rank n .  Then rank(AB) < rank(A) forces 

rank(A) = n .  
27. If R == EA and the same R = E* B ,  then B == (E*)-1 EA. (To get B, reduce A to R 

and then invert steps back to B .) B is an invertible matrix times A,  when they share 
the same R. 

29. Since R starts with r independent rows, RT starts with r independent columns (and 

then zeros) . So its reduced echelon form is [� �] where I is r by r . 
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31. If c = 1, R = 

If c =1= 1, R = 

1 
0 
0 

1 
0 
0 

1 2 
0 0 
0 0 

0 2 
1 0 

0 0 

Special solutions in N = 

2 
0 
0 

2 
0 
0 

-1 
1 

0 
0 

has X2, X3, X4 free. 

has X3, X4 free. 

-2 -2 -2 -2 
0 0 

(c = 1) and N = 
0 0 

(c =I 1). 1 0 1 0 
0 1 0 1 

If c = 1, R = [� �] has Xl free; if c = 2, R = [� -2] o has X2 free; R == I if 
c =1= 1, 2. 
speC�al.'Solutions in N = [�] (c = 1) or N = [21]

. 
(c == 2) or N = 2 by 0 empty 

matrlX. 
-2 -3 1/2 -3 0 

0 1 0 33. Xoomplete = 0 +X2 1 ; ,Xcomplete = 1/2 +X2 0 +X4 -2 . 1 0 0 0 1 

35. (a) Solvable if b2 = 2b1 and 3b1 - ,3b3 + b4 = O. Then X = [5�1 � 2�3] 
(no free variables). (b) Solvable if b2 == 2b1 and 3b1 - 3b3 + b4 == O. 

I 5b1 - 2b3 -1 
Then x = b3 - 2b1 + X3 -1 . 

o 1 
37. A 1 by 3 system has at least two free variables. 
39 . (a) The particular solution xp is always multiplied by 1 . (b) Any solution can 

be xp. (c) [; ;] [�] = [nThen U] is shorter (length�) than [�l (d) The 
"homogeneous" solution in the nullspace is Xn == 0 when A is invertible. 

4 1. Multiply xp by 2, same Xn; [�] p 
is [xO'l special solutions also include the columns 

[-I] 
, 

of I � x p and the special solutions are not changed. 

43. For A, q == 3 gives rank 1, every other q gives rank 2. For B ,  q == 6 gives rank 1 ,  
every other q gives rank 2. 

45. (a) r < m, always r < no (b) r=m, r < n .  (c) r < m, r = =n . (d) r =m = n . 
1 0 0  0 

47. R == 0 0 1 0 and Xn == 

0 0 0  0 
row 3. 

o 
1 . , 

o 

1 0 0 - 1  
o 0 1 2: no solution because of 
o 0 0 5 
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1 1 
49. A = 0 2 ;  B can't exist since two equations in three unknowns can't have one 

o 3 
solution. 

51 . A has rank 4 - 1 = 3; the complete solution to Ax == 0 is x == (2,3, 1 ,0) . 

1 0 -2 0 
R == 0 1 -3 0 with -2, -3 in the free column. 

o 0 0 1 

53. (a) False. (b) True. (c) True (only n columns) . (d) True (only m rows) . 

55. U = 

o 1 1 1 1 1 1  
o 0 0 1 1 1 1 and R == o 000 1 1 1 
o 0 0 0 0 0 0 

0 1 100 1 1  
o 0 0 1 0 1 1 (R doesn' t  come 
o 0 0 0 1 1 1 from this U). 
o 0 0 00 0 0 

57. If column 1 == column 5, then Xs is a free variable. Its special solution is 
(-1 ,0,0,0, 1 ) . 

59. Column 5 is sure to have no pivot since it is a combination of earlier columns, and X5 
is free. With four pivots in the other columns, the special solution is , ( 1 ,  0, 1, 0, 1). 
The nullspace contains all mUltiples of ( 1 ,  0, 1 ,  0, 1)  (a line in R5 ) .  

1 0 0 -4 
6 1. A == 0 1 0 -3 . 

o 0 1 -2 
63. This construction is impossible: two pivot columns, two free variables, only three 

columns. 

65. A = [� �J 
67 . R is most likely to be I; R is most likely to be I with fourth row of zeros . 

69 . Any zero rows come after these rows: R == [1  -2 -3], R = [� � �l 
R == I. 

Problem Set 2a3, page 98 
1 1 1  

1. 0 1 1 
0 0 1 

(dependent) . 

CI 
C2 == ° gives C3 == C2 == Cl = O. But VI + V2 - 4V3 + V4 = ° 
C3 

3. If a == 0 then column 1 == 0; if d == ° then b (column 1 )  - a (column 2) == 0; if 
f == ° then all columns end in zero (all are perpendicular to (0, 0, 1 ) ,  all in the xy 
plane, must be dependent) . 



5. (a) 
1 2 3  
3 1 2 --* 
2 3 1 

1 2 
--* 0 -5 

1 2 
o -5 
o -1 

3 
-7 

0 0 - 18/5 

1 2 -3 1 

3 
-7 
-5 
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invertible:=:} independent columns 
(could have used rows) . 

o 
(b) -3 1 2 --* 0 

2 -3 1 
7 -7 ' A 1 , o , columns add to 0 

(could use rows) . 2 -3 1 0 0 0 1 o 
'" 7. T�y sum VI - V2 + V3 = 0 because (W2 - W3) - (WI - W3) + (WI - W2) = o. 

9. (a) The four vectors are the columns of a 3 by 4 matrix A with at least one free 
variable, so Ax = O. (b) Dependent i� [VI V2 ] has rank 0 or 1 .  
(c) OVI + c (O, 0, 0) = 0 has a nonzero solution (take any c =f. 0) . 

11. (a) Line in R3. (b) Plane in R3. (c) Plane in R3. (d) All of R3. 
13. All dimensions are 2. The row spaces of A and U are the same. 

J 

15. V = �(v + w) + �(v�- w) and w == �(v + w) - �(v - w) . The two pairs span the 
same space. They are a basis when v and w are independent. 

17. If elimination produces one or more zero rows, the rows of A are linearly dependent; 

for example in Problem 16  

r 1 o 0 
1 0 1 0 

0 0 1 
0 1 0 

1 --* 

1 

1 
0 
0 
0 
1 
0 
0 
0 

1 
-1 

0 
0 
1 

-1 
0 
0 

0 0 
1 0 
1 1 
1 1 
0 0 
1 0 
1 1 . 
0 0 

19. The n independent vectors span a space of dimension n .  They are a basis for that 
space. If they are the -columns of A then m is not less than n (m > n) .  

21. C(U) : Any bases for R2 ; N(U) : (row 1 and row 2) or (row 1 and row 1 + row 2) . 
"-

23. Independent columns =} rank n .  Columns span Rm =} rank m . Columns are basis 
for Rm :=:} rank = m = n. 

25. (a) The only solution is x = 0 because the columns are independent. (b) Ax = b 
is solvable because the columns span R5. 

27. Columns 1 and 2 are bases for the (different) column spaces of A and U; rows 1 and 
2 are bases for the (equal) row spaces; ( 1 , -1 , 1 )  is a basis for the (equal) nUllspaces. 

29 . rank(A) = 2 if c == 0 and d = 2; rankeR) = 2 except when c = d or c = -d. 
31. Let VI = (1 , 0, 0, 0) , . . .  , V4 = (0, 0, 0, 1 )  be the coordinate vectors. If W is the 

line through ( 1 , 2,3,4) , none of the V's are in W. 
33. (a) If it were not a basis, we could add more independent vectors, which would 

exceed the given dimension k. (b) If it were not a basis, we could delete some 
vectors, leaving less than the given dimension k. 
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35. (a) False, might be no solution. (b) True, 7 vectors in R5 are dependent. 
1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

37 . (a) 0 0 0 , 0 1 0 , 0 0 0 . (b) Add 1 0 0 , 0 0 0 , 
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 

0 0 0 0 1 0 0 0 1 0 0 0 
0 0 1 . (c) -1  0 0 , 0 0 0 , 0 0 1 are a basis for all 
0 1 0 0 0 0 - 1 0 0 0 -1 0 

A == _AT. 
39. Y (0) == 0 requires A + B + C == O. One basis is cos x - cos 2x and cos x - cos 3x . 
4 1. Yl (X) , Y2 (X), Y3 (X) can be x ,  2x , 3x (dim 1 )  or x, 2x , x2 (dim 2) orx , x2 , x3 (dim 3) . 

43. 
1 1 1 1 1 

1 == 1 1 + 1 + 
1 1 1 1 

1 
- 1 

1 

.., 

1 
1 

Check the ( 1 ,  1 )  entry, then (3 , 2) , then (3 , 3) , then ( 1 ,  2) to show that those five P 's 
are independent. Four conditions on the nine entries make all row sums and column 
sums equal: row sum 1 == row sum 2 == row sum 3 == column sum 1 == column sum 
2 (== column sum 3 is automatic because- sum of all rows == sum of all columns) . 

45. If the 5 by 5 matrix [A b] is invertible, b is not a combination of the columns of A. 
, 

If [A b] is singular, and A has independent columns, b is a combination of those 
columns. 

Problem Set 2.lt page 110 
1 .  False, we only know dimensions are equal. Left nUllspace has smaller dim == m - r .  
3. C(A) : r == 2, ( 1 , 0, 1 )  (0, 1 , 0) ; N(A) : n - r == 2, (2, - 1 ,  1 , 0) , (-1 , 0, 0, 1 ) ; 

C(AT) :  r == 2, ( 1 , 2, 0, 1 ) ,  (0, 1 ,  1 , 0) ; N(AT) :  m - r == 1 ,  (-1 , 0, 1 ) ; 
C(U): ( 1 , 0, 0) , (0, 1 , 0) ; N(U) : (2, -1 ,  1 , 0) ,  (- 1 , 0 , 0 , 0) ; 
C(UT) : ( 1 , 2, 0, 1 ) ,  (0, 1 ,  1 , 0) ; N(AT) : (0, 0, 1 ) . 

5. A times every column of B is zero, so C(B) is contained in the nUllspace N(A) . 
7. From Ax == 0, the row space and the nullspace must be orthogonal. See Chapter 3 .  

1 2 4 
9.  [1 2 4] ; 2 4 8 has the same nUllspace. 

3 6 12  

11. If Ax == 0 has a nonzero solution, then r < n and C (A T) is smaller than Rn. So 
AT Y == f is not solvable for some f. Example: A == [1 1 ]  and f == (1 , 2) . 

13. d == be/a ; the only pivot is a .  
'i�5. With independent columns: rank n; null�pace == {OJ; row space is Rn; left inverse. 
17. A == [ 1  1 0] ; B == [0 0 1 ] .  
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19. No-for example, all invertible n by n matrices have the same four subspaces. 

1 ° 
21. (a) 1 ° . (b) Impossible: dimensions 1 + 1 =j:. 3 .  (c) [ 1  1 ] .  

° 1 

[-9 -3] (d) 3 l' (e) Impossible: Row space == column space requires m 

Then m - r == n - r . 

== n. 

23. Invertible A: row space basis == column space basis == (1, 0, 0) , (0 , 1 , 0) ,  (0, 0 , 1 ) ;  
nullspace and left nullspace bases are empty. B :  row space basis (1, 0, 0 ,  1 , 0 ,  0) , 
(0 , "'1, 0; 0, 1 , 0) , and (0, 0 , 1, 0 ,  0, 1 )  ; column space basis ( 1 , 0, 0) , (0 , 1, 0) , (0, 0 , 1 ) ; 
nullspace basis (-1, 0, 0 , 1, 0 , 0) ,  (0, -1 , 0 , 0, 1 , 0) ,  and (0 , 0, -1, 0, 0 , 1 ) ; left 
nUllspace basis is empty. 

// 
.�. 

25. (a) Same row space and nUllspace. Therefore rank (dimension of row space) is 
the same. (b) Same column space and left null space. Same rank (dimension of 
column space) . 

27 . (a) No solution means that r < m. Always r < n. Can't compare m and n. 
(b) If m - r > 0, the nullspace of A 1.: contains a nonzero vector. 

29. Row space basis (1, 2, 3 , 4) ,  (0 , 1, 2; 3), (0 , 0 , 1, 2) ; nullspace basis (0 , 1 ,  -2, 1); 
column space basis (1, 0 , 0) , . (0 , 1 , 0) , (0,0, 1 ) ;  left nullspace has empty basis. 

31. If Av == ° and v is a row of A then v . v == 0. Only v == ° is in both spaces. 

33. Row 3 - 2 (row 2) + row 1 == zero row, so the vectors e(l , -2, 1) are in the left 
nUllspace. The same vectors happen to be in the nullspace. 

35. (a) u and w span C(A) . (b) v and z span C(AT) . (c) rank < 2 if u and ware 
dependent or v and z are dependent. (d) The rank of uvT + wzT is 2. 

37 . (a) True (same rank). (b) False (A == [1 0]) .  (c) False (A can be invertible 
and also unsymmetric). (d) True. 

39 . a11 == 1 ,  a12 == 0, a13 == 1, a22 == 0, a32 == 1 ,  a31 == 0, a23 == 1 ,  a33 == 0, a21 == 1 
(not unique) . 

41. Rank r == n means nullspace == zero vector and Xn == 0. 

Problem Set 2.5n page 122 
1 -1 ° 1 

1. A == ° 1 - 1 ; N(A) contains multiples of 1 ; N(AT) contains multiples 
1 ° - 1  1 

1 
of 1 .  

-1 

3. The entries in each row add to zero. Therefore, any combination will have that 
same property: 11 + 12 + 13 == 0; ATy == 1 =} Yl + Y3 == 11, -Y1 + Y2 == 12, 
-Y2 - Y3 == 13 =} 11 + 12 + 13 == 0. It means that the total current entering from 
outside is zero. 
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5. 

C1C3 + C1C2 + C2C3 
C1 + C3 

] has pivots Cl + C3, 

7. Conditions on b are hI + b4 -b5 == o� h3 -b4 + b6 == 0, b2 -bs + h6 == o. 

3 -1 -1 -1 C1 + C2 + C5 -C1 -C2 -C5 

9. -1 3 - 1  -1 -C1 C1 + C3 + C4 -C3 -C4 
-1 -1 3 -1 , 

C2 + C3 + C6 -C2 -C3 -C6 
-1 -1 -1 3 -Cs -C4 -C6 C4 + C5 + C6 

Those c' s that connect to node j will appear in row j. 
1 0 0 0 -1 1 0 )'1 0 
0 1 0 0 -1 0 1 Y2 0 2 
0 0 1 0 0 1 0 Y3 0 2 

11. 0 0 0 1 0 0 -1 Y4 0 
-1 -1 0 0 0 0 0 Xl 11 

1 0 1 0 0 0 0 X2 12 
0 1 0 - 1  0 0 0 x3 13 

. x-, -

-4 
5 
3 
14 
3 

0 
. )'-, -

7 
3 

4 
3 
10 
3 
14 3 

. 

13. There are 20 choices of 3 edges out of 6 because "6 choose 3" = 
6! 

= 20. Four 
3!3! choices give triangles, leaving 16 spanning trees .  

15. I think it is already built in. 
17 . 9 nodes - 12  edges + 4 loops = 1 ;  7 nodes - 12  edges + 6 loops == 1 .  
19. X = (1 , 1 ,  1 ,  1 )  gives Ax = 0; then AT Ax = 0;  rank is again n - 1 .  

0 1 1 1 

2 1. M = 
1 0 1 1 and 1 1 0 1 
1 1 1 0 

3 2 2 2 (M2)ij = ana1j + . . · + ainanj 

M2= 
2 3 2 2 and we get aikakj == 1 when there 
2 2 3 2 . is a 2-step path i to k to j. 
2 2 2 3 Notice 3 paths from a node to itself. 

Problem Set 2�6, page 133 

1. Rotation [� -� l [� �l 

3. II Ax 112 == 1 always produces an ellipse. 
5. They are transformed to ( 1 , 3) ,  (2 , 6) , (- 1 ,  -3) . The x-axis turns; vertical lin 

shift up/down but stay vertical . 
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Second 
7. derivative 

matrix 

o 0 2 0 
0 0 0  6 
o 0 0 O· The nullspace is spanned by ( 1 ,  0, 0, 0) and 
o 0 0 0  

(0, 1 , 0, 0) , which gives linear Pl. Second derivatives of linear functions are zero. 
The column space is accidentally the same as �e nullspace, because second deriva
tives of cubics are linear. 

9. et and e-t are a basis for the solutions of u"  == U. 
jt [COS e, -sin e] [cos e -sin e] _ [1 0] 2 _ I 11. . h e ' e e - 0 so H - . SIn tJ cos sIn, cos 1 

13. (a) Yes. (b) Yes. We don't need parentheses (AB)C or A(BC) for ABC ! 

and A 2 == I; t1;le double transpose of a matrix gives 
the matrix itself. 

1 0 0 0  
o 0 1 0 

15. A == 0 1 0 0 
0 0 0  1 Note A23 == 1 because transpose of matrix 2 is matrix 3. 

17. A == 

0 0 0  
1 0 0 
0 1 0 ; B== 

0 0 1 

o 1 0 0 
o 0 1 0 ;AB == 
o O� ° I 

0 000 1 o 1 0 O . BA  == 0 o 0 1 0 ' 
o 0 0 1 0 

o 0 
1 O . 
o 1 

19. (a) is invertible with T-1 (y) � yl/3; (c) is invertible with T-1 (y) == Y - 1 1 . 
21. With w == 0, litiearity gives T(v + 0) == T(v) + T (0) . Thus T (O) == O. With e == -1, 

linearity gives T(-O) == -T(O). Certainly T(-O) == T(O). Thus T(O) = O. 
23. S(T(v» == S(v) == v. 
25. (b) and (c) are linear, (a) fails T(2v) == 2T(v) , (d) fails T(v + w) = T(v) + T(w). 
27. T(T(v» == (V3, VI, V2); T3(v) == V; TIOO(v) = T(T99(V» == T(v). 
29. (a) T(I,O) == O. (b) (0,0,1 )  is not in the range. (c) T(O, 1) == O. 
31. Associative law gives A(MI + M2) == AMI + AM2. Distributive law over e's gives 

A (eM) == e(AM) . 
33. No matrix A gives A [� �] = [�. �l To professors: The matrix space has 

dimension 4. Linear transformations on that space must come from 4 by 4 ma
trices (16 parameters) . Those multiplications by A in Problems 3 1  and 32 were 
special transformations with only 4 parameters. 

35. T(I) = O but M =  [� �] = T(M);these fill the range. M =  [� �] in the kemel. 

37. (a) M = [; :l (b)N = [� �rl. (c)ad=hc. 
39. Reorder basis by permutation matrix; change lengths by positive diagonal matrix. 

I a a2 A 4 
41. 1 b b2 B == 5 ;  Vandermonde determinant = (b - a) (e - a) (e - b) ; the 

l e e2 C 6 
points a, b ,  e must be different, and then determinant =f. 0 (interpolation is possible) . 



43. If T is not invertible, then T (VI ) , .. . , T (vn) will not be a basis. Then we couldn't 
choose Wi == T (Vi ) as output basis. 

45. S(T(v)) == (- 1 , 2) but S(v) == (-2, 1) and T(S(v)) == ( 1 ,  -2). So T S -=I ST. 
47. The Hadamard matrix H has orthogonal columns of length 2. So the inverse of H 

is HT /4 == H/4. 
49. False: the n nonzero vectors would have to be independent. 

Probleln Set 3� 1, page 148 
1. II x I I  == -/21; I I  y II == 3-j2; x T y == 0. 
3. (X2/XI) (Y2/YI ) == - 1  means that xIYI + X2Y2 == 0, so xTy == 0. 
5. V I  and V 3  are orthogonal, also V 2  and V3. 

7. x==(-2, 1 , 0);y==(-1 , - 1 ,  1 ) ;the rowz==( 1 , 2 , 1 )  is orthogonal to the nullspace. 
9. The orthogonal complement is the line through (-1 ,  -1 , 1 )  and (0, 0, 0). 

11. If AT y == 0, then y Tb == y T Ax == (y T A)x == 0, which contradicts yTb =j:. 0. 
13. The figure splits any y in RIn into column space part + left nullspace part. 
15. No such matrix, because ( 1 ,  2, l) T ( 1 ,  -2, 1 )  i= 0. 
17. The matrix with the basis for V as its rows. Then the nullspace is V..L == W. 
19. (a) If V and W are lines in R3, V..L and W..L are intersecting planes. (b) V. 

21. ( 1 , 2, -1) is perpendicular toP. A= [� � ;] has N(A) =P;B = [l 2 - 1 ] 
has row space == P. 

23. A = [ ; ; ] has subspaces = four lines; ( 1 ,  1 )  orthogonal to (-1 ,  1 ) ,  ( 1 ,  2) 
orthogonal to (-2, 1 ) . Always row space .1 nUllspace. 

25. (a) 
1 2 -3 
2 -3 1 .  (b) 

-3 5 -2 
1 

2 
-3 is  not orthogonal to 

5 

1 
1 .  (c) 
1 

and 0 in N (A T) is impossible: not perpendicular. (d) A 
o 

1 
1 in C (A) 
1 

[ 1 -1] has 1 -1 

A 2 == O .  ( e) ( 1 ,  1 ,  1 )  will be in the nUllspace and row space; no such matrix. 
27. (a) If Ax == b has a solution and ATy == 0, then b Ty == (AX) Ty == 0. 

(b) b is not in the column space; so, not perpendicular to all y in the left nUllspace. 
29. x == Xr + xn, where Xr is in the row space and Xn is in the nUllspace. Then AXn == ° 

and Ax == AXr + AXn == Axr. All vectors Ax are combinations of the columns 
of A. If x == ( 1 , 0) , then Xr == ( 1 /2, 1 /2) . 

31. (a) �or a symmetric matrix, the column space and row space are the same. 
(b) x is in the nullspace and z is in the column space == row space: so these 
"eigenvectors" have x T Z == O. 

33. x splits into Xr + Xn == ( 1 , - 1) + ( 1 ,  1 )  == (2, 0) . 



35. Ax = Bx means that [ A  B ]  [ _�] = O. Three homogeneous equations in four 
unknowns always have a nonzero solution. Here x == (3 , 1 )  and x == ( 1 , 0) , and 
Ax == Bx == (5 , 6, 5) is in both column spaces. Two planes in R3 (through zero) 
must intersect in a line at least! 

37. ATy == 0 gives (Ax)Ty == x TATy == O. Then y 1- Ax and N(AT) 1- C(A) . 

39. S-L:s the nullspace of A = 
[; ; ; J Therefore S-L is a subspace even if S is not. 

41. If VIs' all of R4, then V..L contains only the zero vector. Then (V..L)..L == R4 
== V. 

43. ( 1 ,  1 ,  1 ,  1 )  is a basis for p..L . A == [ 1  1 1 1 ]  has the plane P as its nUllspace. 
45. Column 1 of A -1 is orthogonal to the space spanned by the 2nd, . . .  , nth rows of A . 

2 2 -1 
47. A == - 1  2 2 ,  

2 - 1  2 
AT A == 91 is diagonal: (A T A)ij == (column i of A) . (column j). 

49. (a) ( 1 ,  - 1 , 0) is in both planes. Normal vectors are perpendicular, planes still 
intersect! (b ) Need three orthogonal'yectors to span the whole orthogonal com
plement in R5. (c) Lines can meet without being orthogonal. 

51 . When AB == 0, the column s�ace of B is contained in the nullspace of A .  Therefore 
the dimension of C(B) < dimension of N(A) . This means rank(B) < 4 - rank(A) . 

Probleln Set 3.2, page 151 . 
1. (a) (x + y)/2 > FY (arithmetic mean > geometric mean of x and y) .  

(b) I l x +y l 1 2 < ( 1 I x l l+l l y I 1 ) 2 meansthat (x +y)T (x + y) < I Ix I 1 2 +2 1 I x l l l l y l l +l l y I 1 2 . 
The left-hand side is x T X + 2x T Y + y T y .  After cancelling this is x T Y < I l x I I I I  y I I . 

3. p == ( 1 0/3 ,  10/3 , 10/3) ; (5/9 , 10/9, 10/9) . , 
1 

5. cos e=1 /,J"nso e == arccos ( 1 /-fo) ; P ==  . [ l/n 
1 

. 1 lin] == all entrIes -. n 

7. Choose b == ( 1 ,  . . .  , 1 ) ;  equality if a1 == . . .  == an (then a is parallel to b). 
aaTaaT a(aTa)aT aaT 

9. p2 == == == == P 
aTaaTa (aTa) (aTa) aTa . 

[ 110 to ] [ io - to] [1 0] 11 . (a) P == l 2.; P2 == 1 - PI == _2.. l '  (b) P1 + P2 == 0 1 ; 
10 10 10 10 

PI P2 = [� �]. The sum of the projections onto two perpendicular lines gives the 
vector itself. The projection onto one line and then a perpendicular line gives the 
zero vector. 

a1a1 anan a Ta 13. Trace == + . . . + == == 1 .  
aTa aTa aTa 
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15. IIAxll2 == (AX)T(Ax) == xATAx, IIATxll 2 == (ATX)T(ATX) == xAATX. If ATA == 
AA T, then II Ax II == 1\ AT X II. (These matrices are called normal.) 

17. (a) aTb/aTa == 5/3 ;  p == (5/3, 5/3, 5 /3) ; e == (-2/3, 1/3 , 1 /3) has eTa == 0. 
(b) a Tb/aT a == - 1 ; p == ( 1 , 3 , 1 )  == b and e == (0, 0, 0) . 

1 1 1 1  
2 1 5 1 1 3 1  

19. PI == - 1 1 1 == PI and P1b == 3 5 . P2 == - 3 9 3 and 3 1 1 1 5 1 1  1 3 1 
1 

P2b == 3 
1 

1 1 -2 -2 1 4 4 -2 
21. PI == - -2 4 4 ,P2 == 9 4 4 -2 . 9 -2 4 4 -2 -2 1 

23. PI + P2 + P3 

1 1 -2 -2 1 4 4 -2 1 4 -2 4 
- - -2 4 4 +- 4 4 -2 +- -2 1 -2 - 9 -2 4 4 9 -2 -2 1 9 4 -2 4 

== I. 

25. Since A is invertible, P == A(AT A)-l AT == AA-1(AT)-1 AT == I: project onto all 
ofR2 . 

Problem Set 3.3, page 170 
1. x == 2;  E2 == ( 10  - 3x)2 + (5 - 4x)2 is minimized; (4, -3)T(3 ,  4) == 0. 

1 

• 
-

l ' - 3 '  -

2 
3 

� is perpendicular to both columns. 3 x 
- [�l' p - 1. b - p -

3 2 2 
3 3 

5. b == 4, 5 , 9 at t == - 1 , 0, 1 ;  the best line is 6 + (5/2) t ;  p == (7/2, 6, 17/2) . 
1 1 /2 ° 

7. P==A(ATA)-IAT== 1 /2 1 /2 - 1 /2 . 
° - 1/2 1 

9 .  (a) pT == (pT p)T == P. Then P == pT P == p2. (b) P projects onto the space 
Z == {OJ. 

11. P + Q == I ,  P Q  == 0, transpose to QP == 0, so (P - Q)(P - Q) == P - ° - ° + 
Q = I. 

13. Best line 6 1 /35 - (36/35) t ;  p == ( 1 33/35 , 95/35 , 6 1 /35 , - 1 1 /35) from C + Dt . 
15 . H2 == (I - 2P)2 == I - 4P + 4p2 == I - 4P + 4P == I. Two reflections give I. 

17. Projection onto x + y = 0 = Projection onto (- 1 ,  1 )  = [�i:2 � ��2l 
19 . Projection matrix onto row space would be AT (AAT)-l A if the rows were indepen

dent. 
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1 
o 

m 

. x == 1 ' 
2 4 

C 
D;b== 
E 

2 
o 

-3 . 
-5 

27. (a) aT a == m, aT b == bi + . . . + bm. Therefore x is the mean of the b 's .  (b) The 
variance is lIell2 == �;t I (bi _X)2. (c) p == (3 , 3 , 3 ) ,  e == (-2, - 1 , 3), pTe == O. 

1 1 1  1 
P == - 1 1 1 .  3 1 1 1 

29. (x - x)(x - X)T == (AT A)-I AT[(b - Ax)(b - Ax)T]A(AT A)-I. For indepen
dent errors, substituting (b - Ax) (b .-' Ax) T == (J2 I gives the covariance ma� 
trix (AT A)-l AT (J2 A(AT A)-I. This simplifies to (J2(AT A)-I: neat formula for the 
covariance matrix. 
1 9 __ 1 

31. 10 blO + 
10

x9 == 10 (bl + . . . + blo), 

1 0 0 
33. � ; [�] = 

8 C ' 0 h °d 8 . 'hange fIg t SI e to p == 
1 4 20· 

1 0 0 C 0 
1 1 1 8 

35. Closest parabola: D 1 3 9 8 . 
E 1 4 16  20 

--
4 8 26 C 36 

AT Ax == --8 26 92 D 1 1 2 . 
26 92 338 -- 400 E 

1 

1; ; x = [!] solves Ax = p. 

17  

-- --
37. (a) The best line is x == 1 + 4t , which goes through the center point (t, b) == (2, 9) . -- --

(b) From the first equation: em + D � ti == � bi• Divide by m to get C + Dt == b. 

39 
-- _ wib i + . . .  + w�bm 

• xw - 2 WI + . . .  + w� 
41. Xw == ( 1 /2 1 , 4/7) ; Axw == (1/21 ,  13/2 1 , 25/21 ) , 

b - Axw == (-1 /21 , 8/21, -4/21) ,  (Axw)WTW(b - Axw) == O.  

Problem Set 3.4, page 1 85 
1. (a) -4 == C - 2D, -3  == C - D, -1 == C + D, 0 == C + 2D . (b) Best line 

-2 + t goes through all 4 points ; E2 == O. (c) b is in the column space. 
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3. Projection on a3 : (-2/3 , 1 /3 ,  -2/3) ; the sum is b itself; notice that a 1 aT ' a2aI , a3aJ 
are projections onto three orthogonal directions . Their sum is projection onto the 
whole space and should be the identity. 

\\ 

1 1 
2 2 
I I 
2 2 
1 1 
2 2 

1 1 
2 2 
1 1 
2 2 
1 1 ' 
2 2 

1 1 1 1 
2 2 2  2 \ \ \ 

7. \(XI ql + . . .  + xnqn )T (Xlql + . . .  + xnqn) == xf + . . . + x; =} I I b l l 2 == bTb == 
xr + . . . + x,; ,  

9. The combination closest to q3 is Oql + Oq2 . 
11. Q is upper triangular: column 1 has ql 1 == ± 1 ;  by orthogonality column 2 must be 

(0, ± 1 ,  0, . . . ) ;  by orthogonality column 3 is (0, 0 ,  ± 1 ,  . . .  ) ;  and so on. 
, "0 0 1 0 0 1 1 1 1 

13. A == 0 1 1 0 1 0 0 1 1 == Q R . 
1 1 1  1 0 0 0 0 1 

1 /3 
15. ql == 2/3 , q2 == 

-2/3 
...--..... [q!b] [1 ] 
x == qib = 2 . 

2/3 
1 /3 , q3 == 
2/3 

-2/3 
2/3 is in the left nullspace; 
1 /3 

17. Rx = QTb gives [� �] [x ] = [563] and x = [569] -
19. C* - (qic*) q2 is c - (q!c) ql - (qic) q2 because qiql == O. 
8- By orthogonality, the closest functions are 0 sin 2x = 0 and 0 + Ox == O. 

j 
23. ao == 1 /2, al == 0, bi == 2/n . 
25. The closest line is y == 1 /3 (horizontal since (x , x2) == 0) . 
27. ( 1 /-J2, - 1 /-J2, 0,  0) , ( 1 /-0), 1 /-0), 2/-0), 0) ,  

(- 1 /2v'3, - 1 /2v'3, 1 /2v'3, - 1 /v'3) .  
29. A == a == ( 1 ,  - 1 ,  0, 0) ; B == b -p == ( �, �, - 1 ,  0) ; C == c -P A -P B == ( � ,  � , � , - 1 ) 

Notice the pattern in those orthogonal vectors A ,  B ,  C .  Next, ( 1 ,  1 ,  1 ,  1 )  /4. 
31. (a) True. (b) True. Qx == Xlql + x2q2 . I I Qx I I 2 = xr + xi because qTq2 == 0. 

Problem Set 305, page 196 
4 0 0 0 1 6  0 0 0 

1. F2 == 0 0 0 4 
F4 == 0 1 6  0 0 == 42 [ .  0 0 4 0 , 0 0 1 6  0 

0 4 0 0 0 0 0 1 6  
3. The submatrix is F3• 
5. eix == - 1  for x == (2k + l )n , eiO == i for e == 2kn + n /2, k is integer. 
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7. C == ( 1 , 0, 1 , 0) . 
9. (a) y == F times ( 1 , 0, 0, 0) == column zero of F == ( 1 , 1 ,  1 ,  1 ) . 

(b) C == ( 1 ,  1 ,  1 ,  1) /4. 

1 1 2 2 
11. 

0 Ceven == 1 y' == 0 0 
c ==  1 -+ 0 -+ II 0 -+ Y == . Codd == Y == 2 'r 0 0 0 0 

.... ' 

13. Co == (fa + fl + f2 + f3) /4, Cl == (fa - if 1 - f2 + if3) /4, C2 == (fa - fl + f2 - 13)/4 , 

C3 == (fa + if 1 - f2 - if3) /4; f odd,means fa == 0, f2 == 0, f3 == - fl , Then Co == 0, 
I 

C2 == 0, C3 == -CI , so C is also odd.! 
1 1 1 1 1 

1 ' 2 1 1 1 1 1 1 H 15. F-1 
== 

l 
- - == - F  . 1 2 1 1 1 - 1  

1 

1 
17. D == e2TCi/6 

1 
2 

- 2 . l - l  

1 1 1 
and F3 == 1 e2TCi /3 e4TCi/3 . 

1 e4TCi /3 e2TCi /3 

0 1 0  

. l 

19. A == diag ( l ,  i , i 2 , i 3 ) ;,  p == 0 O l and pT lead to A3 - 1 == O. 
1 0 0 

4 

21. Eigenvalues eo == 2 - 1 - 1  == 0, e l  == 2 - i  - i 3 == 2, e2 == 2 - (- 1 )  - (- 1) == 4, 
e3 == 2 - i3 - i9 == 2. Check trace 0 + 2 + 4 + 2 == 8 .  

23. The four components are (co + C2) + (CI + C3) ;  then (co - C2) + i (CI - C3) ;  then 
(co + C2) - (CI + C3) ;  then (co - C2) - i (CI - C3) '  These steps are the FFT! 

Problem Set 4�2u page 206 
1. det (2A) == 8 and det (-A) == (- 1 ) 4 det A == 1 and det (A2) == � and det (A - 1 )  == 2. 
3. ' The row operations leave det A unchanged by Rule 5 .  Then multiplying a row 

by - 1 (Rule 3) gives the row exchange rule: det B == -det A. 
5. For the first matrix, two row exchanges will produce the identity matrix. The second 

matrix needs three row exchanges to reach I. 
7. det A == o (singular) ; det U == 1 6; det UT == 16; det U-1 == 1 / 16 ; det M == 1 6 

(2 exchanges) . 
9. The new determinant is (1 - mf) (ad - bc) . 

11. If I det QI is not 1 then det Qn == (det Q)n would blow up or approach zero. But Qn 
remains an orthogonal matrix. So det Q must be 1 or - 1 .  

13. (a) Rule 3 (factoring - 1  from each row) gives det (KT) == (- 1 )3 det K .  Then 
-det K == det KT == det K gives det K - O. 
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(b) 
o 0 0 1 
o 0 1 0 
o - 1  0 0 

- 1  0 0 0 

has det == 1 .  

15. Adding every column of A to the first column makes it a zero column, so det A == O. 
If every row of A adds to 1 ,  then every row of A - I adds to 0 and det (A - I) == o. 

But det A need not be 1 :  A = [! !l has det (A - J) == 0, but det A == 0 1= 1 .  

17. det (A) == 10, det (A -1 ) == /0 ' det (A - A J) == A 2 - 7 A + 10 == 0 for A == 5 and 
A == 2. 

19. Taking determinants gives (det C) (det D) == (- I)n (det D) (det C) . For n even the 
reasoning fails (because (- I)n == + 1 ) and the conclusion is wrong. 

d -b 
ad - bc 1 

21. det (A-1 ) == det ad - bc ad - bc 
-c a (ad - bc)2 ad - bc '  

ad - bc ad - bc 
23. Determinant == 36 and determinant == 5 .  
25. det (L) == 1 ,  det (U) == -6, det (A) == -6, det (U-1 L-1 )  == - � , and 

det (U- 1 L - 1 A) == 1 .  
27. Row 3 - row 2 == row 2 - row 1 so A is singular. 
29. A is rectangular so det (AT A) =j:. (det AT) (det A) : these are not defined. 
31. The Hilbert determinants are 1 , 8 x 10-2 , 4. 6  X 10-4 , 1 .6 X 10-7 , 3 .7 X 10- 12 , 

5 .4 X 10- 18 , 4 .8 X 10-25 , 2.7 X 10-33 ,  9.7 X 10-43 , 2. 2  X 10-53 . Pivots are ratios 
of determinants , so the tenth pivot is near 10-53 / 10-43 == 10-1° : very small . 

33. The largest determinants of 0-1 matrices for n == 1 ,  2, . . .  , are 1 ,  1 ,  2, 3 ,  5 ,  9 , 32, 
56, 144, 320, on the web at www.mathworld.wolfram.comIHadamardsMaximum 
DeterminantProblem.html and also in the "On-Line Encyclopedia of Integer 
Sequences" :  www. research.att. com. With - I s and Is , the largest 4 by 4 determinant 
(see Hadamard in index) is 1 6. 

35. det (J + M) == 1 + a + b + c + d. Subtract row 4 from rows 1 , 2, and 3 . Then 
subtract a (row 1 )  + b(row 2) + c (row 3) from row 4. This leaves a triangular matrix 
with 1 ,  1 , 1 ,  and 1 + a + b + c + d on its diagonal . 

Problem Set 4.3, page 215 

1. (a) a12a21a34a43 == 1 ;  even, so det A == 1 .  
(b) b13b22b3 1 b 14 == 1 8 ;  odd, so det B == -1 8. 

3. (a) True (product rule) . (b) False (all Is) .  
( c ) Fal se (de t [ 1  1 0; 0 1 1 ;  1 0 1 ]  == 2) . 

5. The 1 , 1  cofactor is Fn-1 . The 1 , 2 cofactor has a 1 in column 1 ,  with cofactor �'l-2 ' 
Multiply by (_ 1) 1+2 and also - 1  to find Fn == Fn-1 + Fn-2 • So the determinants 
are Fibonacci numbers , except Fn is the usual Fn-1 • 
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7. Cofactor expansion: det == 4(3) - 4( 1 )  + 4 (-4) - 4(1 )  == - 12 .  
9.  (a) (b) 1 + - + · · · + n L  

( 1 ' 1 ) 
2 !  (n - I) ! (n - l )n ! (each term n - 1) . 

1 3 ( c) 3 (n + 2n - 3) . 

11. [_� � ] [� �] = [A: � J det [� �] = 1 � det [_� 1 ] = 

de! [� . �] = det (AB) .  Test A = [ 1  2] , B = [;} det [_� �] = 5 = 

det (AB) ; A = [n B = [ 1  2] , det [_� �] = 0 = det (AB) . Singular: 
rank(AB) < rank(A) < n < m . 

13. det A == 1 + 1 8  + 12 -, 9 - 4 - 6 == 12, so rows are independent; det B == 0, so rows 
are dependent (row 1 + row 2 == row 3) ; det C == - 1 ,  C has independent rows. 

15. Each of the six terms in det A is zero; the rank is at most 2 ;  column 2 has no pivot. 
17. al1a23a32a44 has - ,  a14a23a32a41 has +, so det A == 0; 

det B == 2 . 4 . 4 . 2 - 1 . 4 . 4 . 1 == 48 . 
19. (a) If al l == a22 == a33 == 0 then four terms are sure zeros . 

(b) Fifteen terms �re zero. 
21. Some term alaa2(3 . . . anw in the big formula is not zero ! Move rows 1 ,  2, . . .  , n into 

rows a ,  f3 ,  . . .  , ()) . Then these nonzero a 's will be on the main diagonal. 
23. 4 ! j2 == 12  even permutations ; det (I + Peven) == 1 6  or 4 or 0 ( 1 6  comes from 1 + I). 

3 2 1 4 0 0 
25. C == 2 4 2 and ACT == 0 4 0 , 

1 2 3 0 0 4 
27. I Bn l  == I An l - I An-I I == (n + 1)  - n == 1 .  
29. We must choose I s  from columns 2 and 1 ,  columns 4 and 3 ,  and so on. Therefore n 

must be even to have det An =J:. O. The number of exchanges is � n so en == (- 1  )n/2 . 

31. Sl == 3 ,  S2 == 8, S3 , == 2 1 .  The rule looks like every second number in Fibonacci' s  
sequence . . . , 3 ,  5, 8, 1 3 , 2 1 ,  34, 55 , . . .  so the guess is  S4 == 55 . The five nonzero 
terms in the big formula for S4 are (with 3s  where Problem 39 has 2s) 8 1  + 1 - 9 -
9 - 9 == �5. 

33. Changing 3 to 2 in the comer reduces the determinant F2n+2 by 1 times the cofactor 
of that comer entry. This cofactor is the determinant of Sn- l (one size smaller) , 
which is F2n . Therefore changing 3 to 2 changes the determinant to F2n+2 - F2n , 

which is F2n+ 1. 

35. (a) Every det L == 1 ;  det Uk == det Ak == 2,  6, -6 for k == 1 ,  2 ,  3 .  
(b) Pivots 5, � ,  � .  

37. The six terms are correct. Row 1 - 2 row 2 + row 3 == 0, so the matrix is singular. 
39. The five nonzero terms in det A == 5 are 

(2) (2) (2) (2) + (-1 ) (- 1) (- 1) (- 1 )  - (- 1 ) (- 1 ) (2) (2) - (2) (2) (- 1 ) (- 1) 
- (2) (- 1 )  (- 1 ) (2) . 
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41. With a1 1  == 1 ,  the - 1 , 2, - 1  matrix has det ·==  1 and inverse (A-1)ij == n + 1 -
max(i , j) . 

43. Subtracting 1 from the n ,  n entry subtracts its cofactor Cnn from the determinant. 
That cofactor is Cnn == 1 (smaller Pascal matrix) .  Subtracting 1 from 1 leaves O. 

Problem Set 4.4v page 5 

20 - 10 
1. det A == 20; CT == 0 5 

0 0 

- 12 
0 
4 

1 . ACT == 20I ' A-1 == -' ' 20 
20 
0 
0 

3. (x , y) == (d/ (ad - be) , - e/ (ad - be) ) ; (x , y ,  z) == (3 , - 1 , -2) . 

- 10  - 1 2  
5 0 
0 4 

5. (a) The area of that parallelogram is det [-7 ;] . so the triangle ABC has area 
� 4 == 2. (b) The triangle A' B' C' has the same area; it is just moved to the origin. 

7. The pivots of A are 2 , 3 , 6 from determinants 2, 6, 36; the pivots of B are 2, 3 ,  O. 
9. (a) p2 takes ( 1 , 2, 3 , 4, 5) to (3 , 2, 5 , 4 ,  1 ) .  

(b) p-1 takes (1 , 2 , 3 , 4, 5) to (3 , 4, 5 , 2, 1 ) . 
11.  The powers of P are all permutation matrices, so eventually one of those matrices 

must be repeated. If pr is the same as P s , then pr-s == I. 
13. (a) det A == 3 ,  det B1 == -6, det B2 == 3, so Xl == -6/3 == -2 and X2 == 3/3 == 1 .  

(b) I A I  == 4, I B1 1 == 3 ,  I B2 1 == -2, I B3 1 == 1 .  SO X1 == � and x2 == -�  and x3 = � .  
15. (a) Xl == � and X2 == 02 : no solution (b) Xl == g and X2 == � :  undetermined. 

17. If the first column in A is also the right-hand side b then det A == det B1 . Both B2 
and B3 are singular, since a column is repeated. Therefore Xl == I B1 1 / I A I  == 1 and 
X2 == X3 == O. 

19. If all cofactors == 0 (even in a single row or column), then det A == 0 (no inverse) . 
A = U �] has no zero cofactors but it is not invertible. 

21. If det A == 1 and we know the cofactors, then CT == A -1 and also det A -1 == 1 .  
Since A is the inverse of A -1 , A must be the cofactor matrix for C .  

1 
23. Knowing C, Problem 22 gives det A == (det C) 11- 1  with n == 4 . So we can construct 

A- I == CT / det A using the known cofactors. Invert to find A. 
25. (a) Cofactors C21 == C31 == C32 == o. 

(b) C12 == C21 , C31 == C13 , C32 == C23 make S-l symmetric. 
3 2 27. ( a) Area 1 4 == 10. (b) Triangle area == 5 . ( c ) Triangle area == 5 . 

2 1 1 
29. ( a) Area � 3 4 1 == 5 � 

o 5 1 
2 1 1 (b) 5 + new triangle area � 0 5 1 == 5 + 7 == 12. 

-1 0 1 
31. The edges of the hypercube have length .J1 + 1 + 1 + 1 == 2. The volume det H 

is 24 == 16. (H /2 has orthonormal columns. Then det(H /2) == 1 leads again to 
det H == 16. )  



33. 

Y2 -r - - - - -
I 

A I 
I 
I B  

Y1 -*- --I d I C D - - - - - - 1 - - - - - - i 
X2 Xl 
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X1 Y2 -X2Y1 ==rectangles A + B + D  (not C). 
Areas from rectangle A == 2( triangle a) 
same bases rectangle B == 2(triangle b) 
same heights rectangle D == 2(triangle d) .  

1 So triangles a + b + d == 2 (X1 Y2 - X2Y1 ) .  ,- , 
Check an example with (a , b) == (3 , 2) , (e , d) == ( 1 ,  4) , and area == 10 .  The line 
from (0, e) in step 3 has slope e / a and equation Y == e + ex / a .  Step 3 works because 
(b , d) is on that line ! d == e + eb / a is true, since ad - be == area ae at step 2 . . 

35. The n-dimensional cube has 2n corners, n2n-1 edges, and 2n faces of dimension 
n - 1 .  The cube whose edges are the rows of 21 has volume 2n . �--

31. J == r .  The columns are orthogonal and their lengths are 1 and r . 

39 
Br/Bx Br/By cos e sin e I . • Be/Bx Be /By (-sin e )/r (cos e ) /r r 

41. S == (2, 1 ,  - 1) gives a parallelogram, whose area is the length of a cross product: 
I I  P Q x P S I I  == I I  (-2, -2, - 1) I I  == 3 .  This comes also from a determinant ! The 
other four comers could be (0, 0, 0) , (0, 0, 2) , ( 1 , 2, 2) , ( 1 , 1 , 0) . The v<\llume of the 
tilted box is I det l == 1 .  

X Y z 
43. det 3 2 1 == ° == 7x - 5y + z ;  plane contains the two vectors. 

1 2 3 
45. VISA has the five reversals VI, VS, VA, lA, SA. And AVIS has the two reversals 

VI and VS. Since 5 - 2 is odd, VISA and AVIS have opposite parity. 

Problem Set 5.1, page 2 

1. A == 2 and A == 3 ,  trace == 5 ,  determinant == 6. 
3. A == -5 and A == -' 4; both A 'S are reduced by 7, with unchanged eigenvectors. 
5. A == 3, A == 1 ,  A = 0, with eigenvectors ( 1 ,  0, 0) , (2, - 1 , 0) , (3 , -2, 1 ) ;  trace == 4, 

det == 0. A == 2, A == 2, A == -2, with eigenvectors ( 1 , 1 , 1 ) ,  (0, 1 , 0) , ( 1 , 0, - 1 ) ;  
trace == 2, det == -8 .  

7. Ax == AX gives (A - 71)x == (A - 7)x ; Ax == AX gives X == AA-1x ,  so A- 1x == 

( I /A)x . 
9.  The coefficient of (_A)n- 1 in (A 1 - A) . . .  (An - A) is Al  + . . .  + An . In det (A - AI) ,  

a term that includes an off-diagonal aij excludes both au - A and a jj - A. Such a 
term doesn't involve (_A)n-1 . So the coefficient of (_A)n- 1 in det (A - AI) must 
come from the product down the main diagonal. That coefficient is al l  + . . . + ann == 

A1 + . . .  + An . 
11. Transpose A - AI :  det (A - AI) == det (A - AI)T == det (AT - AI) .  
13. The eigenvalues of A are 1 ,  2, 3 ,  7 ,  8 ,  9 .  
15. rank(A) == 1 ,  A == 0, . . . , 0, n (trace n) ;  rank(C) == 2,  A == 0,  . . .  , n/2, -n/2 

(trace 0) . 
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17. The third row contains 6, 5, 4. 

19. A and A2 and A 00 all have the same eigenvectors. The eigenvalues are 1 and 0.5 for 
A,  1 and 0.25 for A 2 , 1 and ° for A 00. Therefore A 2 is halfway between A and A 00 .  

21 . } q  == 4 and A2 == - 1 (check trace and determinant) with X l  == ( 1 , 2) and X2 == 

(2, -1 ) .  A-I has the same eigenvectors as A, with eigenvalues I /A l == 1 /4 and 
I/A2 == - 1 . 

23. (a) Multiply Ax to see AX which reveals A .  (b) Solve (A - A/)x == 0 to find x .  
25. (a) Pu == (uuT)u == u (uTu) == U, so A == 1 .  (b) Pv == (uuT) v  == u (uTv) == 0, 

so A == 0. (c) Xl == (- 1 , 1 , 0, 0) , X2 == (-3 , 0, 1 , 0) , X3 == (-5, 0, 0, 1 )  are 
orthogonal to u ,  so they are eigenvectors of P with A == 0. 

27. A3 - 1 == ° gives A == 1 and A == � (- 1  ± i,J3) ; the three eigenvalues are 1 , 1 , - 1 . 
29. (a) rank == 2. (b) det (BT B) == 0. Not (c) . (d) (B + 1)- 1 has (A + 1 )- 1 == 

1 , � , � .  

31. a == 0, b == 9, C == ° multiply 1 ,  A ,  A2 in det (A - AI) == 9A - A3 : A == companion 
matrix. 

33. [� �l [� �l [= � n Always A2 = zero matrix if A = O, O (Cayley-
Hamilton) . 

35. Ax == CI A IXI + . . . + cnAnXn equals Bx == CIA IXI + . . .  + cnAnXn for all x .  So 
A == B . 

37. [: !] U] = [: � !] = (a + b) m; A2 = d - b to produce trace == a + d. 

39. We need A 3 == 1 but not A == 1 (to avoid I). With A l == e21Ti/3 and A2 = e-2Jri/3 , the 
- determinant will be A l A2 == 1 and the trace is A l  + A2 = cos 2; + i sin 2; + cos 2; -

i sin 2; == -1 .  One matrix with this trace - 1 and determinant 1 is A = [ :::: � � J .  

Problem Set 5.2, page 250 

1. U n = [� - �] [� �] [� - �r\ 
[� �] _ [� _;] [� �] [� _;r

1
, 

1 
3. A == 0, 0, 3 ; the third column of S is a multiple of 1 and the other columns are 

on the plane orthogonal to it. 1 

5. A 1 and A3 cannot be diagonalized. They have only one line of eigenvectors. 

[
3 1 ] [

5 0] [
3 1 ] -1 . 100 [

3 7. A == 
1 - 1 ° 1 1 - 1 gIves A == 1 

� [3 . 5 100 + 1 3 · 5 100 - 3] 
4 5 100 - 1 5 100 + 3 . 

1 ] [
5 100 0] [

3 1 ] 
-1 = 

- 1  ° 1 1 - 1 



So lutions to S e l e cted Exerc ises 457 

9. trace(A B) == trace(BA) == aq +bs + cr +dt . Then trace(AB - BA) == 0 (always) . 
So AB - BA == I is impossible for matrices, since I does not have trace zero. 

1 1 1 1 0 
11. (a) True; det A == 2 #- O. (b) False; 0 1 1 . (c) False; 0 1 

0 0 2 0 0 
diagonal ! 

13. A = [ � -n [� �] 
[ � 

lr l
. [2 

- 1  ' 1  
1] £ 
2 ; bur square roots . 

15 . .  

17. 

[� �] = [� 
1
] [

1 0] [1 - I} [ 1 1
] = 

� 1 
1 0 3 0 l ' 2 2 - 1  

A _ [ 1 - 0 
1
] [

2 0] [ 1 - 1
] = 

[2 3
] 1 0 5 0  1 0 5 ' 

1
] 
[0 0] [� - �l 

2 0 3 1. 1. '  
3 3 

0 
0 
2 

. IS 

19. (a) False :  don't  know A'S. (b) True. (c) True. (d) False :  need eigenvectors 
of S !  

21. The columns of S are multiples of (2, 1 ) and (0, 1 ) in either order. Same for A-I . 
23. A and B have A l  == 1 and A2 == 1 .  A + B has A l  == 1 , A2 == 3 .  Eigenvalues of A + B 

are not equal to eigenvalues of A plus eigenvalues of B.  
25. (a) True. (b) False. (c) False (A  might have 2 or 3 independent eigen-

vectors) .  

27. A = [_� �] (or other) , A = [_! 1] . A == [�� �l only eigenvectors are 
(c, -c) . 

29. SAkS- I approaches zero if and only if every I A I < 1 ;  Bk --+ 0 from A == .9  and 
A == . 3 .  . 

31. A = [.� .�] . S = [i -i} B IO [i] = ( .9) 10 [iJ B IO [_ i] = ( .3) 10 [-il 

B 10 [�] = �um of those two. 
� 

33. Bk = [� -n [� �r [� -n = [� 3k 
2k 

2k) . 
35. trace AB == (aq + bs) + (cr + dt) == (qa + rc) + (sb + td) == trace BA.  Proof for 

diagonalizable case: the trace of SAS- I is the trace of (AS- I ) S  == A,  which is the 
sum of the A 'S. 

37. The A 's form a subspace, since cA and A l + A2 have the same S. When S == I ,  the 
A 's give the subspace of diagonal matrices. Dimension 4. 

39. Two problems: The nullspace and column space can overlap, so x could be in both. 
There may not be r independent eigenvectors in the column space. 

41. A = [ � �] has A2 
= [� n and A2 - A - I == zero matrix confirms Cayley

Hamilton. 
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43. By SF, B has the same eigenvectors ( 1 , 0) and (0, 1 )  as A, so B is also diagonal . The 
equations AB - BA = [;C ;d] - [: ;:]= [� �] are -b == O and c == O: 
rank 2. 

45. A has } q  == 1 and A2 == .4 with Xl == ( 1 , 2) and X2 == ( 1 ,  - 1 ) .  AOO has Al == 1 and A2 = 0 (same eigenvectors) . A 100 has A l == 1 and A2 = ( .4) 100, which is near zero. 
So A 100 is very near A 00 • 

Problem Set 5�3u page 262 

1. The Fibonacci numbers start even, odd, odd. Then odd + odd == even. The next two 
are odd (from odd + even and even + odd). Then repeat odd + odd == even . 

3. A2 = [i a A3 = [; n A4 = [; ;} F20 = 6765 . 

5. A = SAS-1 = [ i  �] = A l � A2 [�I �2] [�I �J [_ � -��] (notice S- I ) . 

SAkS- 1 = A l � A2 [�I �2] [�1 ��] [_ � -��] [�] = [ (At � A�)/(AI = A2)] 
7. Direct addition Lk + Lk+1 gives Lo , . . . , L ID as 2, 1 ,  3, 4, 7 , 1 1 ,  1 8 , 29, 47, 76, 123 .  

My calculator gives A io (1 .6 1 8  . . .  ) 10 == 122 .99 1 . . .  , which rounds off to 
LID == 123 .  7 

12 
1 0 6 

9. The Markov transition matrix is 1 
6 � O .  Fractions ?2 ' 4 ,  1 don't move. 
1 1 1 4 3 

11. (a) A == 0, ( 1 , 1 ,  -2) . 
for A == 1 .  

(b) A == 1 and -0.2. (c) limit (3, 4 , 4) == eigenvector 

O < a < 1 
13. (a) 0 < b < 1 .  

(b) Uk _ [b / ( 1  - a) - 1 
1
] [ lk 

- 1  0 
o ] [

b/ ( I - a) 
(a - b)k 1 

2b l - a - b --- - (a - b)k b - a + l b - a + l 
2( 1  - a) 1 - a - b --- - (a - b)k b - a + l  b - a + l 

2b 
b - a + l  if l a - b l < 1 ;  2(1  - a) 
b - a + l  

a == 1/3 
b == - 1/3 
not Markov. 

15. The components of Ax add to Xl + X2 + X3 (each column adds to 1 and nobody is 
lost) . The components of AX add to A (X1 + X2 + X3) ' If A i- I , Xl + X2 + X3 must be 
zero. 

17. [: :] is unstable for la l > 1/2, and stable for la l < 1/2. Neutral for a = ± 1/2. 
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0 0 2  1 1 2 
19. A2 == 0 0 0 and A3 = 0. So (I - A)-1 = I + A + A2 == 0 1 1 .  

0 0 0 0 0  1 
21. If A is increased, then more goods are consumed in production and the expansion 

must be slower. Mathematically, Ax > tx remains true if A is increased; tmax goes up. 

23. [; �] = � u -n [� �] [- � �] and Ak = � U -n [� �] [- � n 
25. R = S./AS- I = [i �] has R2 = A.  ,JB would have A = .j§ and A = J=I, so 

. 
its trace is not reaL Note that l-� _�] can have J=I = i and -i ,  and real square 

root [-� �J 
27. A == SA l S- l and B == SA2 S- l . Diagonal matrices always give A I A2 == A2A l . 

Then AB == BA, from SA l S-l SA2S-l =- SA 1 A2S-l = SA2A l S-l == 
SA2 S-l SA l S- l == BA.  

29. B has A = i and -i , so B4 has A 4 == 1 and 1 ;  C has A == ( 1  ± ,J3"i)  /2 == exp(±ni /3) , 
so A3 == - 1  and - 1 .  Then C3 == -J and C l024 == -C.  

Problem Set 5a4, page 215 '*P8 +  
1. Al == -2 and A2 == 0;  Xl = ( 1 ,  - 1) and X2 = (1 , 1 ) ;  

A 1 [ e -2t + 1 -e -2t + 1
] e t == 2 _ e -2t + 1 e -2t + 1 . 

3. u (t) = [_:�: ! ;} as t -+ 00, e2t -+ +00. 

5. (a) e�(t+T) == SeA (t+T) 8-1 = SeAt eAT S- l == SeAt S-l SeAT S-l  == eAt eAT . 
(b) �A = I + A = U n eB = I + B = [� - � l A + B = [� -� ] giVeS 

A+B . [cos 1 -sin 1] f E I 3 · h 1 Th· . .  e = . 1 1 rom xamp e In t e text, at t = . IS matnx IS SIn cos 
different from eAeB . 

7. eAt = I + At = [� t] . At (0) _ [4t + 3
] 1 , e  U - 4 · 

9. (a) A l == 7+f!? , A2 = 7-f!? , Re A l > 0, unstable. (b) A l = ,J7, A2 = -,J7, 
Re Al > 0, unstable (c) A l  = - li,JTI , A2 == -l-;vTI,  Re A l  > 0, unstable 
(d) A l == 0, A2 = -2, neutrally stable. 

11. A1 is unstable for t < 1, neutrally stable for t > 1 .  A2 is unstable for t < 4, neutrally 
stable at t == 4, stable with real A for 4 < t < 5 ,  and stable with complex A for 
t > 5 .  A3 is unstable for all t > 0, because the trace is 2t . 

13. (a) u� == CU2 - bU3 , u; == -CU I + aU3 , u� == bU l - a U2 gives u� U l  + U;U2 + U�U3 == 
O. (b) Because eAt is an orthogonal matrix, l I u (t) I I 2 == l I eAt u (0) 1 I 2 == I I u (O) 1 1 2 is 
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constant. (c) A == 0 and ±(  J a2 + b2 + c2) i .  Skew-symmetric matrices have pure 
imaginary A 'S .  

15. u (t) = ! cos 2t [_ n + ! cos J6t G l 
17. Ax == AFx + A2X, or (A - AF - A2I)x == O. 

19. Eigenvalues are real when (trace)2 - 4 det > 0 =} -4 (-a2 - b2 + c2) > 0 =} 
a2 + b2 > c2 . 

21. U l  = e4t [�J U2 = et [- �J If u (O) = (5 , -2) , then u (t)  = 3e4t [�] + 2et [-n 
23. [�:,] = [� �] [�J Then A = ! (5 ± J4T). 

25. Al == 0 and A2 == 2. Now v et) == 20 + IOe2t -+ 00 as t -+ 00 .  " 
27. A = [_ � �] has trace 6, det 9, A = 3 and 3 ,  with only one independent eigenvector 

( 1 ,  3) . That gives y == ce3t ,  y' == 3e3t . Also te3t solves y" == 6y' - 9y. 
29. y (t) == cos t starts at y (0) == 1 and y' (0) == O. The vector equation has u == (y , y') == 

(cos t ,  -sin t ) .  
31. Substituting u == ect v gives cect v  == Aect v - ectb , or (A - cI ) v  = b, or v == 

(A - c I) -1 b == particular solution. If c is an eigenvalue, then A - c I is not invertible: 
this v fails . 

33. deAt /dt == A + A2t + �A3 t2 + �A4t3 + . . .  == A (I + At + �A2t2 + �A�t3 + . . .  ) == 

AeAt . 

35. The solution at time t + T is also eA(t+T) u (O) .  Thus eAt times eAT equals eA(t+T) . 

37. If A2 == A then eAt == I + At + �At2 + �At3 + . . . == I + (et - I ) A 

_ [ 1 0] [et - 1 et - 1] == 
[et et - 1] - 0 1 + 0 0 0 1 · 

[1 1] [ 1 1] [3 0] [0 �l At [et 
39. A == 0 3 == 2 0 0 1 1 _ ! ' then e = 0 

t == O.  

41. (a) The inverse of eAt is  e-At . (b) If Ax == AX then eAtx == eAtx and eAt =j:. O. 

43. A = 2 and 5 with eigenvectors m and m · Then A = SAS-1 = [=; �l 

Problem Set 5.5, page 288 
1. (b) sum == 4 + 3i ; product == 7 + i .  (c) 3 + 4i == 3 - 4i ;  1 - i = 1 + i ;  

1 3 + 4i I == 5 ; 1 1 - i I == J2. Both numbers lie outside the unit circle. 
3. x == 2 - i ,  xx == 5, xy == - 1 + 7i ,  I /x == 2/5 - ( I /5) i ,  x /y == 1 /2 - ( I /2) i ;  

check that Ixy l == J50 == I x l ly l and I I /x l == 1/0 == I / Ix l . 
5. (a) x2 == r2ei2B , X-I  == ( I /r)e-iB , x == re-iB ; X-I == x gives I x  1 2 == 1 :  on the unit 

circle. 
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9. (a) det AT == det A brtt det AH == det A. (b) AH == A gives det A = det A == real . 

11. P : A l = 0, A2 = 1 ,  Xl = [_ ���, X2 = [� ��; Q : Al = 1 ,  A2 = - 1 ,  Xl == 

[ ���, X2 = [_ ���; R : A l = 5, A2 = -5, Xl = [��Js], X2 = [-��Js] . 
13. ' (a) u ,  v , w are orthogonal to each other. (b) The nullspace is spanned by u ;  the 

left nullspace is the same as the nullspace; the row space is spanned by v and w ;  
the column space is the same as the'\row space. (c) X == V + �w ;  not unique, we 
can add any multiple of u to x .  (d) Need bTu == O. (e) S-l == ST; S-I AS == 
diag(O, 1 ,  2) . 

15. The dimension of S is n (n + 1 ) /2, not n . Every symmetric matrix A is a combination 
of n projections, but the projections change as A changes. There is no basis of n 
fixed projection matrices, in the space S of symmetric matrices. 

17. (U V)H(U V) == VHUHU V  == VH I V  == I .  So U V  is unitary. 
19. The third column of U can be ( 1 ,  -2, i )  / -0), multiplied by any number eiB

• 
21. A has + 1 or - 1  in each diagonal entry; eight possibilities. 
23. Columns of Fourier matrix U are eigenvectors of P because 

P U  == diag( l , w ,  w2 , w3) U (and w == i ) . 
25. n2 steps for direct C times x ;  only n log n steps for F and F-I by FFT (and n for A). 

2 0 l + i  
o 2 1 + i 

l -' i t - i 2 
d AAH [3 1] U . . • an == 1 3 are nermltlan matnces. 

(AHA)H == AHAHH == AHA again. 
29. cA is still Hermitian for real c ;  (i A)H == - iAH == -i A is  skew-Hermitian. 

0 0 1 
31. p2 == 1 0 0 ,  p3 == I , p lOO == p99 P == P ; A == cube roots of 1 1 ,  

0 1 0  

2 5 4 2 + 5 + 4 
33. C == 4 2 5 == 2 + 5P + 4p2 has A (C) == 

5 4 2  
2 + 5e2ni/3 + 4e4rri /3 
2 + 5e4ni /3 + 4e8ni /3 -

1 [ 1 - 1  + i ] [2 0 ] 1 r 1 1 - i ] 35. A = -J3 1 + i 1 0 - 1  -J3 t- 1  - i l ' 

. T 1 [ 1 - 1  - i ] [2i 0] 1 r 1 K = (z A ) = -J3 1 - i 1 0 -i -J3 r- 1 + i 
1 + i ] 1 . 
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_ � [ 1 + -J3 -1  + i ] [1 0] � [1 + -J3 1 - i ] . h L 2 == 6 2-J3 37. V - L 1 + i 1 + -J3 0 -1 L -1 - i 1 + -J3 WIt + .  

V == VH gives---real A,  unitary gives I A I == 1 ,  then trace zero gives A == 1 ,  -1 .  
39. Don't multiply e-ix times eix ; conjugate the first, then Jo21i e2ix dx == [e2ix /2i ]�1i == O. 

41. R + i s  == (R + i S)H == RT - i ST ; R is symmetric but S is skew-symmetric. [ a 
b + i c] . 2 2 2 43. [ 1 ]  and [- 1 ] ; b '  wIth a + b + c == 1 .  

- I C -a 

45. (I - 2uuH)H == I - 2uuH ;  (I - 2uuH)2 = 1 - 4uuH + 4u (uHu)uH = I ;  the matrix 
uuH projects onto the line through u .  

47. We are given A + iB  == (A + i B)H == AT - i BT . Then A == AT and B == _BT. 

49. A = [1_/ 1 
2 

i ] [� �] � [2
1
:�i -; ] = SAS-I . Real eigerivalues 1 and 4. 

Problem Set SaG, page  302 
1. C == N-1 BN == N-I M-IAMN == (MN)-IA (MN) ; only M-I IM == I is similar 

to I. 

3. If A I , . . .  , An are eigenvalues of A, then Al + 1 ,  . . .  , An + 1 are eigenvalues of A + I .  
So A and A + I never have the same eigenvalues, and can't be similar. 

5. If B is invertible, then BA == B (AB)B - I is similar to AB. 
7. The (3 , 1 )  entry of M-I AM is g cos e + h sin e ,  which is zero if tan e == -g/ h .  
9. The coefficients are C I == 1 ,  C2 == 2, dl == 1 ,  d2 == 1 ;  check Mc == d. 

11. The reflection matrix with basis VI and V2 is A = [� � l The basis VI and V2 (same 

reflection ! )  gives B = [� -�l If M = U -n then A = MBM-I . 

0 1 0  0 0 0  
13. (a) D == 0 0 2 .  (b) D3 == 0 0 0 == third derivative matrix. The third 

0 0 0  0 0 0  
derivatives of 1 ,  x ,  and x2 are zero, so D3 == O. (c) A = 0 (triple) ; only one 
independent eigenvector (1 , 0, 0) . 

15. The eigenvalues are 1, 1 ,  1 , - 1 .  Eigenmatrices [� �J [� � J
. [� n [

-
� � l 

17. (a) rrH == U - 1 AUUHAH (U - I )H == I .  (b) If T is triangular and unitary, then its 
diagonal entries (the eigenvalues) must have absolute value 1 .  Then all off-diagonal 
entries are zero because the columns are to be unit vectors. 

19. The 1 ,  1 entries of rHr == rrH give I t1 1 1 2 == I tu l 2 + I t12 1 2 + I t13 1 2 so t12 == t13 == O. 
Comparing the 2, 2 entries of rHr == TTH gives t23 == O. So r must be diagonal. 

21. If N == U AU-I , then NNH == U AU-1 (U- I )HAHUH is equal to U AAHUH. 
This is  the same as U AHAUH == (U AU-1 )H (U AU-I ) == NHN . So N is  normal. 
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23. The eigenvalues of A (A - I) (A - 21) are 0, 0, 0 . 

25. Always [:; ! �� �� ! ��] - (a + d) [� !] + (ad - bC) ,[� �] = [� �] ! 
27. M-1 J3M == 0, so the last twq inequalities are easy. Trying for M J1 == J2M forces the 

first column of M to be zero, so M cannot be invertible. Cannot have J1 == M-1 J2M. 

29 A10 == 210 [ 6 1  45] . A == 2 [ 13 9] · -80 -59 '  e e - 16 - 1 1 ' 
:F 31. [� �l [� n u �l [� n are similar; [� �] by itself and [� �] by 

itself. 
33. (a) (M- 1 AM) (M-1x) == M-1 (Ax) == M-10 == O. (b) The nullspaces of A and 

of M-1 AM have the same dimension. Different vectors and different bases . 
35 J2 == [c2 2C] J3 == [c3 3c2] Jk == [ck kck- 1 ] . JO _ I J-1 _ [c- 1 -c-2 ] · 0 c2 ' 0 c3 ' 0 ck '  - , - 0 C -1 . 

37. wet) == (w (O) + tx (O) + � t2y (0) + � t3Z (0) ) eSt • 
39. (a) Choose Mi == reverse diagonal matrix to get Mi- 1 JiMi == M( in each block 

(b) Mo has those blocks Mi on its diagonal to get Mo 1 J Mo == JT . 
(c) AT == (M-1 )TJ™T is (M-l )TMol JMoMT == (MMoMT)- IA (MMoMT) , 
and AT is similar to A.  

I 

41. (a) True: .  S>n� has A == 0, the other doesn't. (b) False. Diagonalize a nonsym
metric matri� and A is symmetric. (c) False: [_� �] and [� -�] are similar. 
(d) True: All eigenvalues of A + 1 are increased by 1 ,  thus different from the 
eigenvalues of A .  

43. Diagonals 6 by 6 'and 4 by 4 �  AB has all the same eigenvalues as B A plus 6 - 4 
zeros. 

Problem Set 6.1 u  page 31 6 

1.  ac - b2 == 2 - 4 == -2 < 0; x2 + 4xy + 2y2 == (x + 2y)2 - 2y2 (difference of 
squares) . 

3. det (A - AI) == A 2 - (a + c)).. + ac - b2 == 0 gives Al == ((a + c) + 
J(a - C)2 + b2)j2 and A2 == ((a + c) - J(a - C)2 + 4b2)j2) ; Al > 0 is a sum of 
positive numbers ; A2 > 0 because (a + c)2 > (a - c)2 + 4b2 reduces to ac > b2 . 
Better way: product A1A2 == ac - b2 . 

5. (a) Positive definite when -3 < b < 3 .  

(b) [! �] = [! �] [� 9 � b2] [� b] ( )  ThO . . . 1 
1 · c e mInImum IS - 2 2(9 - b ) 

when [! �] [�] = [�l which is [�] = 9 � b2 [-�] . (d) No minimum, let 
y -+ 00 , x == -3y,  then x - y approaches - 00 . 
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1 [ 1 + J3 - 1 + iJ [1 OJ 1 [ 1 + J3 1 - i ] . 2 r:; 37. V = 
L l + i 1 + J3 0 - 1 L - 1 - i 1 + J3  wlth L = 6+ 2v 3 o 

V = VH gives---real A,  unitary gives I A I  == 1 ,  then trace zero gives A == 1 , - 1 .  
39. Don't multiply e-ix times eix ; conjugate the first, then J�1T e2ix dx = [e2ix /2i ]57r == O. 
41. R + i s == (R + is)H == RT - iST ; R is symmetric but S is skew-symmetric. 

43. [ 1 ]  and [- 1 ] ; [b a . b + iCJ with a2 + b2 + c2 == 1 . - l C -a 

45. (I - 2UUH)H == I - 2uuH ; (/ - 2UUH)2 == I - 4uuH + 4u (uHu)uH == I ;  the matrix 
uuH projects onto the line through u . 

47. We are given A + iB == (A + i B)H = AT - iBT. Then A == AT and B == _BT. 

[ 1 
- i 1 - iJ [1 OJ 1 [2 + 2i -2 ] -1 . '  

. 
49

. 
A =  - 1  2 0 4 6 l + i  2 == SAS . Real eIgenvalues 1 and 4. 

Problem Set 5.6, page 302 
1. C == N-1 BN == N-1M-1AMN == (MN)-lA(MN) ; only M-1 IM == I is similar 

to I .  

3. If A I , . . .  , An are eigenvalues of A, then Al + 1 ,  . . .  , An + 1 are eigenvalues of A + I .  
So A and A + I never have the same eigenvalues, and can't be similar. 

5. If B is invertible, then BA = B(AB)B- 1 is similar to ABo 
7. The (3 , 1 )  entry of M-1 AM is g cos e + h sin e ,  which is zero if tan e = -g / h .  
9. The coefficients are C1 == 1 , C2 = 2, d1 == 1 , d2 == 1 ; check Mc = d. 

11. The reflection matrix with basis Vi and V2 is A = [� � J The basis Vi and V2 (same 

reflection ! )  gives B = [� -�J If M = [� -n then A = MBM-i , 

0 1 0  0 0 0  
13. (a) D == 0 0 2 .  (b) D3 == 0 0 0 = third derivative matrix. The third 

0 0 0  0 0 0  
derivatives of 1 , x ,  and x2 are zero, so D3 == O. (c) A == 0 (triple) ; only one 
independent eigenvector ( 1 , 0, 0) . 

15. The eigenvalues are 1 ,  1 ,  1 ,  - 1 .  Eigenmatrices [� �J [� �J [� �J [-� �J 

17. (a) TTH = U-1AUUHAH(U-1)H == I . (b) If T is triangular and unitary, then its 
diagonal entries (the eigenvalues) must have absolute value 1 .  Then all off-diagonal 
entries are zero because the columns are to be unit vectors. 

19. The 1 ,  1 entries of THT == TTH give I t1 1 1 2 == I t1 1 1 2 + I t1 2 1 2 + I t13 1 2 so t1 2 == t13 = O. 
Comparing the 2, 2 entries of THT == TTH gives t23 == O. So T must be diagonal. 

21. If N == U AU-I , then NNH = U AU-1 (U-I )HAHUH is equal to U AAHUH. 
This is the same as U AHAUH = (U AU-1 )H(U AU- I ) = NHN. So N i s  normal. 
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23. The eigenvalues of A(A - I} (A - 21) are 0, 0, O. 

25. Always [:; ! �� �� ! ��] - (a + d) [� !] + (ad - bc) [� �] = [� �] ! 
27. M-1 J3M == 0, so the last two inequalities are easy. Trying for M J1 == J2M forces the 

first column of M to be zero, �o M cannot be invertible. Cannot have J1 == M-1 J2M. 

29 A 10 == 210 [ 61 45] . A == 2 [ 1 3 9] · -80 -59 '  e e 
- 1 6 - 1 1 ' � 

31. [� �J . [� �l [� �J [� �] are similar; [� �] by itself and [� �] by 

itself. 
33 .. (a) (M- 1 AM) (M-1x) == M-1 (Ax) == M-10 == 0. .  (b) The nullspaces of A and 

of M-1 AM have the same dimension. Different vectors and different bases. 
J2 == [c2 2C] J3 _ [c3 3c2] Jk _ [ck kck- 1 ] . JO _ I J-1 _ [c- 1 -c-2 ] 35. 0 c2 ' - 0 c3 ' - 0 ck ' - , - 0 c-1 ' 

37. w et) == (w (O) + tx (O) + � t2y (0) + � t3Z (0) ) e5t . 
39. (a) Choose Mi == reverse diagonal matrix to get Mi-1 JiMi == M! in each block 

(b) Mo has those blocks Mi on its diagonal to get MOl J Mo == JT . 
(c) AT == (M-1 )TJTMT is (M-l )TMoI JMoMT == (MMoMT)-1A (MMoMT) ,  
and AT is similar to 'A . 

41. (a) True: One 'has A == 0, the other doesn't. (b) False. Diagonalize a nonsym-
metric matrix and A is symmetric. (c) False: [_� �] and [� -�] are similar. 
(d) True: All eigenvalues of A + I are increased by 1 ,  thus different from the 
eigenvalues of A .  

43. Diagonals 6 by 6 and 4 by 4 ;  AB has all the same eigenvalues as BA plus 6 - 4 
zeros . 

Problem Set 6. 1 ,  page 31 6 

1. ac - b2 == 2 - 4 == -2 < 0; x2 + 4xy + 2y2 == (x + 2y)2 - 2y2 (difference of 
squares) . 

3. det (A - AI) == A2 - (a + C)A + ac - b2 == 0 gives Al == ((a + c) + 
J(a - c)2 + b2)j2 and A2 == ( (a + c) - J(a - c)2 + 4b2)j2) ; A 1 > 0 is a sum of 
positive numbers ; A2 > 0 because (a + c)2 > (a - c)2 + 4b2 reduces to ac > b2 . 
Better way : product A1A2 == ac - b2 . 

5. (a) Positive definite when -3 < b < 3. 

(b) [! �] = [! �] [� 9 � b2] [� n (c) The minimum is - 2(9 � b2) 

when [! �] [�] = [n which is [�] = 
9 
� b2 [-�] . (d) No minimum, let 

y � 00 ,  x == -3y, then x - y approaches - 00 .  
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1 - 1  - 1  1 - 1  - 1  

7. (a) Al = - 1  1 1 and A2 = - 1  2 -2 . 
- 1  1 1 - 1 -2 1 1  

(b) 11 = (Xl - X2 - X3)2 == 0 when Xl - X2 - X3 = O. 
1 

(c) 12 = (XI - X2 - X3)2 + (X2 - 3x3) 2 + x� ; L = ' - 1  
- 1  

o 0 
1 O . 

-3 1 

9. A = [� 1�] = [; �] [� �] [� n the coefficients of the squares are the 

pivots in D, whereas the coefficients inside the squares are columns of L.  
11.  (a) Pivots are a and c - I b l 2/a and det A = ac - I b l 2 , (b) Multiply IX2 1 2 by 

(c - l b l 2 fa) .  (c) Now xH Ax is a sum of squares. (d) det == - 1  (indefinite) and 
det = + 1 (positive definite) , 

13. a > 1 and (a - 1)  (c - 1) > b2 , This means that A - I is positive definite. 
15. I(x , y) == x2 + 4xy + 9y2 = (x + 2y)2 + 5y2 ; I(x , y) == x2 + 6xy + 9y2 == 

(x + 3y)2 . 
17. x TAT Ax == (Ax) T (Ax) == length squared == 0 only if Ax == O. Since A has indepen

dent columns, this only happens when x = O. 
4 -4 8 

19. A == -4 4 -8 has only one pivot == 4 ,  rank == 1 ,  eigenvalues 24, 0 ,  0, 
8 -8 1 6  

det A = O. 
21. ax2 + 2bx y + cy2 has a saddle point at (0, 0) if ac < b2 . The matrix is indefinite 

(A < 0 and A > 0) . 

Prob lem Set 6a2, page 326 

1. A is positive definite for a > 2. B is never positive definite: notice [! ; l 
3. det A = -2b3 - 3b2 + 1 is negative at (and near) b == � . 

5. If x T Ax > 0 and x T Ex > 0 for any x -# 0, then x T (A + B)x > 0; condition (I) .  

7. Positive A 's because R is symmetric and ,.,fA > O. R = [i n R = [-i -n 

9. IxT Ay l 2 == IxT RT Ry l 2 == I (Rx)T Ry l 2 < (by the ordinary Schwarz inequality) 
I I Rx l l 2 1 1 Ry l l 2 == (xT RT RX) (yT RT Ry) = (xT Ax) (yT Ay) . 

11. A = [_� -;:] has A = 1 and 4, axes 1 [�] and � [�J along eigenvectors. 

13. Negative definite matrices: (I) x T Ax < "0 for all nonzero vectors x .  (II) All 
the eigenvalues of A satisfy Ai < O. (III) det Al < 0, det A2 > 0, det A3 < 0. 
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(IV) All the pivots (without row exchanges) satisfy di < O. (V) There is a matrix 
R with independent columns such that A = _RT R .  

15. False (Q  must contain eigenvectors of A) ;  True (same eigenvalues as A) ; True 
(Q T A Q = Q-I A Q is similar to A);  True (eigenvalues of e - A are e-).. > 0) . 

17. Start from ajj = (row j of R T) (column j of R) = length squared of column j of 
R .  Then det A = (det R)2 == (volume of the R parallelepiped)2 < product of the 

, lengths squared of all the columns of R .  This product is al la22 . . .  ann . 
2 - 1  0 2 - 1  - 1  , / .. -; 

19. A ==  - 1  2 - 1  has pivots 2, � ,  j ;  A = - 1  2 - 1  is singular; 
0 - 1  2 -1  - 1  2 

1 0 
A 1 0 

1 0 

21. x T Ax is not positive when (Xl ,  X2 , X3 )  == (0, 1 , 0) because of the zero on the 
diagonal. , 

23. (a) Positive definite requires positive determinant (also: all A > 0). (b) All pro
jection matrices except 1 are singular. (c) The diagonal entries of D are its eigen
values. (d) The negative definite matrix - 1  has det = + 1 when n is even. 

25. Al  = I ja2 and A2 = l/b2 , so a = 1 /� and b = I /Fz. The ellipse 9x2 + 16y2 = 

1 has axes with half-lengths a = � and b = � .  
27. A = [� ' �] = [i �] [� n c = [� �] has CCT = [: 2

8
5] -

29. ax2 + 2bxy + C�2 = a-'(x + ! y) 2 + ac:b2 y2 ; 2x2 +8xy + IOy2 = 2(x
-
+2y)2 +2y2 . 

31. xT Ax =' 2 (XI - �X2 - �X3 ) 2 + � (X2 - X3 )2 ; xT Bx = (Xl + X2 + X3 )2 . B has one 
pivot. 

33. A and CT AC have A 1 > 0, A2 = O. C (t) = t Q  + ( l  - t) QR,  Q = [� -�l 
R = [� �l C has one positive and one negative eigenvalue, but I has two positive 
eigenval ues . 

35. The pivots of A - � 1 are 2.5, 5 .9, -0. 8 1 ,  so one eigenvalue of A - � 1 is negative. 
Then A has an eigenvalue smaller than � .  

37. rank(C T AC) < rank A, but also rank(CT AC) > rank((CT)- I C T ACC-I ) = rank A.  
39. No. If C is not square, CT AC is not the same size matrix as A .  

[ 6 - 4A/ 1 8 - 3 - A/18] . 54 
41. det -3 _ A/ 1 8  6 _ 4A/ 1 8  = 0 gIves A l  = 54, A2 = s· 

Eigenvectors [-n [i] . 
43. Groups: orthogonal matrices ; etA for all t ;  all matrices with det = 1 .  If A is positive 

definite, the group of all powers A k contains only positive definite matrices . 
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1. AT A = [2� ��] has only ar = 85 with VI = [!��l so V2 = �-���J . 
T [2 1] . 2 3 + -J5 2 3 - -J5 

3. A A == 1 1 has eIgenvalues 0'1 == 
2 and a2 == 

2 
. 

Since A == AT , the eigenvectors of A T A are the same as for A 0 Since A2 = � ( 1  - -J5) 
is negative, 0'1 == A l but a2 = -A2. The unit eigenvectors are the same as in 
Section '6 .2 for A, except for the effect of this minus sign (because we need A V2 == 
a2u2): 

U == V  == 
[A l /Jl + Ai] 

and u == - v == [A2/Jl + A�] 0 1 1 1 / J 1 + A r 2 2 
1 / J 1 + A� 

5. AAT = [i ;] has ar = 3 with U I  = G�� and at = 1 with U2 = �_ ��� . 
1 1 0 1 /vre; 1/v'2 

AT A = 1 2 1 has al = 3 with V I == 2/0) ,  ai == 1 with V2 = 0 , 
o 1 1 1 /0) - 1/v'2 

1/v'3 
and nullvector V3 == - 1/0 . 

1/0 

Then [� � �] = [U I U2] [� � �] [VI V2 V3]T , 

7. A = 12 uvT has one singular value al = 1 2. 
9. Multiply U l: VT using columns (of U) times rows (of l: VT). 

11. To make A singular, the smallest change sets its smallest singular value a2 to zero. 

13. The singular values of A + / are not aj + 1 . They come from eigenvalues of 
(A + /)T (A + I) . 

1 
4 

15. A + = ! ,  B = [� 

1 
4 

A + is the right-inverse of A;  B+ is the left-inverse of B.  

T [ 10 6] 1 [ 1 - 1] [4 0] [ 1 1] 
17 · 

A A == 6 10 == 2 1 1 0 16 - 1 l '  take square roots of 4 and 16 

1 [ 1 to obtain S == 2 1 
1 [ 3 1] 

v10 - 1 3 ' 

- 1 ] [2 0] [ 1 1] [3 1 ] - 1 
1 0 4 - 1 1 == 1 3 and Q = AS == 

19. (a) With independent columns, the row space is all of Rn ; check (AT A)A +b = ATb . 
(b) A T (A A T) - 1 b is in the row space because A T times any vector is in that space; 
now (ATA)A+b == ATAAT (AAT) - lb == ATb. Both cases give AT Ax+ == ATb. ' 
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21. Take A = [� �] and B = [� n Then AB = [� �l From C+ in Problem 15  

we have A+ = [t �J B+ = [� tl = (AB)+ , and (AB)+ � B+A+ .  

23. A == QI :E QI =} A+ = Q2 :E+ 12f => AA+ = Q I :E :E+ QI. Squaring gives 
(AA+)2 == QI :E :E+ :E :E+ Qf == QI :E :E+ QI . So we have projections :  (AA+)2 = 
AA + == (AA +) T and similarly for A + A .  AA + and A + A project onto the column 
space and row space of A.  

Prob lem Set 684, page 344 ' - --

1 • .  P (x) A)- -)i,x{t5\-. r;�-tN)- 4Xl - 4X3 has B P  /BXI = 2XI - X2 - 4, 
B P  /BX2�-- Xi + 2X2 - x3 /and B Pf<j13 == -X2 + 2X3 - 4. 

3. B PI /aX == x + y = 0 and aPI /By = x + 2y - 3 == 0 give x == -3 and y = 3 .  P2 
has no minimum (let y -+ (0). It is associated with the semidefinite matrix [� �] . 

5. Put x == ( 1 ,  . . . , 1 )  in Rayleigh's quotient (the denominator becomes n). Since R (x) 
is always between A I and An , we get nA I < X T Ax == sum of all aij < nAn . 

7. Since x�Bx > 0 for all nonzero vectors x, xT (A + B)x will be larger than xT Ax . 
So the Rayleigh quotient is larger for A + B (in fact all n eigenvalues are increased). 

9. Since x T Bx ;. 0, the Rayleigh quotient for A + B is larger than the quotient for A. , 
11. The smallest eigenvalues in Ax = Ax and Ax = 'AMx are � and (3 - v'3) /4. 
13. 

15. 

17. 

(a) Aj = minSj [maxx in Sj R (x)] > 0 means that every Sj contains a vector x 
. . _ yTC TACy x TAx with R (x) > O. (b) y = C-1x gIves quotient R (y) = T Y Y 

R(x) > O. 
The extreme subspace S2 is spanned by the eigenvectors Xl and X2 ' 
If Cx == C(A-Ib) equals d then CA-Ib - d is zero in the correction term in 
equation (5) .  

ProblelD Set 6.5, page 350 

2 - 1  0 
1. Ay == b is 4 - 1  2 - 1 

o - 1 2 

3/ 16 
4/ 16 
3/ 16 

- b -- -
1 /2 
1 /2 . The linear finite element 
1 /2 

u = 136 VI + 1� V2 + t6 V3 equals the exact u = t6 ' � ,  136 at the nodes x = � ,  1 ,  � .  
2 - 1  0 1 2 

3. A33 = 3 ,  b� � .  Then A == 3 - 1  2 - 1 , b 3 2 , Ay = b gives 
o - 1 1 1 

1 5 
y == - 8 . 9 9 
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5. Integrate by parts: J� - V/,Vj dx = J� �'V; dx - [�'Vj J ; � = J� �' V; dx = 
same Au . 

7. A = 4, M = � .  Their ratio 12  (Rayleigh quotient on the subspace of multiples of 
V (x) )  is larger than the true eigenvalue A == ]'(2. 

9. The mass matrix M is h/6 times the 1 , 4, 1 tridiagonal matrix. 

Problem Set 7.2, page 357 

1. If Q is orthogonal, its norm is I I Q I I  = max I I  Qx I I  / I l x I I  = 1 because Q preserves 
length: I I  Qx l l  == I l x l i for every x .  Also Q-l is orthogonal and has norm one, so 
c (Q) == 1 .  

3. I I  ABx I I < I I  A / I I I Bx 1 / , by the definition of the norm of A, and then I I  Bx I I  < 1 /  B I I l Ix I I · 
Dividing by I l x l l  and maximizing, I I AB I I < I I A I I I I B I I .  The same is true for the 
inverse, I I  B- 1 A-I I I  < I I  B- l l l l l  A-I I I ; c (AB) < c(A)c (B) by multiplying these 
inequalities . 

5. In the definition I I  A I I  == max 1 / Ax I I  / I I  x I I , choose x to be the particular eigenvector 
in question; I I  Ax I I  == IA I l I x  I I , so the ratio is IA I and maximum ratio is at least I A  I .  

7. AT A and AAT have the same eigenvalues, since AT Ax == AX gives AAT(Ax) = 
A (A T Ax) == A (Ax) . Equality of the largest eigenvalues means / I A "  == I I  AT I I . 

9. A = [� �l B = [� �l Amax (A + B) > Amax CA) + Amax CB) (since 1 > 0 + 0) , 
and Amax (AB) > Amax (A)Amax (B) . So A max (A) is not a norm. 

11. (a) Yes, c(A) = I I A I I I I A-1 1 1  == c(A-l ) , since (A-I ) - I is A again. (b) A-I b == x 

leads to 1 1 8b l l  < I I A I I I I A  - 1 1 l 1 l8x I I  . This is 1 1 8x I I  > � 1 1 8b l l . I l b l l  - I l x l i  I l x l l  - c I lb l l  
13. I I A I I = 2 and c = 1 ;  I I A I I = .J2 and c is infinite (singular f ) ;  I I A I I = .J2 and c = 1 .  

15. If Amax = Amin == 1 , then all Ai = 1 and A == SI S-I = I .  The only matrices with 
I I  A I I  = I I  A- I I I  = 1 are orthogonal matrices, because AT A has to be I .  

17. The residual b - Ay = ( 10-7 , 0) is much smaller than b - Az == ( .00 13 , .00 16) . 
But z is much closer to the solution than y .  

19. xt + . . . + x; is not smaller than max(xt) == ( l I x I I 00 )2 and not larger than 
( ix i i  + . . . + I Xn 1 ) 2 , which is ( 1 1 x 1 1 1 ) 2 . Certainly xl + . . . + x; < n max(xt) ,  so 
I l x I I  < -follx 1 1 00 0 Choose y == (sign Xl , sign x2 , o • •  , sign xn) to get X ·  Y == I I x  1 1 1 . By 
Schwarz, this is at most l l x l i l l y l l  == -foil x I I · Choose x == ( 1 ,  1 ,  . . .  , 1 ) for maximum 
ratios -foe 

9 -36 30 
21. The exact inverse of the 3 by 3 Hilbert matrix is A- I == -36 192 - 1 80 . 

30 - 1 80 1 80 

23. The largest I l x l l  = I I A- 1b l l  is I /Amin ;  the largest error is 10- 16 /Amin .  

[ 1 0] [2 2] [2 2] . [0 1] 25. Exchange 2 2 to 1 0 -+ 0 - 1 == U wIth P = 1 0 and 
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L =  U �l
A 

-+ 

2 2 0 2 2 0 
1 0 1 � 0 - 1  1 
0 2 0 0 2 0 

2 2 0 0 
0 2 0 = U.  Then PA = LU with P = 0 
0 0 1 1 

'" ' 
P�ob lem Set 7m3, page 365 

2 2 0 
� 0 2 0 

0 - 1  1 
1 0 
0 1 and L = 
0 0 

� 

1 0 0 
0 1 0 
.5 - .5  1 

normalized to 
unit vector. 

. 

3. Uk/A1 = CIXI + C2X2 (A2/A l )k + _ . ' + CnXn (An /A l )k � CIXI if all ratios I Ai /A I I < 1 .  
The largest ratio controls, when k is large. A = [� �] has I A2 1 = lAd  and no 
convergence. 

2(x - y)Tx 
5. Hx = x - (x - y) = x - (x - y) == y .  Then H(Hx) = Hy is 

(x - y)T (x - y) 
X = Hy. 

-' 1 0 0 
7. U = [� �] 0 3 4 = U-1 and then U- l  AU == 

- -, 5 5 
0 4 3 5 5 

[C?S e sin e] . .  QR = [C?S e 9. SIn e O sIn e 
Then R Q = [C( l +t) _�3 ] . - s  -s C 

-sin e] [ 1 cos e sin e] cos e 0 -sin2 e . 

1 -5 
-5 9 

25 
0 12 25 

11. Assume that ( Qo ' . .  Qk- I ) (Rk- 1 • • •  Ro) is the QR factorization of Ak 

0 12 
25 . 
16 
25 

(certainly true if k = 1 ) . By construction, Ak+l = Rk Qk, so Rk = Ak+1 QI = 
( QI · · ·  QJA Qo ' " Qk) QI· Postmultiplying by (Rk-l · · ·  Ro) , the assumption gives 
Rk · · ·  Ro = QI · · ·  QJAk+1 • After moving the Q 's to the left-hand side, this is the 
required result for A k+ I . 

13. A has eigenvalues 4 and 2. Put one unit eigenvector in row 1 of P : it is either 

� [� - �] and PAP-l  = [� -:] or � U -i] and PAP-l  = [� -�l 
15. Pij A uses 4n multiplications (2 for each entry in rows i and j) . By factoring out 

cos e , the entries 1 and ± tan e need only 2n multiplications, which leads to � n 3 
for PR. 

Prob lem Set 7a4, page 372 

o I 2 o 
1. D-1 (-L - U) = � 0 � , eigenvalues JL = 0, ± 1 /,J'2; (D + L)-l (- U) = 

1 I 2 
o I 

4 
o I 

8 

o o I 2 o 

i , eigenvalues 0, 0, 1 /2; Wopt = 4 - 2,J'2, reducing Amax to 3 -2,J'2 � 0.2. 
I 
4 
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3. AXk = (2 - 2 cos krc h )Xk ;  J Xk = ! (sin 2krc h ,  sin 3krc h + sin krc h ,  . . .  ) = 
1 rc rc (cos krch)Xk . For h = - , A has eigenvalues 2 - 2 cos - = 2 - vi2, 2 - cos - = 2, 
4 4 2 3rc . M 2 - cos - = 2 + v 2. 

4 
° 1 

3 
5. J = D- 1 (L + U) = - ° ° 

1 
3 
1 ; the three circles have radius rl = 

2
, r2 = � ,  4 3 4 2 2 0 

4 .
5 5 

r3 = 
5

. TheIr centers are at zero, so all I Ai 1 < 415 < 1 .  

[ ° -bla] ( bC ) 1 /2 
7. -D-1 (L + U) = -e/d 0 has JL = ± 

ad 
; - (D + L)- 1 U == 

[� be��� l A = 0, be/ad; Amax does equal JL�. .. 

9. If Ax == AX, then (1 - A)x = ( 1  - A)x . Real eigenvalues of B = I - A have 
1 1  - A I < 1 ,  provided that A is between ° and 2. 

11. Always / l AB Ii < I I A I I I I B I I . Choose A = B to find I I B2 1 !  < I I B I I 2 . Then choose 
A = B2 to find I I B3 II < I I B2 II I I B " < I I B 1 1 3 • Continue (or use induction) . Since 
I I B II > max IA (B) I ,  it is no surprise that I I B I I < 1 gives convergence. 

13. Jacobi has S-l T = � [� �] with IA l max = � .  Gauss-Seidel has S-l T = [� 1] 
with I A lmax = � = ( IA lmax for Jacobi)2 . 

15. Successive overrelaxation (SOR) in MATLAB. 
17. The maximum row sums give all lA I < .9 and IA I < 4. The circles around diagonal 

entries give tighter bounds . First A: The circle IA - .2 1 < .7 contains the other circles 
IA - .3 1 < .5 and I A  - . 1 1 < .6 and all three eigenvalues . Second A: The circle 
IA - 21 < 2 contains the circle IA - 21  < 1 and all three eigenvalues 2 + ,Ji, 2, and 
2 - ,Ji. 

19. rl = b - alAb = b - (bTblbT Ab)Ab is orthogonal to ro = b : the residuals 
r = b - Ax are orthogonal at each step. To show that PI is orthogonal to Apo = Ab, 
simplify PI to cPI : PI = I I Ab l l 2b - (bT Ab)Ab and c = bTbl(bT Ab) 2 . Certainly 
(Ab)T PI = 0, because AT = A. (That simplification put al into PI = b - al Ab + 
(bTb - 2aI bT Ab + ar I l Ab I l 2)blbTb. For a good discussion see Numerical Linear 
Algebra by Trefethen and Bau.) 

Problem Set 8. 1 ,  page 381 
1. The comers are at (0, 6) ,  (2, 2) , (6, 0) ; see Figure 8 .3 .  
3.  The constraints give 3 (2x + 5y) + 2(-3x + 8y) < 9 - 10, or 3 1 y < - 1 .  Can't 

have y > 0. 
5. x > 0, y > 0, with added constraint that x + y < ° admits only the point (0, 0) . 
7. x (5% bonds) = z (9% bonds) = 20,000 and y (6% bonds) = 60,000. 
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9. The cost to be minimized is 1000x + 2000y + 3000z + 1500u + 3000v + 3700w .  
The amounts x ,  y,  Z to Chicago and u ,  v, w to New England satisfy x + u 
1 ,000,000; y + v == 1 ,000,000; z + w == 1 ,000,000; x + y + z == 800,000; 
u + v + w == 2,200,000. 

Prob lem Set 8e26 page 391 
1. At present X4 == 4 and Xs == 2 are in the basis, and the cost is zero. The entering 

variable should be X3 , to reduce the cost. The leaving variable should be xs , since 
2/ 1 is less than 4/ 1 .  With X3 and X4 in the basis, the constraints give X3 == 2, X4 = 2, 
and the cost is now Xl + X2 - X3 == -2. 

3. The "reduced costs" are r == [ 1  1] ,  so change is not good and the corner is optimal. 
5. At P, r = [-5 3] ; then at Q ,  r == [� - � J ; R is optimal because r > 00 

7. For a maximum problem the stopping test becomes r < O. If this fails, and the ith 
component is the largest, then that column of N enters the basis ; the rule 8C for the 
vector leaving the basis is the same. 

9. B E  == B [· . .  v . .  0 ] = [ . . .  u . . . ] ,  since Bv = u .  So E is the correct matrix. 
11. If Ax � 0, then Px = x - AT (AAT)-l Ax == x .  

Prob lem Set 8�ju page 399 
1. Maximize '4Yl + l 1Y2, with Yl > 0, Y2 > 0, 2Yl + Y2 < 1 ,  3Y2 ::S 1 ;  the primal has 

xi = 2, xi == � ,  the dual has yi == � ,  yi == � , cost = 5 .  
3. The dual maximizes yb, with y > c. Therefore x = b and y == c are feasible, and 

give the same value c b for the cost in the primal and dual; by SF they must be optimal. 
lfb l < O, then the optimal x* is changed to (O , b2 , . . 0 , bn ) and y* == (0, C2 , " ' " cn) .  

5. b == [0 l ]T and c == [- 1 0] . 
7. Since cx = 3 = yb, x and y are optimal by SF. 
9. x* == [ 1  O]T, y* := '  [ 1  0] , with y* b := 1 == cx* .  The second inequalities in both 

Ax* > b and y* A < c are strict, so the second components of y* and x* are zero. 
11. (a) xi = 0, xi = 1 , �: == 0, cT X == 3. (b) It is the first quadrant with the 

tetrahedron in the comer cut off. (c) Maximize Yl , subject to Yl > 0, Yl < 5, 
* ' Yl < 3 ,  Yl < 4; Yl = 3 . 

13. Here c = [ 1 1 1 ] with A = [ � � � ] . No constraint x > 0 so the dual will 
have equality yA == c (or ATy == cT) .  That gives 2Yl = 1 and Yl == 1 and Y2 == 2 
and no feasible solution. So the primal must have 00 as maximum: Xl = -N and 
X2 = 2N and X3 = 0 give .Cost = Xl + X2 + X3 == N (arbitrarily large) . 

1 0 0 - 1  0 0 1 0 0 - 1  
15. The columns of 0 1 0 0 - 1  0 or 0 1 0 - 1 . 

o 0 1 0 0 - 1  0 0 1 - 1  

17. Take y == [ 1  - 1] ;  then yA > 0, yb < O. 



ns to Se lected Exerc ises 

Problem Set 8�4, page 406 
1.  The maximal flow is 1 3 ,  with the minimal cut separating node 6 from the other 

nodes . 
3. Increasing the capacity of pipes from node 4 to node 6 or node 4 to node 5 will 

produce the largest increase in the maximal flow. The maximal flow increases from 
8 to 9 .  

5 .  Assign capacities = 1 to all edges . The maximum number of disjoint paths from s 
to t then equals the maximum flow. The minimum number of edges whose removal 
disconnects s from t is the minimum cut. Then max flow = min cut. 

7. Rows 1 , 4, and 5 violate Hall's condition; the 3 by 3 submatrix coming from rows 1 ,  
4, 5 ,  and columns 1 ,  2, 5 has 3 + 3 > 5 .  

9. (a) The matrix has 2n I s  which cannot be covered by less than n lines because 
each line covers exactly two Is .  It takes n lines ; there must be a complete matching. 

1 1 1 1  1 
1 0 0 0 1 

(b) 1 0 0 0 1 . The 1 s can be covered with four lines ; five marriages are 
1 0 0 0 1 
1 1 1 1 1  

not possible. 
11. If each m + 1 marries the only acceptable man m ,  there is no one for #1 to marry 

(even though all are acceptable to #1) .  
13. Algorithm 1 gives 1-3 ,  3-2, 2-5, 2-4, 4-6, and algorithm 2 gives 2-5, 4-6, 2-4, 

3-2, 1-3 .  These are equal-length shortest spanning trees. 
15. (a) Rows 1 ,  3 , 5 only have I s  in columns 2 and 4. (b) Columns 1 ,  3 ,  5 (in rows 2, 

4) . (c) Zero submatrix from rows 1 ,  3 ,  5 and columns 1 ,  3, 5. (d) Rows 2, 4  and 
columns 2, 4 cover all I s . 

Problem Set B.5, page 413 
1. - 10XI + 70(I - XI ) = 10XI - I0( I - xI ) , or xl = � , X2 = � ; - 10YI + 10(I - YI ) = 

70YI - 10( 1 - YI ) ,  or YI = � , Y2 = � ; average payoff yAx = 6.  
3. If X chooses column j,  Y will choose its smallest entry aij (in row i ) .  X will not 

move, since this is the largest entry in that row. In Problem 2, al2 = 2 was an 
equilibrium of this kind. If we exchange the 2 and 4 below it, no entry has this 
property, and mixed strategies are required. 

5. The best strategy for X combines the two lines to produce a horizontal 1ine, guaran
teeing this height of 7 /3 .  The combination is � (3y + 2(1 - y) )  + � (y + 3 ( 1 - y)) = 
7 /3 ,  so X chooses the columns with frequencies � ,  0, � . 

7. For columns, we want Xia + ( 1  - xI )b  = Xl e + ( 1  - xI )d = u ,  so 
Xl (a - b - e + d) = d - b. For rows, Yi a  + ( 1  - YI ) e  = ylb + ( 1  - YI)d = v 
exchanges b and e. Compare u with v :  

_ b - (a - b) (d - b) b - ad - be u -· xI (a - ) + b - + ------a - b - e + d  a - b - e + d  
same after b � e = v .  
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9. The inner maximum is the larger of Yl and Y2 ; x concentrates on that one. Subject 
to YI + Y2 == 1 ,  the minimtim of the �arger Y is � .  Notice A == J . 

11. Ax* == [� �J T and yAx* == � YI + �Y2 == � for all strategies of Y ;  y* A == 

[ �  � - 1  -lJ and y* Ax == �Xl + �X2 - X3 - X4 , which cannot exceed � ;  in 
between is y* Ax* == � . 

13. Value 0 (fair game) . X chooses 2 or 3 ,  y chooses odd or even: x* = y* == ( � , �) . 

Problem Set A, page 420 
1. Yea) Largest dim (S n T) == 7 when S e T. (b) Smallest dim (S n T) == 2. 

(e) Smallest dim (S + T) == 8 when S e T. 
(d) Largest dim (S + T) - 1 3  (all of R13) .  

%t� 0 au a12 a13 a14 al l a12 
3. V + W and V n W contain a21 a22 a23 a24 and 0 a22 a23 

0 
0 

0 a32 a33 a34 0 0 a23 a34 
.. 0 0 0 0 0 a43 a44 

dim (V + W) == 13  and dim (V n W) == 7 ;  add to get 20 == dim V + dim W. 
5.  The lines through ( 1 , 1 , 1 )  and ( 1 , 1 , 2) have V n W == {O} . 
7. One basis for V + W is VI , V2, W I ; dim (V n W) == 1 with basis (0 , 1 ,  - 1 , 0) . 
9. The intersection of column spaces is the line through y == (6, 3 , 6) : 

a44 

1 5  1 3 0 2 1 5 3 0  
y == 3 0 [ 1] == 0 1 [3] matches [A B]x == 3 0 0 1 

2 4  0 2  2 4 0 2  

1 
1 

-2 == O. 
-3 

The column spaces have dimension 2. Their sum and intersection give 3 + 1 == 2+ 2. 
1 

- 1  
1 

- 1 

1 
1 

- 1 
- 1  

1 
- 1  
- 1  . 

1 
13. A3D == (AID 0 J ® J)  + (1 0 AID ® 1) + (1 ® 1 ® AID) ' 

Prob lem Set 8, page 421 

1. J = [� �] (A is diagonalizable) ; J = 

(2, - 1 , 0) ) .  
1 t 2t 

0 1 0  
o 0 0 (eigenvectors (1 , 0,  0) and 
0 0 0  

3. eBt == 0 1 0 == I + Bt since B2 == O. Also e lt == I + J t .  
o 0 0 

1 0 0 
5. J = � � � (distinct eigenvalues); J = [� �] (B has A = 0,  0 but rank 1 ) . 



Appendix C
Matrix Factorizations

1. A = LU =

(
lower triangular L
1s on the diagonal

)(
upper triangular U

pivots on the diagonal

)

Requirements: No row exchanges as Gaussian elimination reduces A to U .

2. A = LDU =

(
lower triangular L
1s on the diagonal

)(
pivot matrix
D is diagonal

)(
upper triangular U
1s on the diagonal

)

Requirements: No row exchanges. The pivots in D are divided out to leave 1s in
U . If A is symmetric, then U is LT and A = LDLT.

3. PA = LU (permutation matrix P to avoid zeros in the pivot positions).

Requirements: A is invertible. Then P, L, U are invertible. P does the row ex-
changes in advance. Alternative: A = L1P1U1.

4. EA = R (m×m invertible E) (any A) = rref(A).

Requirements: None! The reduced row echelon form R has r pivot rows and pivot
columns. The only nonzero in a pivot column is the unit pivot. The Last m− r rows
of E are a basis for the left nullspace of A. and the first r columns of E−1 are a basis
for the column space of A.

5. A = CCT =
(

lower triangular matrix C
)(

transpose is upper triangular
)

Requirements: A is symmetric and positive definite (all n pivots in D are positive).
This Cholesky factorization has C = L

√
D.

6. A = QR =
(

orthonormal columns in Q
)(

upper triangular R
)

Requirements: A has independent columns. Those are orthogonalized in Q by the
Gram-Schmidt process. If A is square, then Q−1 = QT.

7. A = SΛS−1 =
(

eigenvectors in S
)(

eigenvalues in Λ
)(

left eigenvectors in S−1
)

.

Requirements: A must have n linearly independent eigenvectors.
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8. A = QΛQT =
(

orthogonal matrix Q
)(

real eigenvalue matrix Λ
)(

QT is Q−1
)

.

Requirements: A is symmetric. This is the Spectral Theorem.

9. A = MJM−1 =
(

generalized eigenvectors in M
)(

Jordan blocks in J
)(

M−1
)

.

Requirements: A is any square matrix. Jordan form J has a block for each inde-
pendent eigenvector of A. Each block has one eigenvalue.

10. A = UΣV T =

(
orthogonal
U is m×m

)(
m×n matrix Σ

σ1, . . . ,σr on diagonal

)(
orthogonal
V is n×n

)
.

Requirements: None. This singular value decomposition (SVD) has the eigenvec-
tors of AAT in U and of ATA in V ; σi =

√
λi(ATA) =

√
λi(AAT).

11. A+ = V Σ+UT =

(
orthogonal

n×n

)(
diagonal n×m
1/σ1, . . . ,1/σr

)(
orthogonal

m×m

)
.

Requirements: None. The pseudoinverse has A+A = projection onto row space of
A and AA+ = projection onto column space. The shortest least-squares solution to
Ax = b is x̂ = A+b. This solves ATAx̂ = ATb.

12. A = QH =
(

orthogonal matrix Q
)(

symmetric positive definite matrix H
)

.

Requirements: A is invertible. This polar decomposition has H2 = ATA. The
factor H is semidefinite if A is singular. The reverse polar decomposition A = KQ
has K2 = AAT. Both have Q = UV T from the SVD.

13. A = UΛU−1 =
(

unitary U
)(

eigenvalue matrix Λ
)(

U−1 = UH = UT
)

.

Requirements: A is normal: AHA = AAH. Its orthonormal (and possibly complex)
eigenvectors are the columns of U . Complex λ ’s unless A = AH.

14. A = UTU−1 =
(

unitary U
)(

triangular T with λ ’s on diagonal
)(

U−1 = UH
)

.

Requirements: Schur triangularization of any square A. There is a matrix U with
orthonormal columns that makes U−1AU triangular.

15. Fn =

[
I D
I −D

][
Fn/2

Fn/2

][
even-odd

permutation

]
= one step of the FFT.

Requirements: Fn = Fourier matrix with entries w jk where wn = 1, w = e2πi/n.
Then FnFn = nI. D has 1,w,w2, . . . on its diagonal. For n = 2` the Fast Fourier
Transform has 1

2n` multiplications from ` stages of D’s.
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Glossary: A Dictionary for Linear Algebra

Adjacency matrix of a graph Square matrix with ai j = 1 when there is an edge from
node i to node j; otherwise ai j = 0. A = AT for an undirected graph.

Affine transformation T (v) = Av+ v0 = linear transformation plus shift.

Associative Law (AB)C = A(BC) Parentheses can be removed to leave ABC.

Augmented matrix [A b] Ax = b is solvable when b is in the column space of A; then
[A b] has the same rank as A. Elimination on [A b] keeps equations correct.

Back substitution Upper triangular systems are solved in reverse order xn to x1.

Basis for V Independent vectors v1, . . . ,vd whose linear combinations give every v in
V. A vector space has many bases!

Big formula for n by n determinants det(A) is a sum of n! terms, one term for each
permutation P of the columns. That term is the product a1α · · ·anω down the diagonal
of the reordered matrix, times det(P) =±1.

Block matrix A matrix can be partitioned into matrix blocks, by cuts between rows
and/or between columns.

Block multiplication of AB is allowed if the block shapes permit (the columns of A
and rows of B must be in matching blocks).

Cayley-Hamilton Theorem p(λ ) = det(A−λ I) has p(A) = zero matrix.

Change of basis matrix M The old basis vectors v j are combinations ∑mi jwi of the
new basis vectors. The coordinates of c1v1 + · · ·+ cnvn = d1w1 + · · ·+dnwn are related
by d = Mc. (For n = 2, set v1 = m11w1 +m21w2, v2 = m12w1 +m22w2.)

Characteristic equation det(A−λ I) = 0 The n roots are the eigenvalues of A.

Cholesky factorization A = CCT = (L
√

D)(L
√

D)T for positive definite A.
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Circulant matrix C Constant diagonals wrap around as in cyclic shift S. Every
circulant is c0I + c1S + · · ·+ cn−1Sn−1. Cx = convolution c∗ x. Eigenvectors in F .

Cofactor Ci j Remove row i and column j; multiply the determinant by (−1)i+ j.

Column picture of Ax = b The vector b becomes a combination of the columns of A.
The system is solvable only when b is in the column space C(A).

Column space C(A) Space of all combinations of the columns of A.

Commuting matrices AB = BA If diagonalizable, they share n eigenvectors.

Companion matrix Put c1, . . . ,cn in row n and put n−1 1s along diagonal 1. Then
det(A−λ I) =±(c1 + c2λ + c3λ 2 + · · ·).
Complete solution x = xp + xn to Ax = b (Particular xp) + (xn in nullspace).

Complex conjugate z = a− ib for any complex number z = a+ ib.Then zz = |z|2.

Condition number cond(A) = κ(A) = ‖A‖‖A−1‖= σmax/σmin In Ax = b, the
relative change ‖δx‖/‖x‖ is less than cond(A) times the relative change ‖δb‖/‖b‖.
Condition numbers measure the sensitivity of the output to change in the input.

Conjugate Gradient Method A sequence of steps to solve positive definite Ax = b
by minimizing 1

2xTAx− xTb over growing Krylov subspaces.

Covariance matrix Σ When random variables xi have mean = average value = 0,
their covariances Σi j are the averages of xix j. With means xi, the matrix Σ = mean of
(x− x)(x− x)T is positive (semi)definite; it is diagonal if the xi are independent.

Cramer’s Rule for Ax = b B j has b replacing column j of A, and x j = |B j|/|A|.
Cross product u× v in R3 Vector perpendicular to u and v, length ‖u‖‖v‖|sinθ |=
parallelogram area, computed as the “determinant” of [i j k; u1 u2 u3; v1 v2 v3].

Cyclic shift S Permutation with s21 = 1, s32 = 1, . . ., finally s1n = 1. Its eigenvalues
are nth roots e2πik/n of 1; eigenvectors are columns of the Fourier matrix F .

Determinant |A|= det(A) Defined by det I = 1, sign reversal for row exchange, and
linearity in each row. Then |A|= 0 when A is singular. Also |AB|= |A||B|,
|A−1|= 1/|A|, and |AT|= |A|. The big formula for det(A) has a sum of n! terms, the
cofactor formula uses determinants of size n−1, volume of box = |det(A)|.
Diagonal matrix D di j = 0 if i 6= j. Block-diagonal: zero outside square blocks Dii.

Diagonalizable matrix A Must have n independent eigenvectors (in the columns of
S; automatic with n different eigenvalues). Then S−1AS = Λ = eigenvalue matrix.
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Diagonalization Λ = S−1AS Λ = eigenvalue matrix and S = eigenvector matrix. A
must have n independent eigenvectors to make S invertible. All Ak = SΛkS−1.

Dimension of vector space dim(V) = number of vectors in any basis for V.

Distributive Law A(B+C) = AB+AC Add then multiply, or multiply then add.

Dot product xTy = x1y1 + · · ·+ xnyn Complex dot product is xTy. Perpendicular
vectors have zero dot product. (AB)i j = (row i of A) · (column j of B).

Echelon matrix U The first nonzero entry (the pivot) in each row comes after the
pivot in the previous row. All zero rows come last.

Eigenvalue λ and eigenvector x Ax = λx with x 6= 0, so det(A−λ I) = 0.

Eigshow Graphical 2 by 2 eigenvalues and singular values (MATLAB or Java).

Elimination A sequence of row operations that reduces A to an upper triangular U or
to the reduced form R = rref(A). Then A = LU with multipliers `i j in L, or PA = LU
with row exchanges in P, or EA = R with an invertible E.

Elimination matrix = Elementary matrix Ei j The identity matrix with an extra
−`i j in the i, j entry (i 6= j). Then Ei jA subtracts `i j times row j of A from row i.

Ellipse (or ellipsoid) xTAx = 1 A must be positive definite; the axes of the ellipse are
eigenvectors of A, with lengths 1/

√
λ . (For ‖x‖= 1 the vectors y = Ax lie on the

ellipse ‖A−1y‖2 = yT(AAT)−1y = 1 displayed by eigshow; axis lengths σi.)

Exponential eAt = I +At +(At)2/2!+ · · · has derivative AeAt ; eAtu(0) solves u′ = Au.

Factorization A = LU If elimination takes A to U without row exchanges, then the
lower triangular L with multipliers `i j (and `ii = 1) brings U back to A.

Fast Fourier Transform (FFT) A factorization of the Fourier matrix Fn into
` = log2 n matrices Si times a permutation. Each Si needs only n/2 multiplications, so
Fnx and F−1

n c can be computed with n`/2 multiplications. Revolutionary.

Fibonacci numbers 0, 1, 1, 2, 3, 5,. . . satisfy
Fn = Fn−1 +Fn−2 = (λ n

1 −λ n
2 )/(λ1−λ2). Growth rate λ1 = (1+

√
5)/2 the largest

eigenvalue of the Fibonacci matrix
[

1 1
1 0

]
.

Four fundamental subspaces of A C(A), N(A), C(AT), N(AT).

Fourier matrix F Entries Fjk = e2πi jk/n give orthogonal columns FTF = nI. Then
y = Fc is the (inverse) Discrete Fourier Transform y j = ∑cke2πi jk/n.

Free columns of A Columns without pivots; combinations of earlier columns.
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Free variable xi Column i has no pivot in elimination. We can give the n− r free
variables any values, then Ax = b determines the r pivot variables (if solvable!).

Full column rank r = n Independent columns, N(A) = {0}, no free variables.

Full row rank r = m Independent rows, at least one solution to Ax = b, column space
is all of Rm. Full rank means full column rank or full row rank.

Fundamental Theorem The nullspace N(A) and row space C(AT) are orthogonal
complements (perpendicular subspaces of Rn with dimensions r and n− r) from
Ax = 0. Applied to AT, the column space C(A) is the orthogonal complement of
N(AT).

Gauss-Jordan method Invert A by row operations on [A I] to reach [I A−1].

Gram-Schmidt orthogonalization A = QR Independent columns in A, orthonormal
columns in Q. Each column q j of Q is a combination of the first j columns of A (and
conversely, so R is upper triangular). Convention: diag(R) > 0.

Graph G Set of n nodes connected pairwise by m edges. A complete graph has all
n(n−1)/2 edges between nodes. A tree has only n−1 edges and no closed loops. A
directed graph has a direction arrow specified on each edge.

Hankel matrix H Constant along each antidiagonal; hi j depends on i+ j.

Hermitian matrix AH = AT = A Complex analog of a symmetric matrix: a ji = ai j.

Hessenberg matrix H Triangular matrix with one extra nonzero adjacent diagonal.

Hilbert matrix hilb(n) Entries Hi j = 1/(i+ j−1) =
∫ 1

0 xi−1x j−1dx. Positive definite
but extremely small λmin and large condition number.

Hypercube matrix P2
L Row n+1 counts corners, edges, faces, . . ., of a cube in Rn.

Identity matrix I (or In) Diagonal entries = 1, off-diagonal entries = 0.

Incidence matrix of a directed graph The m by n edge-node incidence matrix has a
row for each edge (node i to node j), with entries −1 and 1 in columns i and j.

Indefinite matrix A symmetric matrix with eigenvalues of both signs (+ and −).

Independent vectors v1, . . . ,vk No combination c1v1 + · · ·+ ckvk = zero vector
unless all ci = 0. If the v’s are the columns of A, the only solution to Ax = 0 is x = 0.

Inverse matrix A−1 Square matrix with A−1A = I and AA−1 = I. No inverse if
detA = 0 and rank(A) < n, and Ax = 0 for a nonzero vector x. The inverses of AB and
AT are B−1A−1 and (A−1)T Cofactor formula (A−1)i j = C ji/detA.
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Iterative method A sequence of steps intended to approach the desired solution.

Jordan form J = M−1AM If A has s independent eigenvectors, its “generalized”
eigenvector matrix M gives J = diag(J1, . . . ,Js). The block Jk is λkIk +Nk where Nk has
1s on diagonal 1. Each block has one eigenvalue λk and one eigenvector (1,0, . . . ,0).

Kirchhoff’s Laws Current law: net current (in minus out) is zero at each node.
Voltage law: Potential differences (voltage drops) add to zero around any closed loop.

Kronecker product (tensor product) A⊗B Blocks ai jB, eigenvalues λp(A)λq(B).

Krylov subspace K j(A,b) The subspace spanned by b,Ab, . . . ,A j−1b. Numerical
methods approximate A−1b by x j with residual b−Ax j in this subspace. A good basis
for K j requires only multiplication by A at each step.

Least-squares solution x̂ The vector x̂ that minimizes the error ‖e‖2 solves
ATAx̂ = ATb. Then e = b−Ax̂ is orthogonal to all columns of A.

Left inverse A+ If A has full column rank n, then A+ = (ATA)−1AT has A+A = In.

Left nullspace N(AT) Nullspace of AT = “left nullspace” of A because yTA = 0T.

Length ‖x‖ Square root of xTx (Pythagoras in n dimensions).

Linear combination cv+dw or ∑c jv j Vector addition and scalar multiplication.

Linear transformation T Each vector v in the input space transforms to T (v) in the
output space, and linearity requires T (cv+dw) = cT (v)+dT (w). Examples: Matrix
multiplication Av, differentiation in function space.

Linearly dependent v1, . . . ,vn A combination other than all ci = 0 gives ∑civi = 0.

Lucas numbers L = 2,1,3,4, . . ., satisfy Ln = Ln−1 +Ln−2 = λ n
1 +λ 2

n , with
eigenvalues λ1,λ2 = (1±√5)/2 of the Fibonacci matrix

[
1 1
1 0

]
. Compare L0 = 2 with

Fibonacci.

Markov matrix M All mi j ≥ 0 and each column sum is 1. Largest eigenvalue λ = 1.
If mi j > 0, the columns of Mk approach the steady-state eigenvector Ms = s > 0.

Matrix multiplication AB The i, j entry of AB is (row i of A) · (column j of B)
= ∑aikbk j. By columns: column j of AB = A times column j of B. By rows: row i of A
multiplies B. Columns times rows: AB = sum of (column k)(row k). All these
equivalent definitions come from the rule that AB times x equals A times Bx.

Minimal polynomial of A The lowest-degree polynomial with m(A) = zero matrix.
The roots of m are eigenvalues, and m(λ ) divides det(A−λ I).

Multiplication Ax = x1(column 1)+ · · ·+ xn(column n) = combination of columns.
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Multiplicities AM and GM The algebraic multiplicity AM of an eigenvalue λ is the
number of times λ appears as a root of det(A−λ I) = 0. The geometric multiplicity
GM is the number of independent eigenvectors (= dimension of the eigenspace for λ ).

Multiplier `i j The pivot row j is multiplied by `i j and subtracted from row i to
eliminate the i, j entry: `i j = (entry to eliminate)/( jth pivot).

Network A directed graph that has constants c1, . . . ,cm associated with the edges.

Nilpotent matrix N Some power of N is the zero matrix, Nk = 0. The only
eigenvalue is λ = 0 (repeated n times). Examples: triangular matrices with zero
diagonal.

Norm ‖A‖ of a matrix The “`2 norm” is the maximum ratio ‖Ax‖/‖x‖= σmax. Then
‖Ax‖ ≤ ‖A‖‖x‖, ‖AB‖ ≤ ‖A‖‖B‖, and ‖A+B‖ ≤ ‖A‖+‖B‖. Frobenius norm
‖A‖2

F = ∑∑a2
i j; `1 and `∞ norms are largest column and row sums of |ai j|.

Normal equation ATAx̂ = ATb Gives the least-squares solution to Ax = b if A has full
rank n. The equation says that (columns of A) · (b−Ax̂) = 0.

Normal matrix N NNT = NTN, leads to orthonormal (complex) eigenvectors.

Nullspace matrix N The columns of N are the n− r special solutions to As = 0.

Nullspace N(A) Solutions to Ax = 0. Dimension n− r = (# columns) − rank.

Orthogonal matrix Q Square matrix with orthonormal columns, so QTQ = I implies
QT = Q−1. Preserves length and angles, ‖Qx‖= ‖x‖ and (Qx)T(Qy) = xTy. All
|λ |= 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

Orthogonal subspaces Every v in V is orthogonal to every w in W.

Orthonormal vectors q1, . . . ,qn Dot products are qT
i q j = 0, if i 6= j and qT

i q j = 1.
The matrix Q with these orthonormal columns has QTQ = I. If m = n, then QT = Q−1

and q1, . . . ,qn is an orthonormal basis for Rn: every v = ∑(vTq j)q j.

Outer product is uvT column times row = rank-1 matrix.

Partial pivoting In elimination, the jth pivot is chosen as the largest available entry
(in absolute value) in column j. Then all multipliers have |`i j| ≤ 1. Roundoff error is
controlled (depending on the condition number of A).

Particular solution xp Any solution to Ax = b; often xp has free variables = 0.

Pascal matrix PS = pascal(n) The symmetric matrix with binomial entries
(i+ j−2

i−1

)
.

PS = PLPU all contain Pascal’s triangle with det = 1 (see index for more properties).
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Permutation matrix P There are n! orders of 1, . . . ,n; the n! P’s have the rows of I in
those orders. PA puts the rows of A in the same order. P is a product of row exchanges
Pi j; P is even or odd (detP = 1 or −1) based on the number of exchanges.

Pivot columns of A Columns that contain pivots after row reduction; not
combinations of earlier columns. The pivot columns are a basis for the column space.

Pivot d The first nonzero entry when a row is used in elimination.

Plane (or hyperplane) in Rn Solutions to aTx = 0 give the plane (dimension n−1)
perpendicular to a 6= 0.

Polar decomposition A = QH Orthogonal Q, positive (semi)definite H.

Positive definite matrix A Symmetric matrix with positive eigenvalues and positive
pivots. Definition: xTAx > 0 unless x = 0.

Projection matrix P onto subspace S Projection p = Pb is the closest point to b in
S, error e = b−Pb is perpendicular to S. P2 = P = PT, eigenvalues are 1 or 0,
eigenvectors are in S or S⊥. If columns of A = basis for S, then P = A(ATA)−1AT.

Projection p = a(aTb/aTa) onto the line through a P = aaT/aTa has rank 1.

Pseudoinverse A+ (Moore-Penrose inverse) The n by m matrix that “inverts” A
from column space back to row space, with N(A+) = N(AT). A+A and AA+ are the
projection matrices onto the row space and column space. rank(A+) = rank(A).

Random matrix rand(n) or randn(n) MATLAB creates a matrix with random entries,
uniformly distributed on [0 1] for rand, and standard normal distribution for randn.

Rank 1 matrix A = uvT 6= 0 Column and row spaces = lines cu and cv.

Rank r(A) Equals number of pivots = dimension of column space = dimension of
row space.

Rayleigh quotient q(x) = xTAx/xTx For A = AT, λmin ≤ q(x)≤ λmax. Those
extremes are reached at the eigenvectors x for λmin(A) and λmax(A).

Reduced row echelon form R = rref(A) Pivots= 1; zeros above and below pivots; r
nonzero rows of R give a basis for the row space of A.

Reflection matrix Q = I−2uuT The unit vector u is reflected to Qu =−u. All
vectors x in the plane uTx = 0 are unchanged because Qx = x. The “Householder
matrix” has QT = Q−1 = Q.

Right inverse A+ If A has full row rank m, then A+ = AT(AAT)−1 has AA+ = Im.
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Rotation matrix R =
[

cosθ −sinθ
sinθ cosθ

]
rotates the plane by θ , and R−1 = RT rotates back

by −θ . Orthogonal matrix, eigenvalues eiθ and e−iθ , eigenvectors (1,±i).

Row picture of Ax = b Each equation gives a plane in Rn planes intersect at x.

Row space C(AT) All combinations of rows of A. Column vectors by convention.

Saddle point of f (x1, . . . ,xn) A point where the first derivatives of f are zero and the
second derivative matrix (∂ 2 f /∂xi∂x j = Hessian matrix) is indefinite.

Schur complement S = D−CA−1B Appears in block elimination on
[

A B
C D

]
.

Schwarz inequality |v ·w| ≤ ‖v‖‖w‖ Then |vTAw|2 ≤ (vTAv)(wTAw) if A = CTC.

Semidefinite matrix A (Positive) semidefinite means symmetric with xTAx≥ 0 for
all vectors x. Then all eigenvalues λ ≥ 0; no negative pivots.

Similar matrices A and B B = M−1AM has the same eigenvalues as A.

Simplex method for linear programming The minimum cost vector x∗ is found by
moving from corner to lower-cost corner along the edges of the feasible set (where the
constraints Ax = b and x≥ 0 are satisfied). Minimum cost at a corner!

Singular matrix A A square matrix that has no inverse: det(A) = 0.

Singular Value Decomposition (SVD) A = UΣV T = (orthogonal U) times (diagonal
Σ) times (orthogonal V T) First r columns of U and V are orthonormal bases of C(A)
and C(AT), with Avi = σiui and singular value σi > 0. Last columns of U and V are
orthonormal bases of the nullspaces of AT and A.

Skew-symmetric matrix K The transpose is −K, since Ki j =−K ji. Eigenvalues are
pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

Solvable system Ax = b The right side b is in the column space of A.

Spanning set v1, . . . ,vm, for V Every vector in V is a combination of v1, . . . ,vm.

Special solutions to As = 0 One free variable is si = 1, other free variables = 0.

Spectral theorem A = QΛQT Real symmetric A has real λi and orthonormal qi, with
Aqi = λiqi. In mechanics, the qi give the principal axes.

Spectrum of A The set of eigenvalues {λ1, . . . ,λm}. Spectral radius = |λmax|.
Standard basis for Rn Columns of n by n identity matrix (written i, j,k in R3).

Stiffness matrix K When x gives the movements of the nodes in a discrete structure,
Kx gives the internal forces. Often K = ATCA, where C contains spring constants from
Hooke’s Law and Ax = stretching (strains) from the movements x.
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Subspace S of V Any vector space inside V, including V and Z = {zero vector}.

Sum V+W of subspaces Space of all (v in V )+(w in W). Direct sum:
dim(V+W) = dimV+dimW, when V and W share only the zero vector.

Symmetric factorizations A = LDLT and A = QΛQT The number of positive pivots
in D and positive eigenvalues in Λ is the same.

Symmetric matrix A The transpose is AT = A, and ai j = a ji. A−1 is also symmetric.
All matrices of the form RTR and LDLT and QΛQT are symmetric. Symmetric matrices
have real eigenvalues in Λ and orthonormal eigenvectors in Q.

Toeplitz matrix T Constant-diagonal matrix, so ti j depends only on j− i. Toeplitz
matrices represent linear time-invariant filters in signal processing.

Trace of A Sum of diagonal entries = sum of eigenvalues of A. TrAB = TrBA.

Transpose matrix AT Entries AT
i j = A ji. AT is n by m, ATA is square, symmetric,

positive semidefinite. The transposes of AB and A−1 are BTAT and (AT)−1.

Triangle inequality ‖u+ v‖ ≤ ‖u‖+‖v‖ For matrix norms, ‖A+B‖ ≤ ‖A‖+‖B‖.

Tridiagonal matrix T ti j = 0 if |i− j|> 1. T−1 has rank 1 above and below diagonal.

Unitary matrix UH = UT = U−1 Orthonormal columns (complex analog of Q).

Vandermonde matrix V V c = b gives the polynomial p(x) = c0 + · · ·+ cn−1xn−1

with p(xi) = bi at n points. Vi j = (xi) j−1, and detV = product of (xk− xi) for k > i.

Vector addition v+w = (v1 +w1, . . . ,vn +wn) = diagonal of parallelogram.

Vector space V Set of vectors such that all combinations cv+dw remain in V. Eight
required rules are given in Section 2.1 for cv+dw.

Vector v in Rn Sequence of n real numbers v = (v1, . . . ,vn) = point in Rn.

Volume of box The rows (or columns) of A generate a box with volume |det(A)|.
Wavelets w jk(t) or vectors w jk Rescale and shift the time axis to create
w jk(t) = w00(2 jt− k). Vectors from w00 = (1,1,−1,−1) would be (1,−1,0,0) and
(0,0,1,−1).
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MATLAB Teaching Codes

cofactor Compute the n by n matrix of cofactors.

cramer Solve the system Ax = b by Cramer’s Rule.

deter Matrix determinant computed from the pivots in PA = LU .

eigen2 Eigenvalues, eigenvectors, and det(A−λ I) for 2 by 2 matrices.

eigshow Graphical demonstration of eigenvalues and singular values.

eigval Eigenvalues and their multiplicity as roots of det(A−λ I) = 0.

eigvec Compute as many linearly independent eigenvectors as possible.

elim Reduction of A to row echelon form R by an invertible E.

findpiv Find a pivot for Gaussian elimination (used by plu).

fourbase Construct bases for all four fundamental subspaces.

grams Gram-Schmidt orthogonalization of the columns of A.

house 2 by 12 matrix giving corner coordinates of a house.

inverse Matrix inverse (if it exists) by Gauss-Jordan elimination.

leftnull Compute a basis for the left nullspace.

linefit Plot the least squares fit to m given points by a line.

lsq Least-squares solution to Ax = b from ATA = ATb.

normal Eigenvalues and orthonormal eigenvectors when ATA = AAT.

nulbasis Matrix of special solutions to Ax = 0 (basis for null space).

orthcomp Find a basis for the orthogonal complement of a subspace.

partic Particular solution of Ax = b, with all free variables zero.
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plot2d Two-dimensional plot for the house figures.

plu Rectangular PA = LU factorization with row exchanges.

poly2str Express a polynomial as a string.

project Project a vector b onto the column space of A.

projmat Construct the projection matrix onto the column space of A.

randperm Construct a random permutation.

rowbasis Compute a basis for the row space from the pivot rows of R.

samespan Test whether two matrices have the same column space.

signperm Determinant of the permutation matrix with rows ordered by p.

slu LU factorization of a square matrix using no row exchanges.

slv Apply slu to solve the system Ax = b allowing no row exchanges.

splu Square PA = LU factorization with row exchanges.

splv The solution to a square, invertible system Ax = b.

symmeig Compute the eigenvalues and eigenvectors of a symmetric matrix.

tridiag Construct a tridiagonal matrix with constant diagonals a, b, c.

These Teaching Codes are directly available from the Linear Algebra Home Page:
http://web.mit.edu/18.06/www.

They were written in MATLAB , and translated into Maple and Mathematica.



Appendix F
Linear Algebra in a Nutshell

(A is n by n)

Nonsingular Singular

A is invertible. A is not invertible.

The columns are independent. The columns are dependent.

The rows are independent. The rows are dependent.

The determinant is not zero. The determinant is zero.

Ax = 0 has one solution x = 0. Ax = 0 has infinitely many solutions.

Ax = b has one solution x = A−1b. Ax = b has no solution or infinitely many.

A has n (nonzero) pivots. A has r < n pivots.

A has full rank r = n. A has rank r < n.

The reduced row echelon form is R = I. R has at least one zero row.

The column space is all of Rn. The column space has dimension r < n.

The row space is all of Rn. The row space has dimension r < n.

All eigenvalues are nonzero. Zero is an eigenvalue of A.

ATA is symmetric positive definite. ATA is only semidefinite.

A has n (positive) singular values. A has r < n singular values.

Each line of the singular column can be made quantitative using r.
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